Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     krf              = _mm256_set1_pd(fr->ic->k_rf);
112     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
113     crf              = _mm256_set1_pd(fr->ic->c_rf);
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_vdw->data;
119     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
124     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
125     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
126     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _mm256_setzero_pd();
162         fiy0             = _mm256_setzero_pd();
163         fiz0             = _mm256_setzero_pd();
164         fix1             = _mm256_setzero_pd();
165         fiy1             = _mm256_setzero_pd();
166         fiz1             = _mm256_setzero_pd();
167         fix2             = _mm256_setzero_pd();
168         fiy2             = _mm256_setzero_pd();
169         fiz2             = _mm256_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm256_setzero_pd();
173         vvdwsum          = _mm256_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_pd(ix0,jx0);
196             dy00             = _mm256_sub_pd(iy0,jy0);
197             dz00             = _mm256_sub_pd(iz0,jz0);
198             dx10             = _mm256_sub_pd(ix1,jx0);
199             dy10             = _mm256_sub_pd(iy1,jy0);
200             dz10             = _mm256_sub_pd(iz1,jz0);
201             dx20             = _mm256_sub_pd(ix2,jx0);
202             dy20             = _mm256_sub_pd(iy2,jy0);
203             dz20             = _mm256_sub_pd(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
207             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
208             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
209
210             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
211             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
212             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
213
214             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
215             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
216             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
220                                                                  charge+jnrC+0,charge+jnrD+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225
226             fjx0             = _mm256_setzero_pd();
227             fjy0             = _mm256_setzero_pd();
228             fjz0             = _mm256_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             r00              = _mm256_mul_pd(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm256_mul_pd(iq0,jq0);
238             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
239                                             vdwioffsetptr0+vdwjidx0B,
240                                             vdwioffsetptr0+vdwjidx0C,
241                                             vdwioffsetptr0+vdwjidx0D,
242                                             &c6_00,&c12_00);
243
244             /* Calculate table index by multiplying r with table scale and truncate to integer */
245             rt               = _mm256_mul_pd(r00,vftabscale);
246             vfitab           = _mm256_cvttpd_epi32(rt);
247             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
248             vfitab           = _mm_slli_epi32(vfitab,3);
249
250             /* REACTION-FIELD ELECTROSTATICS */
251             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
252             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
256             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
257             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
258             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
259             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
260             Heps             = _mm256_mul_pd(vfeps,H);
261             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
262             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
263             vvdw6            = _mm256_mul_pd(c6_00,VV);
264             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
265             fvdw6            = _mm256_mul_pd(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
273             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
274             Heps             = _mm256_mul_pd(vfeps,H);
275             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
276             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
277             vvdw12           = _mm256_mul_pd(c12_00,VV);
278             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
279             fvdw12           = _mm256_mul_pd(c12_00,FF);
280             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
281             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm256_add_pd(velecsum,velec);
285             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
286
287             fscal            = _mm256_add_pd(felec,fvdw);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_pd(fscal,dx00);
291             ty               = _mm256_mul_pd(fscal,dy00);
292             tz               = _mm256_mul_pd(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_pd(fix0,tx);
296             fiy0             = _mm256_add_pd(fiy0,ty);
297             fiz0             = _mm256_add_pd(fiz0,tz);
298
299             fjx0             = _mm256_add_pd(fjx0,tx);
300             fjy0             = _mm256_add_pd(fjy0,ty);
301             fjz0             = _mm256_add_pd(fjz0,tz);
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm256_mul_pd(iq1,jq0);
309
310             /* REACTION-FIELD ELECTROSTATICS */
311             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
312             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm256_add_pd(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_pd(fscal,dx10);
321             ty               = _mm256_mul_pd(fscal,dy10);
322             tz               = _mm256_mul_pd(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm256_add_pd(fix1,tx);
326             fiy1             = _mm256_add_pd(fiy1,ty);
327             fiz1             = _mm256_add_pd(fiz1,tz);
328
329             fjx0             = _mm256_add_pd(fjx0,tx);
330             fjy0             = _mm256_add_pd(fjy0,ty);
331             fjz0             = _mm256_add_pd(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm256_mul_pd(iq2,jq0);
339
340             /* REACTION-FIELD ELECTROSTATICS */
341             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
342             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_pd(fscal,dx20);
351             ty               = _mm256_mul_pd(fscal,dy20);
352             tz               = _mm256_mul_pd(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm256_add_pd(fix2,tx);
356             fiy2             = _mm256_add_pd(fiy2,ty);
357             fiz2             = _mm256_add_pd(fiz2,tz);
358
359             fjx0             = _mm256_add_pd(fjx0,tx);
360             fjy0             = _mm256_add_pd(fjy0,ty);
361             fjz0             = _mm256_add_pd(fjz0,tz);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367
368             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 134 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             /* Get j neighbor index, and coordinate index */
377             jnrlistA         = jjnr[jidx];
378             jnrlistB         = jjnr[jidx+1];
379             jnrlistC         = jjnr[jidx+2];
380             jnrlistD         = jjnr[jidx+3];
381             /* Sign of each element will be negative for non-real atoms.
