Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm256_set1_pd(fr->ic->k_rf);
115     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm256_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
127     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
128     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
129     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167         fix1             = _mm256_setzero_pd();
168         fiy1             = _mm256_setzero_pd();
169         fiz1             = _mm256_setzero_pd();
170         fix2             = _mm256_setzero_pd();
171         fiy2             = _mm256_setzero_pd();
172         fiz2             = _mm256_setzero_pd();
173         fix3             = _mm256_setzero_pd();
174         fiy3             = _mm256_setzero_pd();
175         fiz3             = _mm256_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm256_sub_pd(ix0,jx0);
202             dy00             = _mm256_sub_pd(iy0,jy0);
203             dz00             = _mm256_sub_pd(iz0,jz0);
204             dx10             = _mm256_sub_pd(ix1,jx0);
205             dy10             = _mm256_sub_pd(iy1,jy0);
206             dz10             = _mm256_sub_pd(iz1,jz0);
207             dx20             = _mm256_sub_pd(ix2,jx0);
208             dy20             = _mm256_sub_pd(iy2,jy0);
209             dz20             = _mm256_sub_pd(iz2,jz0);
210             dx30             = _mm256_sub_pd(ix3,jx0);
211             dy30             = _mm256_sub_pd(iy3,jy0);
212             dz30             = _mm256_sub_pd(iz3,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
216             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
217             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
218             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
219
220             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
221             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
223             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
224
225             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
226             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
227             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm256_setzero_pd();
238             fjy0             = _mm256_setzero_pd();
239             fjz0             = _mm256_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r00              = _mm256_mul_pd(rsq00,rinv00);
246
247             /* Compute parameters for interactions between i and j atoms */
248             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
249                                             vdwioffsetptr0+vdwjidx0B,
250                                             vdwioffsetptr0+vdwjidx0C,
251                                             vdwioffsetptr0+vdwjidx0D,
252                                             &c6_00,&c12_00);
253
254             /* Calculate table index by multiplying r with table scale and truncate to integer */
255             rt               = _mm256_mul_pd(r00,vftabscale);
256             vfitab           = _mm256_cvttpd_epi32(rt);
257             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
258             vfitab           = _mm_slli_epi32(vfitab,3);
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
263             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
264             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
265             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
266             Heps             = _mm256_mul_pd(vfeps,H);
267             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
268             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
269             vvdw6            = _mm256_mul_pd(c6_00,VV);
270             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
271             fvdw6            = _mm256_mul_pd(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
278             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
279             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
280             Heps             = _mm256_mul_pd(vfeps,H);
281             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
282             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
283             vvdw12           = _mm256_mul_pd(c12_00,VV);
284             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
285             fvdw12           = _mm256_mul_pd(c12_00,FF);
286             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx00);
296             ty               = _mm256_mul_pd(fscal,dy00);
297             tz               = _mm256_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_pd(fix0,tx);
301             fiy0             = _mm256_add_pd(fiy0,ty);
302             fiz0             = _mm256_add_pd(fiz0,tz);
303
304             fjx0             = _mm256_add_pd(fjx0,tx);
305             fjy0             = _mm256_add_pd(fjy0,ty);
306             fjz0             = _mm256_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm256_mul_pd(iq1,jq0);
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
317             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm256_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_pd(fscal,dx10);
326             ty               = _mm256_mul_pd(fscal,dy10);
327             tz               = _mm256_mul_pd(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm256_add_pd(fix1,tx);
331             fiy1             = _mm256_add_pd(fiy1,ty);
332             fiz1             = _mm256_add_pd(fiz1,tz);
333
334             fjx0             = _mm256_add_pd(fjx0,tx);
335             fjy0             = _mm256_add_pd(fjy0,ty);
336             fjz0             = _mm256_add_pd(fjz0,tz);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm256_mul_pd(iq2,jq0);
