Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     krf              = _mm256_set1_pd(fr->ic->k_rf);
131     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
132     crf              = _mm256_set1_pd(fr->ic->c_rf);
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     vftab            = kernel_data->table_vdw->data;
138     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
143     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
144     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm256_setzero_pd();
181         fiy0             = _mm256_setzero_pd();
182         fiz0             = _mm256_setzero_pd();
183         fix1             = _mm256_setzero_pd();
184         fiy1             = _mm256_setzero_pd();
185         fiz1             = _mm256_setzero_pd();
186         fix2             = _mm256_setzero_pd();
187         fiy2             = _mm256_setzero_pd();
188         fiz2             = _mm256_setzero_pd();
189         fix3             = _mm256_setzero_pd();
190         fiy3             = _mm256_setzero_pd();
191         fiz3             = _mm256_setzero_pd();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_pd();
195         vvdwsum          = _mm256_setzero_pd();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_pd(ix0,jx0);
218             dy00             = _mm256_sub_pd(iy0,jy0);
219             dz00             = _mm256_sub_pd(iz0,jz0);
220             dx10             = _mm256_sub_pd(ix1,jx0);
221             dy10             = _mm256_sub_pd(iy1,jy0);
222             dz10             = _mm256_sub_pd(iz1,jz0);
223             dx20             = _mm256_sub_pd(ix2,jx0);
224             dy20             = _mm256_sub_pd(iy2,jy0);
225             dz20             = _mm256_sub_pd(iz2,jz0);
226             dx30             = _mm256_sub_pd(ix3,jx0);
227             dy30             = _mm256_sub_pd(iy3,jy0);
228             dz30             = _mm256_sub_pd(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
232             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
233             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
234             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
235
236             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
239             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
240
241             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
243             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             fjx0             = _mm256_setzero_pd();
254             fjy0             = _mm256_setzero_pd();
255             fjz0             = _mm256_setzero_pd();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm256_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
265                                             vdwioffsetptr0+vdwjidx0B,
266                                             vdwioffsetptr0+vdwjidx0C,
267                                             vdwioffsetptr0+vdwjidx0D,
268                                             &c6_00,&c12_00);
269
270             /* Calculate table index by multiplying r with table scale and truncate to integer */
271             rt               = _mm256_mul_pd(r00,vftabscale);
272             vfitab           = _mm256_cvttpd_epi32(rt);
273             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
274             vfitab           = _mm_slli_epi32(vfitab,3);
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
281             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
282             Heps             = _mm256_mul_pd(vfeps,H);
283             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
284             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
285             vvdw6            = _mm256_mul_pd(c6_00,VV);
286             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
287             fvdw6            = _mm256_mul_pd(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
295             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
296             Heps             = _mm256_mul_pd(vfeps,H);
297             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
298             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
299             vvdw12           = _mm256_mul_pd(c12_00,VV);
300             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
301             fvdw12           = _mm256_mul_pd(c12_00,FF);
302             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
303             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx00);
312             ty               = _mm256_mul_pd(fscal,dy00);
313             tz               = _mm256_mul_pd(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm256_add_pd(fix0,tx);
317             fiy0             = _mm256_add_pd(fiy0,ty);
318             fiz0             = _mm256_add_pd(fiz0,tz);
319
320             fjx0             = _mm256_add_pd(fjx0,tx);
321             fjy0             = _mm256_add_pd(fjy0,ty);
322             fjz0             = _mm256_add_pd(fjz0,tz);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm256_mul_pd(iq1,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
333             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm256_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_pd(fscal,dx10);
342             ty               = _mm256_mul_pd(fscal,dy10);
343             tz               = _mm256_mul_pd(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm256_add_pd(fix1,tx);
347             fiy1             = _mm256_add_pd(fiy1,ty);
348             fiz1             = _mm256_add_pd(fiz1,tz);