382              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
383              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
384              */
385             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
386
387             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
388             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
389             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
390
391             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
392             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
393             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
394             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
395             j_coord_offsetA  = DIM*jnrA;
396             j_coord_offsetB  = DIM*jnrB;
397             j_coord_offsetC  = DIM*jnrC;
398             j_coord_offsetD  = DIM*jnrD;
399
400             /* load j atom coordinates */
401             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
402                                                  x+j_coord_offsetC,x+j_coord_offsetD,
403                                                  &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm256_sub_pd(ix0,jx0);
407             dy00             = _mm256_sub_pd(iy0,jy0);
408             dz00             = _mm256_sub_pd(iz0,jz0);
409             dx10             = _mm256_sub_pd(ix1,jx0);
410             dy10             = _mm256_sub_pd(iy1,jy0);
411             dz10             = _mm256_sub_pd(iz1,jz0);
412             dx20             = _mm256_sub_pd(ix2,jx0);
413             dy20             = _mm256_sub_pd(iy2,jy0);
414             dz20             = _mm256_sub_pd(iz2,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
420
421             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
422             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
423             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
424
425             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
426             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
427             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
428
429             /* Load parameters for j particles */
430             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
431                                                                  charge+jnrC+0,charge+jnrD+0);
432             vdwjidx0A        = 2*vdwtype[jnrA+0];
433             vdwjidx0B        = 2*vdwtype[jnrB+0];
434             vdwjidx0C        = 2*vdwtype[jnrC+0];
435             vdwjidx0D        = 2*vdwtype[jnrD+0];
436
437             fjx0             = _mm256_setzero_pd();
438             fjy0             = _mm256_setzero_pd();
439             fjz0             = _mm256_setzero_pd();
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r00              = _mm256_mul_pd(rsq00,rinv00);
446             r00              = _mm256_andnot_pd(dummy_mask,r00);
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq00             = _mm256_mul_pd(iq0,jq0);
450             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
451                                             vdwioffsetptr0+vdwjidx0B,
452                                             vdwioffsetptr0+vdwjidx0C,
453                                             vdwioffsetptr0+vdwjidx0D,
454                                             &c6_00,&c12_00);
455
456             /* Calculate table index by multiplying r with table scale and truncate to integer */
457             rt               = _mm256_mul_pd(r00,vftabscale);
458             vfitab           = _mm256_cvttpd_epi32(rt);
459             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
460             vfitab           = _mm_slli_epi32(vfitab,3);
461
462             /* REACTION-FIELD ELECTROSTATICS */
463             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
464             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
465
466             /* CUBIC SPLINE TABLE DISPERSION */
467             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
468             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
469             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
470             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
471             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
472             Heps             = _mm256_mul_pd(vfeps,H);
473             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
474             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
475             vvdw6            = _mm256_mul_pd(c6_00,VV);
476             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
477             fvdw6            = _mm256_mul_pd(c6_00,FF);
478
479             /* CUBIC SPLINE TABLE REPULSION */
480             vfitab           = _mm_add_epi32(vfitab,ifour);
481             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
482             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
483             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
484             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
485             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