344
345             /* REACTION-FIELD ELECTROSTATICS */
346             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
347             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm256_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_pd(fscal,dx20);
356             ty               = _mm256_mul_pd(fscal,dy20);
357             tz               = _mm256_mul_pd(fscal,dz20);
358
359             /* Update vectorial force */
360             fix2             = _mm256_add_pd(fix2,tx);
361             fiy2             = _mm256_add_pd(fiy2,ty);
362             fiz2             = _mm256_add_pd(fiz2,tz);
363
364             fjx0             = _mm256_add_pd(fjx0,tx);
365             fjy0             = _mm256_add_pd(fjy0,ty);
366             fjz0             = _mm256_add_pd(fjz0,tz);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq30             = _mm256_mul_pd(iq3,jq0);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
377             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm256_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm256_mul_pd(fscal,dx30);
386             ty               = _mm256_mul_pd(fscal,dy30);
387             tz               = _mm256_mul_pd(fscal,dz30);
388
389             /* Update vectorial force */
390             fix3             = _mm256_add_pd(fix3,tx);
391             fiy3             = _mm256_add_pd(fiy3,ty);
392             fiz3             = _mm256_add_pd(fiz3,tz);
393
394             fjx0             = _mm256_add_pd(fjx0,tx);
395             fjy0             = _mm256_add_pd(fjy0,ty);
396             fjz0             = _mm256_add_pd(fjz0,tz);
397
398             fjptrA             = f+j_coord_offsetA;
399             fjptrB             = f+j_coord_offsetB;
400             fjptrC             = f+j_coord_offsetC;
401             fjptrD             = f+j_coord_offsetD;
402
403             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
404
405             /* Inner loop uses 155 flops */
406         }
407
408         if(jidx<j_index_end)
409         {
410
411             /* Get j neighbor index, and coordinate index */
412             jnrlistA         = jjnr[jidx];
413             jnrlistB         = jjnr[jidx+1];
414             jnrlistC         = jjnr[jidx+2];
415             jnrlistD         = jjnr[jidx+3];
416             /* Sign of each element will be negative for non-real atoms.
417              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
418              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
419              */
420             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
421
422             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
423             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
424             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
425
426             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
427             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
428             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
429             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
430             j_coord_offsetA  = DIM*jnrA;
431             j_coord_offsetB  = DIM*jnrB;
432             j_coord_offsetC  = DIM*jnrC;
433             j_coord_offsetD  = DIM*jnrD;
434
435             /* load j atom coordinates */
436             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
437                                                  x+j_coord_offsetC,x+j_coord_offsetD,
438                                                  &jx0,&jy0,&jz0);
439
440             /* Calculate displacement vector */
441             dx00             = _mm256_sub_pd(ix0,jx0);
442             dy00             = _mm256_sub_pd(iy0,jy0);
443             dz00             = _mm256_sub_pd(iz0,jz0);
444             dx10             = _mm256_sub_pd(ix1,jx0);
445             dy10             = _mm256_sub_pd(iy1,jy0);
446             dz10             = _mm256_sub_pd(iz1,jz0);
447             dx20             = _mm256_sub_pd(ix2,jx0);
448             dy20             = _mm256_sub_pd(iy2,jy0);
449             dz20             = _mm256_sub_pd(iz2,jz0);
450             dx30             = _mm256_sub_pd(ix3,jx0);
451             dy30             = _mm256_sub_pd(iy3,jy0);
452             dz30             = _mm256_sub_pd(iz3,jz0);
453
454             /* Calculate squared distance and things based on it */
455             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
456             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
457             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
458             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
459
460             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
461             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
462             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
463             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
464
465             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
466             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
467             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
468
469             /* Load parameters for j particles */
470             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
471                                                                  charge+jnrC+0,charge+jnrD+0);
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473             vdwjidx0B        = 2*vdwtype[jnrB+0];
474             vdwjidx0C        = 2*vdwtype[jnrC+0];
475             vdwjidx0D        = 2*vdwtype[jnrD+0];
476
477             fjx0             = _mm256_setzero_pd();
478             fjy0             = _mm256_setzero_pd();