349
350             fjx0             = _mm256_add_pd(fjx0,tx);
351             fjy0             = _mm256_add_pd(fjy0,ty);
352             fjz0             = _mm256_add_pd(fjz0,tz);
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm256_mul_pd(iq2,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
363             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm256_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm256_mul_pd(fscal,dx20);
372             ty               = _mm256_mul_pd(fscal,dy20);
373             tz               = _mm256_mul_pd(fscal,dz20);
374
375             /* Update vectorial force */
376             fix2             = _mm256_add_pd(fix2,tx);
377             fiy2             = _mm256_add_pd(fiy2,ty);
378             fiz2             = _mm256_add_pd(fiz2,tz);
379
380             fjx0             = _mm256_add_pd(fjx0,tx);
381             fjy0             = _mm256_add_pd(fjy0,ty);
382             fjz0             = _mm256_add_pd(fjz0,tz);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             /* Compute parameters for interactions between i and j atoms */
389             qq30             = _mm256_mul_pd(iq3,jq0);
390
391             /* REACTION-FIELD ELECTROSTATICS */
392             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
393             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm256_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm256_mul_pd(fscal,dx30);
402             ty               = _mm256_mul_pd(fscal,dy30);
403             tz               = _mm256_mul_pd(fscal,dz30);
404
405             /* Update vectorial force */
406             fix3             = _mm256_add_pd(fix3,tx);
407             fiy3             = _mm256_add_pd(fiy3,ty);
408             fiz3             = _mm256_add_pd(fiz3,tz);
409
410             fjx0             = _mm256_add_pd(fjx0,tx);
411             fjy0             = _mm256_add_pd(fjy0,ty);
412             fjz0             = _mm256_add_pd(fjz0,tz);
413
414             fjptrA             = f+j_coord_offsetA;
415             fjptrB             = f+j_coord_offsetB;
416             fjptrC             = f+j_coord_offsetC;
417             fjptrD             = f+j_coord_offsetD;
418
419             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 155 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             /* Sign of each element will be negative for non-real atoms.
433              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
434              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
435              */
436             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
437
438             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
439             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
440             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
441
442             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
443             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
444             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
445             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450
451             /* load j atom coordinates */
452             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
453                                                  x+j_coord_offsetC,x+j_coord_offsetD,
454                                                  &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm256_sub_pd(ix0,jx0);
458             dy00             = _mm256_sub_pd(iy0,jy0);
459             dz00             = _mm256_sub_pd(iz0,jz0);
460             dx10             = _mm256_sub_pd(ix1,jx0);
461             dy10             = _mm256_sub_pd(iy1,jy0);
462             dz10             = _mm256_sub_pd(iz1,jz0);
463             dx20             = _mm256_sub_pd(ix2,jx0);
464             dy20             = _mm256_sub_pd(iy2,jy0);
465             dz20             = _mm256_sub_pd(iz2,jz0);
466             dx30             = _mm256_sub_pd(ix3,jx0);
467             dy30             = _mm256_sub_pd(iy3,jy0);
468             dz30             = _mm256_sub_pd(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
472             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
473             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
474             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
475
476             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
477             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
478             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
479             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
480
481             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
482             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
483             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
484
485             /* Load parameters for j particles */
486             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
487                                                                  charge+jnrC+0,charge+jnrD+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489             vdwjidx0B        = 2*vdwtype[jnrB+0];
490             vdwjidx0C        = 2*vdwtype[jnrC+0];
491             vdwjidx0D        = 2*vdwtype[jnrD+0];
492
493             fjx0             = _mm256_setzero_pd();
494             fjy0             = _mm256_setzero_pd();
495             fjz0             = _mm256_setzero_pd();
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             r00              = _mm256_mul_pd(rsq00,rinv00);