486             Heps             = _mm256_mul_pd(vfeps,H);
487             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
488             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
489             vvdw12           = _mm256_mul_pd(c12_00,VV);
490             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
491             fvdw12           = _mm256_mul_pd(c12_00,FF);
492             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
493             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
494
495             /* Update potential sum for this i atom from the interaction with this j atom. */
496             velec            = _mm256_andnot_pd(dummy_mask,velec);
497             velecsum         = _mm256_add_pd(velecsum,velec);
498             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
499             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
500
501             fscal            = _mm256_add_pd(felec,fvdw);
502
503             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx00);
507             ty               = _mm256_mul_pd(fscal,dy00);
508             tz               = _mm256_mul_pd(fscal,dz00);
509
510             /* Update vectorial force */
511             fix0             = _mm256_add_pd(fix0,tx);
512             fiy0             = _mm256_add_pd(fiy0,ty);
513             fiz0             = _mm256_add_pd(fiz0,tz);
514
515             fjx0             = _mm256_add_pd(fjx0,tx);
516             fjy0             = _mm256_add_pd(fjy0,ty);
517             fjz0             = _mm256_add_pd(fjz0,tz);
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq10             = _mm256_mul_pd(iq1,jq0);
525
526             /* REACTION-FIELD ELECTROSTATICS */
527             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
528             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm256_andnot_pd(dummy_mask,velec);
532             velecsum         = _mm256_add_pd(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm256_mul_pd(fscal,dx10);
540             ty               = _mm256_mul_pd(fscal,dy10);
541             tz               = _mm256_mul_pd(fscal,dz10);
542
543             /* Update vectorial force */
544             fix1             = _mm256_add_pd(fix1,tx);
545             fiy1             = _mm256_add_pd(fiy1,ty);
546             fiz1             = _mm256_add_pd(fiz1,tz);
547
548             fjx0             = _mm256_add_pd(fjx0,tx);
549             fjy0             = _mm256_add_pd(fjy0,ty);
550             fjz0             = _mm256_add_pd(fjz0,tz);
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq20             = _mm256_mul_pd(iq2,jq0);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
561             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm256_andnot_pd(dummy_mask,velec);
565             velecsum         = _mm256_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm256_mul_pd(fscal,dx20);
573             ty               = _mm256_mul_pd(fscal,dy20);
574             tz               = _mm256_mul_pd(fscal,dz20);
575
576             /* Update vectorial force */
577             fix2             = _mm256_add_pd(fix2,tx);
578             fiy2             = _mm256_add_pd(fiy2,ty);
579             fiz2             = _mm256_add_pd(fiz2,tz);
580
581             fjx0             = _mm256_add_pd(fjx0,tx);
582             fjy0             = _mm256_add_pd(fjy0,ty);
583             fjz0             = _mm256_add_pd(fjz0,tz);
584
585             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
586             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
587             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
588             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
589
590             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
591
592             /* Inner loop uses 135 flops */
593         }
594
595         /* End of innermost loop */
596
597         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
598                                                  f+i_coord_offset,fshift+i_shift_offset);
599
600         ggid                        = gid[iidx];
601         /* Update potential energies */
602         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
603         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 20 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
620  * Electrostatics interaction: ReactionField
621  * VdW interaction:            CubicSplineTable
622  * Geometry:                   Water3-Particle
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
627                     (t_nblist * gmx_restrict                nlist,
628                      rvec * gmx_restrict                    xx,
629                      rvec * gmx_restrict                    ff,
630                      t_forcerec * gmx_restrict              fr,
631                      t_mdatoms * gmx_restrict               mdatoms,
632                      nb_kernel_data_t * gmx_restrict        kernel_data,
633                      t_nrnb * gmx_restrict                  nrnb)
634 {
635     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
636      * just 0 for non-waters.