479             fjz0             = _mm256_setzero_pd();
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r00              = _mm256_mul_pd(rsq00,rinv00);
486             r00              = _mm256_andnot_pd(dummy_mask,r00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
490                                             vdwioffsetptr0+vdwjidx0B,
491                                             vdwioffsetptr0+vdwjidx0C,
492                                             vdwioffsetptr0+vdwjidx0D,
493                                             &c6_00,&c12_00);
494
495             /* Calculate table index by multiplying r with table scale and truncate to integer */
496             rt               = _mm256_mul_pd(r00,vftabscale);
497             vfitab           = _mm256_cvttpd_epi32(rt);
498             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
499             vfitab           = _mm_slli_epi32(vfitab,3);
500
501             /* CUBIC SPLINE TABLE DISPERSION */
502             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
503             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
504             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
505             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
506             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
507             Heps             = _mm256_mul_pd(vfeps,H);
508             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
509             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
510             vvdw6            = _mm256_mul_pd(c6_00,VV);
511             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
512             fvdw6            = _mm256_mul_pd(c6_00,FF);
513
514             /* CUBIC SPLINE TABLE REPULSION */
515             vfitab           = _mm_add_epi32(vfitab,ifour);
516             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
517             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
518             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
519             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
520             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
521             Heps             = _mm256_mul_pd(vfeps,H);
522             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
523             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
524             vvdw12           = _mm256_mul_pd(c12_00,VV);
525             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
526             fvdw12           = _mm256_mul_pd(c12_00,FF);
527             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
528             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
532             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
533
534             fscal            = fvdw;
535
536             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm256_mul_pd(fscal,dx00);
540             ty               = _mm256_mul_pd(fscal,dy00);
541             tz               = _mm256_mul_pd(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm256_add_pd(fix0,tx);
545             fiy0             = _mm256_add_pd(fiy0,ty);
546             fiz0             = _mm256_add_pd(fiz0,tz);
547
548             fjx0             = _mm256_add_pd(fjx0,tx);
549             fjy0             = _mm256_add_pd(fjy0,ty);
550             fjz0             = _mm256_add_pd(fjz0,tz);
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq10             = _mm256_mul_pd(iq1,jq0);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
561             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm256_andnot_pd(dummy_mask,velec);
565             velecsum         = _mm256_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm256_mul_pd(fscal,dx10);
573             ty               = _mm256_mul_pd(fscal,dy10);
574             tz               = _mm256_mul_pd(fscal,dz10);
575
576             /* Update vectorial force */
577             fix1             = _mm256_add_pd(fix1,tx);
578             fiy1             = _mm256_add_pd(fiy1,ty);
579             fiz1             = _mm256_add_pd(fiz1,tz);
580
581             fjx0             = _mm256_add_pd(fjx0,tx);
582             fjy0             = _mm256_add_pd(fjy0,ty);
583             fjz0             = _mm256_add_pd(fjz0,tz);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq20             = _mm256_mul_pd(iq2,jq0);
591
592             /* REACTION-FIELD ELECTROSTATICS */
593             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
594             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm256_andnot_pd(dummy_mask,velec);
598             velecsum         = _mm256_add_pd(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_pd(fscal,dx20);
606             ty               = _mm256_mul_pd(fscal,dy20);
607             tz               = _mm256_mul_pd(fscal,dz20);
608
609             /* Update vectorial force */
610             fix2             = _mm256_add_pd(fix2,tx);
611             fiy2             = _mm256_add_pd(fiy2,ty);
612             fiz2             = _mm256_add_pd(fiz2,tz);
613
614             fjx0             = _mm256_add_pd(fjx0,tx);
615             fjy0             = _mm256_add_pd(fjy0,ty);
616             fjz0             = _mm256_add_pd(fjz0,tz);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq30             = _mm256_mul_pd(iq3,jq0);
624
625             /* REACTION-FIELD ELECTROSTATICS */
626             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
627             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm256_andnot_pd(dummy_mask,velec);
631             velecsum         = _mm256_add_pd(velecsum,velec);
632
633             fscal            = felec;
634
635             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm256_mul_pd(fscal,dx30);