502             r00              = _mm256_andnot_pd(dummy_mask,r00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
506                                             vdwioffsetptr0+vdwjidx0B,
507                                             vdwioffsetptr0+vdwjidx0C,
508                                             vdwioffsetptr0+vdwjidx0D,
509                                             &c6_00,&c12_00);
510
511             /* Calculate table index by multiplying r with table scale and truncate to integer */
512             rt               = _mm256_mul_pd(r00,vftabscale);
513             vfitab           = _mm256_cvttpd_epi32(rt);
514             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
515             vfitab           = _mm_slli_epi32(vfitab,3);
516
517             /* CUBIC SPLINE TABLE DISPERSION */
518             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
519             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
520             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
521             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
522             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
523             Heps             = _mm256_mul_pd(vfeps,H);
524             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
525             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
526             vvdw6            = _mm256_mul_pd(c6_00,VV);
527             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
528             fvdw6            = _mm256_mul_pd(c6_00,FF);
529
530             /* CUBIC SPLINE TABLE REPULSION */
531             vfitab           = _mm_add_epi32(vfitab,ifour);
532             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
533             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
534             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
535             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
536             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
537             Heps             = _mm256_mul_pd(vfeps,H);
538             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
539             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
540             vvdw12           = _mm256_mul_pd(c12_00,VV);
541             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
542             fvdw12           = _mm256_mul_pd(c12_00,FF);
543             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
544             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
548             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
549
550             fscal            = fvdw;
551
552             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm256_mul_pd(fscal,dx00);
556             ty               = _mm256_mul_pd(fscal,dy00);
557             tz               = _mm256_mul_pd(fscal,dz00);
558
559             /* Update vectorial force */
560             fix0             = _mm256_add_pd(fix0,tx);
561             fiy0             = _mm256_add_pd(fiy0,ty);
562             fiz0             = _mm256_add_pd(fiz0,tz);
563
564             fjx0             = _mm256_add_pd(fjx0,tx);
565             fjy0             = _mm256_add_pd(fjy0,ty);
566             fjz0             = _mm256_add_pd(fjz0,tz);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq10             = _mm256_mul_pd(iq1,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
577             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm256_andnot_pd(dummy_mask,velec);
581             velecsum         = _mm256_add_pd(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx10);
589             ty               = _mm256_mul_pd(fscal,dy10);
590             tz               = _mm256_mul_pd(fscal,dz10);
591
592             /* Update vectorial force */
593             fix1             = _mm256_add_pd(fix1,tx);
594             fiy1             = _mm256_add_pd(fiy1,ty);
595             fiz1             = _mm256_add_pd(fiz1,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm256_mul_pd(iq2,jq0);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
610             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm256_andnot_pd(dummy_mask,velec);
614             velecsum         = _mm256_add_pd(velecsum,velec);
615
616             fscal            = felec;
617
618             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
619
620             /* Calculate temporary vectorial force */
621             tx               = _mm256_mul_pd(fscal,dx20);
622             ty               = _mm256_mul_pd(fscal,dy20);
623             tz               = _mm256_mul_pd(fscal,dz20);
624
625             /* Update vectorial force */
626             fix2             = _mm256_add_pd(fix2,tx);
627             fiy2             = _mm256_add_pd(fiy2,ty);
628             fiz2             = _mm256_add_pd(fiz2,tz);
629
630             fjx0             = _mm256_add_pd(fjx0,tx);
631             fjy0             = _mm256_add_pd(fjy0,ty);
632             fjz0             = _mm256_add_pd(fjz0,tz);
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq30             = _mm256_mul_pd(iq3,jq0);
640
641             /* REACTION-FIELD ELECTROSTATICS */
642             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
643             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velec            = _mm256_andnot_pd(dummy_mask,velec);
647             velecsum         = _mm256_add_pd(velecsum,velec);
648
649             fscal            = felec;
650