637      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
638      * jnr indices corresponding to data put in the four positions in the SIMD register.
639      */
640     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
641     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
642     int              jnrA,jnrB,jnrC,jnrD;
643     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
644     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
645     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
646     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
647     real             rcutoff_scalar;
648     real             *shiftvec,*fshift,*x,*f;
649     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
650     real             scratch[4*DIM];
651     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
652     real *           vdwioffsetptr0;
653     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
654     real *           vdwioffsetptr1;
655     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
656     real *           vdwioffsetptr2;
657     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
658     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
659     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
660     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
661     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
662     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
663     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
664     real             *charge;
665     int              nvdwtype;
666     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
667     int              *vdwtype;
668     real             *vdwparam;
669     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
670     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
671     __m128i          vfitab;
672     __m128i          ifour       = _mm_set1_epi32(4);
673     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
674     real             *vftab;
675     __m256d          dummy_mask,cutoff_mask;
676     __m128           tmpmask0,tmpmask1;
677     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
678     __m256d          one     = _mm256_set1_pd(1.0);
679     __m256d          two     = _mm256_set1_pd(2.0);
680     x                = xx[0];
681     f                = ff[0];
682
683     nri              = nlist->nri;
684     iinr             = nlist->iinr;
685     jindex           = nlist->jindex;
686     jjnr             = nlist->jjnr;
687     shiftidx         = nlist->shift;
688     gid              = nlist->gid;
689     shiftvec         = fr->shift_vec[0];
690     fshift           = fr->fshift[0];
691     facel            = _mm256_set1_pd(fr->epsfac);
692     charge           = mdatoms->chargeA;
693     krf              = _mm256_set1_pd(fr->ic->k_rf);
694     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
695     crf              = _mm256_set1_pd(fr->ic->c_rf);
696     nvdwtype         = fr->ntype;
697     vdwparam         = fr->nbfp;
698     vdwtype          = mdatoms->typeA;
699
700     vftab            = kernel_data->table_vdw->data;
701     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
702
703     /* Setup water-specific parameters */
704     inr              = nlist->iinr[0];
705     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
706     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
707     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
708     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
709
710     /* Avoid stupid compiler warnings */
711     jnrA = jnrB = jnrC = jnrD = 0;
712     j_coord_offsetA = 0;
713     j_coord_offsetB = 0;
714     j_coord_offsetC = 0;
715     j_coord_offsetD = 0;
716
717     outeriter        = 0;
718     inneriter        = 0;
719
720     for(iidx=0;iidx<4*DIM;iidx++)
721     {
722         scratch[iidx] = 0.0;
723     }
724
725     /* Start outer loop over neighborlists */
726     for(iidx=0; iidx<nri; iidx++)
727     {
728         /* Load shift vector for this list */
729         i_shift_offset   = DIM*shiftidx[iidx];
730
731         /* Load limits for loop over neighbors */
732         j_index_start    = jindex[iidx];
733         j_index_end      = jindex[iidx+1];
734
735         /* Get outer coordinate index */
736         inr              = iinr[iidx];
737         i_coord_offset   = DIM*inr;
738
739         /* Load i particle coords and add shift vector */
740         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
741                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
742
743         fix0             = _mm256_setzero_pd();
744         fiy0             = _mm256_setzero_pd();
745         fiz0             = _mm256_setzero_pd();
746         fix1             = _mm256_setzero_pd();
747         fiy1             = _mm256_setzero_pd();
748         fiz1             = _mm256_setzero_pd();
749         fix2             = _mm256_setzero_pd();
750         fiy2             = _mm256_setzero_pd();
751         fiz2             = _mm256_setzero_pd();
752
753         /* Start inner kernel loop */
754         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
755         {
756
757             /* Get j neighbor index, and coordinate index */
758             jnrA             = jjnr[jidx];
759             jnrB             = jjnr[jidx+1];
760             jnrC             = jjnr[jidx+2];