639             ty               = _mm256_mul_pd(fscal,dy30);
640             tz               = _mm256_mul_pd(fscal,dz30);
641
642             /* Update vectorial force */
643             fix3             = _mm256_add_pd(fix3,tx);
644             fiy3             = _mm256_add_pd(fiy3,ty);
645             fiz3             = _mm256_add_pd(fiz3,tz);
646
647             fjx0             = _mm256_add_pd(fjx0,tx);
648             fjy0             = _mm256_add_pd(fjy0,ty);
649             fjz0             = _mm256_add_pd(fjz0,tz);
650
651             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
652             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
653             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
654             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
655
656             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
657
658             /* Inner loop uses 156 flops */
659         }
660
661         /* End of innermost loop */
662
663         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
664                                                  f+i_coord_offset,fshift+i_shift_offset);
665
666         ggid                        = gid[iidx];
667         /* Update potential energies */
668         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
669         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 26 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*156);
683 }
684 /*
685  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
686  * Electrostatics interaction: ReactionField
687  * VdW interaction:            CubicSplineTable
688  * Geometry:                   Water4-Particle
689  * Calculate force/pot:        Force
690  */
691 void
692 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_256_double
693                     (t_nblist * gmx_restrict                nlist,
694                      rvec * gmx_restrict                    xx,
695                      rvec * gmx_restrict                    ff,
696                      t_forcerec * gmx_restrict              fr,
697                      t_mdatoms * gmx_restrict               mdatoms,
698                      nb_kernel_data_t * gmx_restrict        kernel_data,
699                      t_nrnb * gmx_restrict                  nrnb)
700 {
701     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
702      * just 0 for non-waters.
703      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
704      * jnr indices corresponding to data put in the four positions in the SIMD register.
705      */
706     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
707     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
708     int              jnrA,jnrB,jnrC,jnrD;
709     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
710     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
711     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
712     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
713     real             rcutoff_scalar;
714     real             *shiftvec,*fshift,*x,*f;
715     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
716     real             scratch[4*DIM];
717     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
718     real *           vdwioffsetptr0;
719     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
720     real *           vdwioffsetptr1;
721     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
722     real *           vdwioffsetptr2;
723     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
724     real *           vdwioffsetptr3;
725     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
726     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
727     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
728     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
729     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
730     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
731     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
732     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
733     real             *charge;
734     int              nvdwtype;
735     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
736     int              *vdwtype;
737     real             *vdwparam;
738     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
739     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
740     __m128i          vfitab;
741     __m128i          ifour       = _mm_set1_epi32(4);
742     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
743     real             *vftab;
744     __m256d          dummy_mask,cutoff_mask;
745     __m128           tmpmask0,tmpmask1;
746     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
747     __m256d          one     = _mm256_set1_pd(1.0);
748     __m256d          two     = _mm256_set1_pd(2.0);
749     x                = xx[0];
750     f                = ff[0];
751
752     nri              = nlist->nri;
753     iinr             = nlist->iinr;
754     jindex           = nlist->jindex;
755     jjnr             = nlist->jjnr;
756     shiftidx         = nlist->shift;
757     gid              = nlist->gid;
758     shiftvec         = fr->shift_vec[0];
759     fshift           = fr->fshift[0];
760     facel            = _mm256_set1_pd(fr->epsfac);
761     charge           = mdatoms->chargeA;
762     krf              = _mm256_set1_pd(fr->ic->k_rf);
763     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
764     crf              = _mm256_set1_pd(fr->ic->c_rf);
765     nvdwtype         = fr->ntype;
766     vdwparam         = fr->nbfp;
767     vdwtype          = mdatoms->typeA;
768
769     vftab            = kernel_data->table_vdw->data;
770     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
771