651             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
652
653             /* Calculate temporary vectorial force */
654             tx               = _mm256_mul_pd(fscal,dx30);
655             ty               = _mm256_mul_pd(fscal,dy30);
656             tz               = _mm256_mul_pd(fscal,dz30);
657
658             /* Update vectorial force */
659             fix3             = _mm256_add_pd(fix3,tx);
660             fiy3             = _mm256_add_pd(fiy3,ty);
661             fiz3             = _mm256_add_pd(fiz3,tz);
662
663             fjx0             = _mm256_add_pd(fjx0,tx);
664             fjy0             = _mm256_add_pd(fjy0,ty);
665             fjz0             = _mm256_add_pd(fjz0,tz);
666
667             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
668             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
669             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
670             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
671
672             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
673
674             /* Inner loop uses 156 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
680                                                  f+i_coord_offset,fshift+i_shift_offset);
681
682         ggid                        = gid[iidx];
683         /* Update potential energies */
684         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
685         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 26 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
699 }
700 /*
701  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
702  * Electrostatics interaction: ReactionField
703  * VdW interaction:            CubicSplineTable
704  * Geometry:                   Water4-Particle
705  * Calculate force/pot:        Force
706  */
707 void
708 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
709                     (t_nblist                    * gmx_restrict       nlist,
710                      rvec                        * gmx_restrict          xx,
711                      rvec                        * gmx_restrict          ff,
712                      t_forcerec                  * gmx_restrict          fr,
713                      t_mdatoms                   * gmx_restrict     mdatoms,
714                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
715                      t_nrnb                      * gmx_restrict        nrnb)
716 {
717     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
718      * just 0 for non-waters.
719      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
720      * jnr indices corresponding to data put in the four positions in the SIMD register.
721      */
722     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
723     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
724     int              jnrA,jnrB,jnrC,jnrD;
725     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
726     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
727     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
728     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
729     real             rcutoff_scalar;
730     real             *shiftvec,*fshift,*x,*f;
731     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
732     real             scratch[4*DIM];
733     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
734     real *           vdwioffsetptr0;
735     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
736     real *           vdwioffsetptr1;
737     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
738     real *           vdwioffsetptr2;
739     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
740     real *           vdwioffsetptr3;
741     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
742     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
743     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
748     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
749     real             *charge;
750     int              nvdwtype;
751     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
752     int              *vdwtype;
753     real             *vdwparam;
754     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
755     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
756     __m128i          vfitab;
757     __m128i          ifour       = _mm_set1_epi32(4);
758     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
759     real             *vftab;
760     __m256d          dummy_mask,cutoff_mask;
761     __m128           tmpmask0,tmpmask1;
762     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
763     __m256d          one     = _mm256_set1_pd(1.0);
764     __m256d          two     = _mm256_set1_pd(2.0);
765     x                = xx[0];
766     f                = ff[0];
767
768     nri              = nlist->nri;
769     iinr             = nlist->iinr;
770     jindex           = nlist->jindex;
771     jjnr             = nlist->jjnr;
772     shiftidx         = nlist->shift;
773     gid              = nlist->gid;
774     shiftvec         = fr->shift_vec[0];
775     fshift           = fr->fshift[0];
776     facel            = _mm256_set1_pd(fr->epsfac);
777     charge           = mdatoms->chargeA;
778     krf              = _mm256_set1_pd(fr->ic->k_rf);
779     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
780     crf              = _mm256_set1_pd(fr->ic->c_rf);
781     nvdwtype         = fr->ntype;
782     vdwparam         = fr->nbfp;
783     vdwtype          = mdatoms->typeA;
784
785     vftab            = kernel_data->table_vdw->data;