761             jnrD             = jjnr[jidx+3];
762             j_coord_offsetA  = DIM*jnrA;
763             j_coord_offsetB  = DIM*jnrB;
764             j_coord_offsetC  = DIM*jnrC;
765             j_coord_offsetD  = DIM*jnrD;
766
767             /* load j atom coordinates */
768             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
769                                                  x+j_coord_offsetC,x+j_coord_offsetD,
770                                                  &jx0,&jy0,&jz0);
771
772             /* Calculate displacement vector */
773             dx00             = _mm256_sub_pd(ix0,jx0);
774             dy00             = _mm256_sub_pd(iy0,jy0);
775             dz00             = _mm256_sub_pd(iz0,jz0);
776             dx10             = _mm256_sub_pd(ix1,jx0);
777             dy10             = _mm256_sub_pd(iy1,jy0);
778             dz10             = _mm256_sub_pd(iz1,jz0);
779             dx20             = _mm256_sub_pd(ix2,jx0);
780             dy20             = _mm256_sub_pd(iy2,jy0);
781             dz20             = _mm256_sub_pd(iz2,jz0);
782
783             /* Calculate squared distance and things based on it */
784             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
785             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
786             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
787
788             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
789             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
790             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
791
792             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
793             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
794             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
795
796             /* Load parameters for j particles */
797             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
798                                                                  charge+jnrC+0,charge+jnrD+0);
799             vdwjidx0A        = 2*vdwtype[jnrA+0];
800             vdwjidx0B        = 2*vdwtype[jnrB+0];
801             vdwjidx0C        = 2*vdwtype[jnrC+0];
802             vdwjidx0D        = 2*vdwtype[jnrD+0];
803
804             fjx0             = _mm256_setzero_pd();
805             fjy0             = _mm256_setzero_pd();
806             fjz0             = _mm256_setzero_pd();
807
808             /**************************
809              * CALCULATE INTERACTIONS *
810              **************************/
811
812             r00              = _mm256_mul_pd(rsq00,rinv00);
813
814             /* Compute parameters for interactions between i and j atoms */
815             qq00             = _mm256_mul_pd(iq0,jq0);
816             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
817                                             vdwioffsetptr0+vdwjidx0B,
818                                             vdwioffsetptr0+vdwjidx0C,
819                                             vdwioffsetptr0+vdwjidx0D,
820                                             &c6_00,&c12_00);
821
822             /* Calculate table index by multiplying r with table scale and truncate to integer */
823             rt               = _mm256_mul_pd(r00,vftabscale);
824             vfitab           = _mm256_cvttpd_epi32(rt);
825             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
826             vfitab           = _mm_slli_epi32(vfitab,3);
827
828             /* REACTION-FIELD ELECTROSTATICS */
829             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
830
831             /* CUBIC SPLINE TABLE DISPERSION */
832             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
833             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
834             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
835             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
836             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
837             Heps             = _mm256_mul_pd(vfeps,H);
838             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
839             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
840             fvdw6            = _mm256_mul_pd(c6_00,FF);
841
842             /* CUBIC SPLINE TABLE REPULSION */
843             vfitab           = _mm_add_epi32(vfitab,ifour);
844             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
845             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
846             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
847             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
848             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
849             Heps             = _mm256_mul_pd(vfeps,H);
850             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
851             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
852             fvdw12           = _mm256_mul_pd(c12_00,FF);
853             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
854
855             fscal            = _mm256_add_pd(felec,fvdw);
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm256_mul_pd(fscal,dx00);
859             ty               = _mm256_mul_pd(fscal,dy00);
860             tz               = _mm256_mul_pd(fscal,dz00);
861
862             /* Update vectorial force */
863             fix0             = _mm256_add_pd(fix0,tx);