772     /* Setup water-specific parameters */
773     inr              = nlist->iinr[0];
774     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
775     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
776     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
777     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
778
779     /* Avoid stupid compiler warnings */
780     jnrA = jnrB = jnrC = jnrD = 0;
781     j_coord_offsetA = 0;
782     j_coord_offsetB = 0;
783     j_coord_offsetC = 0;
784     j_coord_offsetD = 0;
785
786     outeriter        = 0;
787     inneriter        = 0;
788
789     for(iidx=0;iidx<4*DIM;iidx++)
790     {
791         scratch[iidx] = 0.0;
792     }
793
794     /* Start outer loop over neighborlists */
795     for(iidx=0; iidx<nri; iidx++)
796     {
797         /* Load shift vector for this list */
798         i_shift_offset   = DIM*shiftidx[iidx];
799
800         /* Load limits for loop over neighbors */
801         j_index_start    = jindex[iidx];
802         j_index_end      = jindex[iidx+1];
803
804         /* Get outer coordinate index */
805         inr              = iinr[iidx];
806         i_coord_offset   = DIM*inr;
807
808         /* Load i particle coords and add shift vector */
809         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
810                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
811
812         fix0             = _mm256_setzero_pd();
813         fiy0             = _mm256_setzero_pd();
814         fiz0             = _mm256_setzero_pd();
815         fix1             = _mm256_setzero_pd();
816         fiy1             = _mm256_setzero_pd();
817         fiz1             = _mm256_setzero_pd();
818         fix2             = _mm256_setzero_pd();
819         fiy2             = _mm256_setzero_pd();
820         fiz2             = _mm256_setzero_pd();
821         fix3             = _mm256_setzero_pd();
822         fiy3             = _mm256_setzero_pd();
823         fiz3             = _mm256_setzero_pd();
824
825         /* Start inner kernel loop */
826         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
827         {
828
829             /* Get j neighbor index, and coordinate index */
830             jnrA             = jjnr[jidx];
831             jnrB             = jjnr[jidx+1];
832             jnrC             = jjnr[jidx+2];
833             jnrD             = jjnr[jidx+3];
834             j_coord_offsetA  = DIM*jnrA;
835             j_coord_offsetB  = DIM*jnrB;
836             j_coord_offsetC  = DIM*jnrC;
837             j_coord_offsetD  = DIM*jnrD;
838
839             /* load j atom coordinates */
840             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
841                                                  x+j_coord_offsetC,x+j_coord_offsetD,
842                                                  &jx0,&jy0,&jz0);
843
844             /* Calculate displacement vector */
845             dx00             = _mm256_sub_pd(ix0,jx0);
846             dy00             = _mm256_sub_pd(iy0,jy0);
847             dz00             = _mm256_sub_pd(iz0,jz0);
848             dx10             = _mm256_sub_pd(ix1,jx0);
849             dy10             = _mm256_sub_pd(iy1,jy0);
850             dz10             = _mm256_sub_pd(iz1,jz0);
851             dx20             = _mm256_sub_pd(ix2,jx0);
852             dy20             = _mm256_sub_pd(iy2,jy0);
853             dz20             = _mm256_sub_pd(iz2,jz0);
854             dx30             = _mm256_sub_pd(ix3,jx0);
855             dy30             = _mm256_sub_pd(iy3,jy0);
856             dz30             = _mm256_sub_pd(iz3,jz0);
857
858             /* Calculate squared distance and things based on it */
859             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
860             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
861             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
862             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
863
864             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
865             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
866             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
867             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
868
869             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
870             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
871             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
872
873             /* Load parameters for j particles */
874             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
875                                                                  charge+jnrC+0,charge+jnrD+0);
876             vdwjidx0A        = 2*vdwtype[jnrA+0];
877             vdwjidx0B        = 2*vdwtype[jnrB+0];
878             vdwjidx0C        = 2*vdwtype[jnrC+0];
879             vdwjidx0D        = 2*vdwtype[jnrD+0];
880
881             fjx0             = _mm256_setzero_pd();
882             fjy0             = _mm256_setzero_pd();
883             fjz0             = _mm256_setzero_pd();
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r00              = _mm256_mul_pd(rsq00,rinv00);
890
891             /* Compute parameters for interactions between i and j atoms */
892             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
893                                             vdwioffsetptr0+vdwjidx0B,
894                                             vdwioffsetptr0+vdwjidx0C,
895                                             vdwioffsetptr0+vdwjidx0D,
896                                             &c6_00,&c12_00);
897
898             /* Calculate table index by multiplying r with table scale and truncate to integer */
899             rt               = _mm256_mul_pd(r00,vftabscale);