786     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
787
788     /* Setup water-specific parameters */
789     inr              = nlist->iinr[0];
790     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
791     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
792     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
793     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
794
795     /* Avoid stupid compiler warnings */
796     jnrA = jnrB = jnrC = jnrD = 0;
797     j_coord_offsetA = 0;
798     j_coord_offsetB = 0;
799     j_coord_offsetC = 0;
800     j_coord_offsetD = 0;
801
802     outeriter        = 0;
803     inneriter        = 0;
804
805     for(iidx=0;iidx<4*DIM;iidx++)
806     {
807         scratch[iidx] = 0.0;
808     }
809
810     /* Start outer loop over neighborlists */
811     for(iidx=0; iidx<nri; iidx++)
812     {
813         /* Load shift vector for this list */
814         i_shift_offset   = DIM*shiftidx[iidx];
815
816         /* Load limits for loop over neighbors */
817         j_index_start    = jindex[iidx];
818         j_index_end      = jindex[iidx+1];
819
820         /* Get outer coordinate index */
821         inr              = iinr[iidx];
822         i_coord_offset   = DIM*inr;
823
824         /* Load i particle coords and add shift vector */
825         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
826                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
827
828         fix0             = _mm256_setzero_pd();
829         fiy0             = _mm256_setzero_pd();
830         fiz0             = _mm256_setzero_pd();
831         fix1             = _mm256_setzero_pd();
832         fiy1             = _mm256_setzero_pd();
833         fiz1             = _mm256_setzero_pd();
834         fix2             = _mm256_setzero_pd();
835         fiy2             = _mm256_setzero_pd();
836         fiz2             = _mm256_setzero_pd();
837         fix3             = _mm256_setzero_pd();
838         fiy3             = _mm256_setzero_pd();
839         fiz3             = _mm256_setzero_pd();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             jnrC             = jjnr[jidx+2];
849             jnrD             = jjnr[jidx+3];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852             j_coord_offsetC  = DIM*jnrC;
853             j_coord_offsetD  = DIM*jnrD;
854
855             /* load j atom coordinates */
856             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
857                                                  x+j_coord_offsetC,x+j_coord_offsetD,
858                                                  &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx00             = _mm256_sub_pd(ix0,jx0);
862             dy00             = _mm256_sub_pd(iy0,jy0);
863             dz00             = _mm256_sub_pd(iz0,jz0);
864             dx10             = _mm256_sub_pd(ix1,jx0);
865             dy10             = _mm256_sub_pd(iy1,jy0);
866             dz10             = _mm256_sub_pd(iz1,jz0);
867             dx20             = _mm256_sub_pd(ix2,jx0);
868             dy20             = _mm256_sub_pd(iy2,jy0);
869             dz20             = _mm256_sub_pd(iz2,jz0);
870             dx30             = _mm256_sub_pd(ix3,jx0);
871             dy30             = _mm256_sub_pd(iy3,jy0);
872             dz30             = _mm256_sub_pd(iz3,jz0);
873
874             /* Calculate squared distance and things based on it */
875             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
876             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
877             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
878             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
879
880             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
881             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
882             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
883             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
884
885             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
886             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
887             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
888
889             /* Load parameters for j particles */
890             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
891                                                                  charge+jnrC+0,charge+jnrD+0);
892             vdwjidx0A        = 2*vdwtype[jnrA+0];
893             vdwjidx0B        = 2*vdwtype[jnrB+0];
894             vdwjidx0C        = 2*vdwtype[jnrC+0];
895             vdwjidx0D        = 2*vdwtype[jnrD+0];
896
897             fjx0             = _mm256_setzero_pd();
898             fjy0             = _mm256_setzero_pd();
899             fjz0             = _mm256_setzero_pd();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r00              = _mm256_mul_pd(rsq00,rinv00);
906
907             /* Compute parameters for interactions between i and j atoms */
908             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
909                                             vdwioffsetptr0+vdwjidx0B,
910                                             vdwioffsetptr0+vdwjidx0C,
911                                             vdwioffsetptr0+vdwjidx0D,
912                                             &c6_00,&c12_00);
913
914             /* Calculate table index by multiplying r with table scale and truncate to integer */
915             rt               = _mm256_mul_pd(r00,vftabscale);