864             fiy0             = _mm256_add_pd(fiy0,ty);
865             fiz0             = _mm256_add_pd(fiz0,tz);
866
867             fjx0             = _mm256_add_pd(fjx0,tx);
868             fjy0             = _mm256_add_pd(fjy0,ty);
869             fjz0             = _mm256_add_pd(fjz0,tz);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq10             = _mm256_mul_pd(iq1,jq0);
877
878             /* REACTION-FIELD ELECTROSTATICS */
879             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
880
881             fscal            = felec;
882
883             /* Calculate temporary vectorial force */
884             tx               = _mm256_mul_pd(fscal,dx10);
885             ty               = _mm256_mul_pd(fscal,dy10);
886             tz               = _mm256_mul_pd(fscal,dz10);
887
888             /* Update vectorial force */
889             fix1             = _mm256_add_pd(fix1,tx);
890             fiy1             = _mm256_add_pd(fiy1,ty);
891             fiz1             = _mm256_add_pd(fiz1,tz);
892
893             fjx0             = _mm256_add_pd(fjx0,tx);
894             fjy0             = _mm256_add_pd(fjy0,ty);
895             fjz0             = _mm256_add_pd(fjz0,tz);
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq20             = _mm256_mul_pd(iq2,jq0);
903
904             /* REACTION-FIELD ELECTROSTATICS */
905             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
906
907             fscal            = felec;
908
909             /* Calculate temporary vectorial force */
910             tx               = _mm256_mul_pd(fscal,dx20);
911             ty               = _mm256_mul_pd(fscal,dy20);
912             tz               = _mm256_mul_pd(fscal,dz20);
913
914             /* Update vectorial force */
915             fix2             = _mm256_add_pd(fix2,tx);
916             fiy2             = _mm256_add_pd(fiy2,ty);
917             fiz2             = _mm256_add_pd(fiz2,tz);
918
919             fjx0             = _mm256_add_pd(fjx0,tx);
920             fjy0             = _mm256_add_pd(fjy0,ty);
921             fjz0             = _mm256_add_pd(fjz0,tz);
922
923             fjptrA             = f+j_coord_offsetA;
924             fjptrB             = f+j_coord_offsetB;
925             fjptrC             = f+j_coord_offsetC;
926             fjptrD             = f+j_coord_offsetD;
927
928             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
929
930             /* Inner loop uses 111 flops */
931         }
932
933         if(jidx<j_index_end)
934         {
935
936             /* Get j neighbor index, and coordinate index */
937             jnrlistA         = jjnr[jidx];
938             jnrlistB         = jjnr[jidx+1];
939             jnrlistC         = jjnr[jidx+2];
940             jnrlistD         = jjnr[jidx+3];
941             /* Sign of each element will be negative for non-real atoms.
942              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
943              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
944              */
945             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
946
947             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
948             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
949             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
950
951             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
952             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
953             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
954             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
955             j_coord_offsetA  = DIM*jnrA;
956             j_coord_offsetB  = DIM*jnrB;
957             j_coord_offsetC  = DIM*jnrC;
958             j_coord_offsetD  = DIM*jnrD;
959
960             /* load j atom coordinates */
961             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
962                                                  x+j_coord_offsetC,x+j_coord_offsetD,
963                                                  &jx0,&jy0,&jz0);
964
965             /* Calculate displacement vector */
966             dx00             = _mm256_sub_pd(ix0,jx0);
967             dy00             = _mm256_sub_pd(iy0,jy0);
968             dz00             = _mm256_sub_pd(iz0,jz0);
969             dx10             = _mm256_sub_pd(ix1,jx0);
970             dy10             = _mm256_sub_pd(iy1,jy0);
971             dz10             = _mm256_sub_pd(iz1,jz0);
972             dx20             = _mm256_sub_pd(ix2,jx0);
973             dy20             = _mm256_sub_pd(iy2,jy0);
974             dz20             = _mm256_sub_pd(iz2,jz0);
975
976             /* Calculate squared distance and things based on it */
977             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
978             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
979             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
980
981             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
982             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
983             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
984
985             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
986             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
987             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
988
989             /* Load parameters for j particles */