900             vfitab           = _mm256_cvttpd_epi32(rt);
901             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
902             vfitab           = _mm_slli_epi32(vfitab,3);
903
904             /* CUBIC SPLINE TABLE DISPERSION */
905             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
906             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
907             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
908             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
909             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
910             Heps             = _mm256_mul_pd(vfeps,H);
911             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
912             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
913             fvdw6            = _mm256_mul_pd(c6_00,FF);
914
915             /* CUBIC SPLINE TABLE REPULSION */
916             vfitab           = _mm_add_epi32(vfitab,ifour);
917             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
918             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
919             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
920             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
921             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
922             Heps             = _mm256_mul_pd(vfeps,H);
923             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
924             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
925             fvdw12           = _mm256_mul_pd(c12_00,FF);
926             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
927
928             fscal            = fvdw;
929
930             /* Calculate temporary vectorial force */
931             tx               = _mm256_mul_pd(fscal,dx00);
932             ty               = _mm256_mul_pd(fscal,dy00);
933             tz               = _mm256_mul_pd(fscal,dz00);
934
935             /* Update vectorial force */
936             fix0             = _mm256_add_pd(fix0,tx);
937             fiy0             = _mm256_add_pd(fiy0,ty);
938             fiz0             = _mm256_add_pd(fiz0,tz);
939
940             fjx0             = _mm256_add_pd(fjx0,tx);
941             fjy0             = _mm256_add_pd(fjy0,ty);
942             fjz0             = _mm256_add_pd(fjz0,tz);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq10             = _mm256_mul_pd(iq1,jq0);
950
951             /* REACTION-FIELD ELECTROSTATICS */
952             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
953
954             fscal            = felec;
955
956             /* Calculate temporary vectorial force */
957             tx               = _mm256_mul_pd(fscal,dx10);
958             ty               = _mm256_mul_pd(fscal,dy10);
959             tz               = _mm256_mul_pd(fscal,dz10);
960
961             /* Update vectorial force */
962             fix1             = _mm256_add_pd(fix1,tx);
963             fiy1             = _mm256_add_pd(fiy1,ty);
964             fiz1             = _mm256_add_pd(fiz1,tz);
965
966             fjx0             = _mm256_add_pd(fjx0,tx);
967             fjy0             = _mm256_add_pd(fjy0,ty);
968             fjz0             = _mm256_add_pd(fjz0,tz);
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq20             = _mm256_mul_pd(iq2,jq0);
976
977             /* REACTION-FIELD ELECTROSTATICS */
978             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
979
980             fscal            = felec;
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm256_mul_pd(fscal,dx20);
984             ty               = _mm256_mul_pd(fscal,dy20);
985             tz               = _mm256_mul_pd(fscal,dz20);
986
987             /* Update vectorial force */
988             fix2             = _mm256_add_pd(fix2,tx);
989             fiy2             = _mm256_add_pd(fiy2,ty);
990             fiz2             = _mm256_add_pd(fiz2,tz);
991
992             fjx0             = _mm256_add_pd(fjx0,tx);
993             fjy0             = _mm256_add_pd(fjy0,ty);
994             fjz0             = _mm256_add_pd(fjz0,tz);
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq30             = _mm256_mul_pd(iq3,jq0);
1002
1003             /* REACTION-FIELD ELECTROSTATICS */
1004             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1005
1006             fscal            = felec;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm256_mul_pd(fscal,dx30);
1010             ty               = _mm256_mul_pd(fscal,dy30);
1011             tz               = _mm256_mul_pd(fscal,dz30);
1012
1013             /* Update vectorial force */
1014             fix3             = _mm256_add_pd(fix3,tx);
1015             fiy3             = _mm256_add_pd(fiy3,ty);
1016             fiz3             = _mm256_add_pd(fiz3,tz);
1017
1018             fjx0             = _mm256_add_pd(fjx0,tx);
1019             fjy0             = _mm256_add_pd(fjy0,ty);
1020             fjz0             = _mm256_add_pd(fjz0,tz);
1021
1022             fjptrA             = f+j_coord_offsetA;
1023             fjptrB             = f+j_coord_offsetB;
1024             fjptrC             = f+j_coord_offsetC;
1025             fjptrD             = f+j_coord_offsetD;
1026
1027             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1028
1029             /* Inner loop uses 132 flops */
1030         }
1031
1032         if(jidx<j_index_end)
1033         {
1034
1035             /* Get j neighbor index, and coordinate index */
1036             jnrlistA         = jjnr[jidx];
1037             jnrlistB         = jjnr[jidx+1];
1038             jnrlistC         = jjnr[jidx+2];
1039             jnrlistD         = jjnr[jidx+3];
1040             /* Sign of each element will be negative for non-real atoms.