916             vfitab           = _mm256_cvttpd_epi32(rt);
917             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
918             vfitab           = _mm_slli_epi32(vfitab,3);
919
920             /* CUBIC SPLINE TABLE DISPERSION */
921             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
922             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
923             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
924             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
925             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
926             Heps             = _mm256_mul_pd(vfeps,H);
927             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
928             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
929             fvdw6            = _mm256_mul_pd(c6_00,FF);
930
931             /* CUBIC SPLINE TABLE REPULSION */
932             vfitab           = _mm_add_epi32(vfitab,ifour);
933             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
934             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
935             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
936             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
937             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
938             Heps             = _mm256_mul_pd(vfeps,H);
939             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
940             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
941             fvdw12           = _mm256_mul_pd(c12_00,FF);
942             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
943
944             fscal            = fvdw;
945
946             /* Calculate temporary vectorial force */
947             tx               = _mm256_mul_pd(fscal,dx00);
948             ty               = _mm256_mul_pd(fscal,dy00);
949             tz               = _mm256_mul_pd(fscal,dz00);
950
951             /* Update vectorial force */
952             fix0             = _mm256_add_pd(fix0,tx);
953             fiy0             = _mm256_add_pd(fiy0,ty);
954             fiz0             = _mm256_add_pd(fiz0,tz);
955
956             fjx0             = _mm256_add_pd(fjx0,tx);
957             fjy0             = _mm256_add_pd(fjy0,ty);
958             fjz0             = _mm256_add_pd(fjz0,tz);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq10             = _mm256_mul_pd(iq1,jq0);
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
969
970             fscal            = felec;
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm256_mul_pd(fscal,dx10);
974             ty               = _mm256_mul_pd(fscal,dy10);
975             tz               = _mm256_mul_pd(fscal,dz10);
976
977             /* Update vectorial force */
978             fix1             = _mm256_add_pd(fix1,tx);
979             fiy1             = _mm256_add_pd(fiy1,ty);
980             fiz1             = _mm256_add_pd(fiz1,tz);
981
982             fjx0             = _mm256_add_pd(fjx0,tx);
983             fjy0             = _mm256_add_pd(fjy0,ty);
984             fjz0             = _mm256_add_pd(fjz0,tz);
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq20             = _mm256_mul_pd(iq2,jq0);
992
993             /* REACTION-FIELD ELECTROSTATICS */
994             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm256_mul_pd(fscal,dx20);
1000             ty               = _mm256_mul_pd(fscal,dy20);
1001             tz               = _mm256_mul_pd(fscal,dz20);
1002
1003             /* Update vectorial force */
1004             fix2             = _mm256_add_pd(fix2,tx);
1005             fiy2             = _mm256_add_pd(fiy2,ty);
1006             fiz2             = _mm256_add_pd(fiz2,tz);
1007
1008             fjx0             = _mm256_add_pd(fjx0,tx);
1009             fjy0             = _mm256_add_pd(fjy0,ty);
1010             fjz0             = _mm256_add_pd(fjz0,tz);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq30             = _mm256_mul_pd(iq3,jq0);
1018
1019             /* REACTION-FIELD ELECTROSTATICS */
1020             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1021
1022             fscal            = felec;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm256_mul_pd(fscal,dx30);
1026             ty               = _mm256_mul_pd(fscal,dy30);
1027             tz               = _mm256_mul_pd(fscal,dz30);
1028
1029             /* Update vectorial force */
1030             fix3             = _mm256_add_pd(fix3,tx);
1031             fiy3             = _mm256_add_pd(fiy3,ty);
1032             fiz3             = _mm256_add_pd(fiz3,tz);
1033
1034             fjx0             = _mm256_add_pd(fjx0,tx);
1035             fjy0             = _mm256_add_pd(fjy0,ty);
1036             fjz0             = _mm256_add_pd(fjz0,tz);
1037
1038             fjptrA             = f+j_coord_offsetA;
1039             fjptrB             = f+j_coord_offsetB;
1040             fjptrC             = f+j_coord_offsetC;
1041             fjptrD             = f+j_coord_offsetD;
1042
1043             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1044
1045             /* Inner loop uses 132 flops */
1046         }
1047
1048         if(jidx<j_index_end)
1049         {
1050
1051             /* Get j neighbor index, and coordinate index */
1052             jnrlistA         = jjnr[jidx];
1053             jnrlistB         = jjnr[jidx+1];
1054             jnrlistC         = jjnr[jidx+2];
1055             jnrlistD         = jjnr[jidx+3];
1056             /* Sign of each element will be negative for non-real atoms.