990             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
991                                                                  charge+jnrC+0,charge+jnrD+0);
992             vdwjidx0A        = 2*vdwtype[jnrA+0];
993             vdwjidx0B        = 2*vdwtype[jnrB+0];
994             vdwjidx0C        = 2*vdwtype[jnrC+0];
995             vdwjidx0D        = 2*vdwtype[jnrD+0];
996
997             fjx0             = _mm256_setzero_pd();
998             fjy0             = _mm256_setzero_pd();
999             fjz0             = _mm256_setzero_pd();
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r00              = _mm256_mul_pd(rsq00,rinv00);
1006             r00              = _mm256_andnot_pd(dummy_mask,r00);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq00             = _mm256_mul_pd(iq0,jq0);
1010             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1011                                             vdwioffsetptr0+vdwjidx0B,
1012                                             vdwioffsetptr0+vdwjidx0C,
1013                                             vdwioffsetptr0+vdwjidx0D,
1014                                             &c6_00,&c12_00);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm256_mul_pd(r00,vftabscale);
1018             vfitab           = _mm256_cvttpd_epi32(rt);
1019             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1020             vfitab           = _mm_slli_epi32(vfitab,3);
1021
1022             /* REACTION-FIELD ELECTROSTATICS */
1023             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1024
1025             /* CUBIC SPLINE TABLE DISPERSION */
1026             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1027             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1028             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1029             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1030             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1031             Heps             = _mm256_mul_pd(vfeps,H);
1032             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1033             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1034             fvdw6            = _mm256_mul_pd(c6_00,FF);
1035
1036             /* CUBIC SPLINE TABLE REPULSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1039             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1040             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1041             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1042             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1043             Heps             = _mm256_mul_pd(vfeps,H);
1044             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1045             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1046             fvdw12           = _mm256_mul_pd(c12_00,FF);
1047             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1048
1049             fscal            = _mm256_add_pd(felec,fvdw);
1050
1051             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm256_mul_pd(fscal,dx00);
1055             ty               = _mm256_mul_pd(fscal,dy00);
1056             tz               = _mm256_mul_pd(fscal,dz00);
1057
1058             /* Update vectorial force */
1059             fix0             = _mm256_add_pd(fix0,tx);
1060             fiy0             = _mm256_add_pd(fiy0,ty);
1061             fiz0             = _mm256_add_pd(fiz0,tz);
1062
1063             fjx0             = _mm256_add_pd(fjx0,tx);
1064             fjy0             = _mm256_add_pd(fjy0,ty);
1065             fjz0             = _mm256_add_pd(fjz0,tz);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _mm256_mul_pd(iq1,jq0);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1076
1077             fscal            = felec;
1078
1079             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm256_mul_pd(fscal,dx10);
1083             ty               = _mm256_mul_pd(fscal,dy10);
1084             tz               = _mm256_mul_pd(fscal,dz10);
1085
1086             /* Update vectorial force */
1087             fix1             = _mm256_add_pd(fix1,tx);
1088             fiy1             = _mm256_add_pd(fiy1,ty);
1089             fiz1             = _mm256_add_pd(fiz1,tz);
1090
1091             fjx0             = _mm256_add_pd(fjx0,tx);
1092             fjy0             = _mm256_add_pd(fjy0,ty);
1093             fjz0             = _mm256_add_pd(fjz0,tz);
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq20             = _mm256_mul_pd(iq2,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm256_mul_pd(fscal,dx20);
1111             ty               = _mm256_mul_pd(fscal,dy20);
1112             tz               = _mm256_mul_pd(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm256_add_pd(fix2,tx);
1116             fiy2             = _mm256_add_pd(fiy2,ty);
1117             fiz2             = _mm256_add_pd(fiz2,tz);
1118
1119             fjx0             = _mm256_add_pd(fjx0,tx);
1120             fjy0             = _mm256_add_pd(fjy0,ty);
1121             fjz0             = _mm256_add_pd(fjz0,tz);
1122
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 112 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1136                                                  f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 18 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*112);
1150 }