1041              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1042              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1043              */
1044             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1045
1046             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1047             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1048             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1049
1050             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1051             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1052             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1053             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1054             j_coord_offsetA  = DIM*jnrA;
1055             j_coord_offsetB  = DIM*jnrB;
1056             j_coord_offsetC  = DIM*jnrC;
1057             j_coord_offsetD  = DIM*jnrD;
1058
1059             /* load j atom coordinates */
1060             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1061                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1062                                                  &jx0,&jy0,&jz0);
1063
1064             /* Calculate displacement vector */
1065             dx00             = _mm256_sub_pd(ix0,jx0);
1066             dy00             = _mm256_sub_pd(iy0,jy0);
1067             dz00             = _mm256_sub_pd(iz0,jz0);
1068             dx10             = _mm256_sub_pd(ix1,jx0);
1069             dy10             = _mm256_sub_pd(iy1,jy0);
1070             dz10             = _mm256_sub_pd(iz1,jz0);
1071             dx20             = _mm256_sub_pd(ix2,jx0);
1072             dy20             = _mm256_sub_pd(iy2,jy0);
1073             dz20             = _mm256_sub_pd(iz2,jz0);
1074             dx30             = _mm256_sub_pd(ix3,jx0);
1075             dy30             = _mm256_sub_pd(iy3,jy0);
1076             dz30             = _mm256_sub_pd(iz3,jz0);
1077
1078             /* Calculate squared distance and things based on it */
1079             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1080             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1081             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1082             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1083
1084             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1085             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1086             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1087             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1088
1089             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1090             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1091             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1092
1093             /* Load parameters for j particles */
1094             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1095                                                                  charge+jnrC+0,charge+jnrD+0);
1096             vdwjidx0A        = 2*vdwtype[jnrA+0];
1097             vdwjidx0B        = 2*vdwtype[jnrB+0];
1098             vdwjidx0C        = 2*vdwtype[jnrC+0];
1099             vdwjidx0D        = 2*vdwtype[jnrD+0];
1100
1101             fjx0             = _mm256_setzero_pd();
1102             fjy0             = _mm256_setzero_pd();
1103             fjz0             = _mm256_setzero_pd();
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             r00              = _mm256_mul_pd(rsq00,rinv00);
1110             r00              = _mm256_andnot_pd(dummy_mask,r00);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1114                                             vdwioffsetptr0+vdwjidx0B,
1115                                             vdwioffsetptr0+vdwjidx0C,
1116                                             vdwioffsetptr0+vdwjidx0D,
1117                                             &c6_00,&c12_00);
1118
1119             /* Calculate table index by multiplying r with table scale and truncate to integer */
1120             rt               = _mm256_mul_pd(r00,vftabscale);
1121             vfitab           = _mm256_cvttpd_epi32(rt);
1122             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1123             vfitab           = _mm_slli_epi32(vfitab,3);
1124
1125             /* CUBIC SPLINE TABLE DISPERSION */
1126             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1127             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1128             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1129             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1130             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1131             Heps             = _mm256_mul_pd(vfeps,H);
1132             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1133             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1134             fvdw6            = _mm256_mul_pd(c6_00,FF);
1135
1136             /* CUBIC SPLINE TABLE REPULSION */
1137             vfitab           = _mm_add_epi32(vfitab,ifour);
1138             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1139             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1140             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1141             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1142             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1143             Heps             = _mm256_mul_pd(vfeps,H);