1057              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1058              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1059              */
1060             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1061
1062             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1063             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1064             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1065
1066             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1067             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1068             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1069             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1070             j_coord_offsetA  = DIM*jnrA;
1071             j_coord_offsetB  = DIM*jnrB;
1072             j_coord_offsetC  = DIM*jnrC;
1073             j_coord_offsetD  = DIM*jnrD;
1074
1075             /* load j atom coordinates */
1076             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1077                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1078                                                  &jx0,&jy0,&jz0);
1079
1080             /* Calculate displacement vector */
1081             dx00             = _mm256_sub_pd(ix0,jx0);
1082             dy00             = _mm256_sub_pd(iy0,jy0);
1083             dz00             = _mm256_sub_pd(iz0,jz0);
1084             dx10             = _mm256_sub_pd(ix1,jx0);
1085             dy10             = _mm256_sub_pd(iy1,jy0);
1086             dz10             = _mm256_sub_pd(iz1,jz0);
1087             dx20             = _mm256_sub_pd(ix2,jx0);
1088             dy20             = _mm256_sub_pd(iy2,jy0);
1089             dz20             = _mm256_sub_pd(iz2,jz0);
1090             dx30             = _mm256_sub_pd(ix3,jx0);
1091             dy30             = _mm256_sub_pd(iy3,jy0);
1092             dz30             = _mm256_sub_pd(iz3,jz0);
1093
1094             /* Calculate squared distance and things based on it */
1095             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1096             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1097             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1098             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1099
1100             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1101             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1102             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1103             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1104
1105             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1106             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1107             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1108
1109             /* Load parameters for j particles */
1110             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1111                                                                  charge+jnrC+0,charge+jnrD+0);
1112             vdwjidx0A        = 2*vdwtype[jnrA+0];
1113             vdwjidx0B        = 2*vdwtype[jnrB+0];
1114             vdwjidx0C        = 2*vdwtype[jnrC+0];
1115             vdwjidx0D        = 2*vdwtype[jnrD+0];
1116
1117             fjx0             = _mm256_setzero_pd();
1118             fjy0             = _mm256_setzero_pd();
1119             fjz0             = _mm256_setzero_pd();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             r00              = _mm256_mul_pd(rsq00,rinv00);
1126             r00              = _mm256_andnot_pd(dummy_mask,r00);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1130                                             vdwioffsetptr0+vdwjidx0B,
1131                                             vdwioffsetptr0+vdwjidx0C,
1132                                             vdwioffsetptr0+vdwjidx0D,
1133                                             &c6_00,&c12_00);
1134
1135             /* Calculate table index by multiplying r with table scale and truncate to integer */
1136             rt               = _mm256_mul_pd(r00,vftabscale);
1137             vfitab           = _mm256_cvttpd_epi32(rt);
1138             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1139             vfitab           = _mm_slli_epi32(vfitab,3);
1140
1141             /* CUBIC SPLINE TABLE DISPERSION */
1142             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1143             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1144             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1145             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1146             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1147             Heps             = _mm256_mul_pd(vfeps,H);
1148             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1149             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1150             fvdw6            = _mm256_mul_pd(c6_00,FF);
1151