1144             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1145             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1146             fvdw12           = _mm256_mul_pd(c12_00,FF);
1147             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1148
1149             fscal            = fvdw;
1150
1151             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm256_mul_pd(fscal,dx00);
1155             ty               = _mm256_mul_pd(fscal,dy00);
1156             tz               = _mm256_mul_pd(fscal,dz00);
1157
1158             /* Update vectorial force */
1159             fix0             = _mm256_add_pd(fix0,tx);
1160             fiy0             = _mm256_add_pd(fiy0,ty);
1161             fiz0             = _mm256_add_pd(fiz0,tz);
1162
1163             fjx0             = _mm256_add_pd(fjx0,tx);
1164             fjy0             = _mm256_add_pd(fjy0,ty);
1165             fjz0             = _mm256_add_pd(fjz0,tz);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             qq10             = _mm256_mul_pd(iq1,jq0);
1173
1174             /* REACTION-FIELD ELECTROSTATICS */
1175             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1176
1177             fscal            = felec;
1178
1179             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1180
1181             /* Calculate temporary vectorial force */
1182             tx               = _mm256_mul_pd(fscal,dx10);
1183             ty               = _mm256_mul_pd(fscal,dy10);
1184             tz               = _mm256_mul_pd(fscal,dz10);
1185
1186             /* Update vectorial force */
1187             fix1             = _mm256_add_pd(fix1,tx);
1188             fiy1             = _mm256_add_pd(fiy1,ty);
1189             fiz1             = _mm256_add_pd(fiz1,tz);
1190
1191             fjx0             = _mm256_add_pd(fjx0,tx);
1192             fjy0             = _mm256_add_pd(fjy0,ty);
1193             fjz0             = _mm256_add_pd(fjz0,tz);
1194
1195             /**************************
1196              * CALCULATE INTERACTIONS *
1197              **************************/
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq20             = _mm256_mul_pd(iq2,jq0);
1201
1202             /* REACTION-FIELD ELECTROSTATICS */
1203             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1204
1205             fscal            = felec;
1206
1207             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1208
1209             /* Calculate temporary vectorial force */
1210             tx               = _mm256_mul_pd(fscal,dx20);
1211             ty               = _mm256_mul_pd(fscal,dy20);
1212             tz               = _mm256_mul_pd(fscal,dz20);
1213
1214             /* Update vectorial force */
1215             fix2             = _mm256_add_pd(fix2,tx);
1216             fiy2             = _mm256_add_pd(fiy2,ty);
1217             fiz2             = _mm256_add_pd(fiz2,tz);
1218
1219             fjx0             = _mm256_add_pd(fjx0,tx);
1220             fjy0             = _mm256_add_pd(fjy0,ty);
1221             fjz0             = _mm256_add_pd(fjz0,tz);
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             /* Compute parameters for interactions between i and j atoms */
1228             qq30             = _mm256_mul_pd(iq3,jq0);
1229
1230             /* REACTION-FIELD ELECTROSTATICS */
1231             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1232
1233             fscal            = felec;
1234
1235             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = _mm256_mul_pd(fscal,dx30);
1239             ty               = _mm256_mul_pd(fscal,dy30);
1240             tz               = _mm256_mul_pd(fscal,dz30);
1241
1242             /* Update vectorial force */
1243             fix3             = _mm256_add_pd(fix3,tx);
1244             fiy3             = _mm256_add_pd(fiy3,ty);
1245             fiz3             = _mm256_add_pd(fiz3,tz);
1246
1247             fjx0             = _mm256_add_pd(fjx0,tx);
1248             fjy0             = _mm256_add_pd(fjy0,ty);
1249             fjz0             = _mm256_add_pd(fjz0,tz);
1250
1251             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1252             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1253             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1254             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1255
1256             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1257
1258             /* Inner loop uses 133 flops */
1259         }
1260
1261         /* End of innermost loop */
1262
1263         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1264                                                  f+i_coord_offset,fshift+i_shift_offset);
1265
1266         /* Increment number of inner iterations */
1267         inneriter                  += j_index_end - j_index_start;
1268
1269         /* Outer loop uses 24 flops */
1270     }
1271
1272     /* Increment number of outer iterations */
1273     outeriter        += nri;
1274
1275     /* Update outer/inner flops */
1276
1277     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*133);
1278 }