1152             /* CUBIC SPLINE TABLE REPULSION */
1153             vfitab           = _mm_add_epi32(vfitab,ifour);
1154             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1155             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1156             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1157             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1158             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1159             Heps             = _mm256_mul_pd(vfeps,H);
1160             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1161             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1162             fvdw12           = _mm256_mul_pd(c12_00,FF);
1163             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1164
1165             fscal            = fvdw;
1166
1167             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm256_mul_pd(fscal,dx00);
1171             ty               = _mm256_mul_pd(fscal,dy00);
1172             tz               = _mm256_mul_pd(fscal,dz00);
1173
1174             /* Update vectorial force */
1175             fix0             = _mm256_add_pd(fix0,tx);
1176             fiy0             = _mm256_add_pd(fiy0,ty);
1177             fiz0             = _mm256_add_pd(fiz0,tz);
1178
1179             fjx0             = _mm256_add_pd(fjx0,tx);
1180             fjy0             = _mm256_add_pd(fjy0,ty);
1181             fjz0             = _mm256_add_pd(fjz0,tz);
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq10             = _mm256_mul_pd(iq1,jq0);
1189
1190             /* REACTION-FIELD ELECTROSTATICS */
1191             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1192
1193             fscal            = felec;
1194
1195             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm256_mul_pd(fscal,dx10);
1199             ty               = _mm256_mul_pd(fscal,dy10);
1200             tz               = _mm256_mul_pd(fscal,dz10);
1201
1202             /* Update vectorial force */
1203             fix1             = _mm256_add_pd(fix1,tx);
1204             fiy1             = _mm256_add_pd(fiy1,ty);
1205             fiz1             = _mm256_add_pd(fiz1,tz);
1206
1207             fjx0             = _mm256_add_pd(fjx0,tx);
1208             fjy0             = _mm256_add_pd(fjy0,ty);
1209             fjz0             = _mm256_add_pd(fjz0,tz);
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             qq20             = _mm256_mul_pd(iq2,jq0);
1217
1218             /* REACTION-FIELD ELECTROSTATICS */
1219             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_pd(fscal,dx20);
1227             ty               = _mm256_mul_pd(fscal,dy20);
1228             tz               = _mm256_mul_pd(fscal,dz20);
1229
1230             /* Update vectorial force */
1231             fix2             = _mm256_add_pd(fix2,tx);
1232             fiy2             = _mm256_add_pd(fiy2,ty);
1233             fiz2             = _mm256_add_pd(fiz2,tz);
1234
1235             fjx0             = _mm256_add_pd(fjx0,tx);
1236             fjy0             = _mm256_add_pd(fjy0,ty);
1237             fjz0             = _mm256_add_pd(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             qq30             = _mm256_mul_pd(iq3,jq0);
1245
1246             /* REACTION-FIELD ELECTROSTATICS */
1247             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = _mm256_mul_pd(fscal,dx30);
1255             ty               = _mm256_mul_pd(fscal,dy30);
1256             tz               = _mm256_mul_pd(fscal,dz30);
1257
1258             /* Update vectorial force */
1259             fix3             = _mm256_add_pd(fix3,tx);
1260             fiy3             = _mm256_add_pd(fiy3,ty);
1261             fiz3             = _mm256_add_pd(fiz3,tz);
1262
1263             fjx0             = _mm256_add_pd(fjx0,tx);
1264             fjy0             = _mm256_add_pd(fjy0,ty);
1265             fjz0             = _mm256_add_pd(fjz0,tz);
1266
1267             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1268             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1269             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1270             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1271
1272             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1273
1274             /* Inner loop uses 133 flops */
1275         }
1276
1277         /* End of innermost loop */
1278
1279         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1280                                                  f+i_coord_offset,fshift+i_shift_offset);
1281
1282         /* Increment number of inner iterations */
1283         inneriter                  += j_index_end - j_index_start;
1284
1285         /* Outer loop uses 24 flops */
1286     }
1287
1288     /* Increment number of outer iterations */
1289     outeriter        += nri;
1290
1291     /* Update outer/inner flops */
1292
1293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1294 }