a5f8ba6a6cfd93782f0ee909862a3665c2b84008
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm256_set1_pd(fr->ic->k_rf);
126     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm256_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
138     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
139     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
140     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178         fix1             = _mm256_setzero_pd();
179         fiy1             = _mm256_setzero_pd();
180         fiz1             = _mm256_setzero_pd();
181         fix2             = _mm256_setzero_pd();
182         fiy2             = _mm256_setzero_pd();
183         fiz2             = _mm256_setzero_pd();
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_pd();
187         vvdwsum          = _mm256_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm256_sub_pd(ix0,jx0);
210             dy00             = _mm256_sub_pd(iy0,jy0);
211             dz00             = _mm256_sub_pd(iz0,jz0);
212             dx10             = _mm256_sub_pd(ix1,jx0);
213             dy10             = _mm256_sub_pd(iy1,jy0);
214             dz10             = _mm256_sub_pd(iz1,jz0);
215             dx20             = _mm256_sub_pd(ix2,jx0);
216             dy20             = _mm256_sub_pd(iy2,jy0);
217             dz20             = _mm256_sub_pd(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
227
228             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
229             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
234                                                                  charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm256_setzero_pd();
241             fjy0             = _mm256_setzero_pd();
242             fjz0             = _mm256_setzero_pd();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm256_mul_pd(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm256_mul_pd(iq0,jq0);
252             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             &c6_00,&c12_00);
257
258             /* Calculate table index by multiplying r with table scale and truncate to integer */
259             rt               = _mm256_mul_pd(r00,vftabscale);
260             vfitab           = _mm256_cvttpd_epi32(rt);
261             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
262             vfitab           = _mm_slli_epi32(vfitab,3);
263
264             /* REACTION-FIELD ELECTROSTATICS */
265             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
266             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
273             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
274             Heps             = _mm256_mul_pd(vfeps,H);
275             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
276             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
277             vvdw6            = _mm256_mul_pd(c6_00,VV);
278             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
279             fvdw6            = _mm256_mul_pd(c6_00,FF);
280
281             /* CUBIC SPLINE TABLE REPULSION */
282             vfitab           = _mm_add_epi32(vfitab,ifour);
283             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
284             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
285             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
286             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
287             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
288             Heps             = _mm256_mul_pd(vfeps,H);
289             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
290             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
291             vvdw12           = _mm256_mul_pd(c12_00,VV);
292             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
293             fvdw12           = _mm256_mul_pd(c12_00,FF);
294             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
295             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm256_add_pd(velecsum,velec);
299             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
300
301             fscal            = _mm256_add_pd(felec,fvdw);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm256_mul_pd(fscal,dx00);
305             ty               = _mm256_mul_pd(fscal,dy00);
306             tz               = _mm256_mul_pd(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm256_add_pd(fix0,tx);
310             fiy0             = _mm256_add_pd(fiy0,ty);
311             fiz0             = _mm256_add_pd(fiz0,tz);
312
313             fjx0             = _mm256_add_pd(fjx0,tx);
314             fjy0             = _mm256_add_pd(fjy0,ty);
315             fjz0             = _mm256_add_pd(fjz0,tz);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm256_mul_pd(iq1,jq0);
323
324             /* REACTION-FIELD ELECTROSTATICS */
325             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
326             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm256_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm256_mul_pd(fscal,dx10);
335             ty               = _mm256_mul_pd(fscal,dy10);
336             tz               = _mm256_mul_pd(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm256_add_pd(fix1,tx);
340             fiy1             = _mm256_add_pd(fiy1,ty);
341             fiz1             = _mm256_add_pd(fiz1,tz);
342
343             fjx0             = _mm256_add_pd(fjx0,tx);
344             fjy0             = _mm256_add_pd(fjy0,ty);
345             fjz0             = _mm256_add_pd(fjz0,tz);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm256_mul_pd(iq2,jq0);
353
354             /* REACTION-FIELD ELECTROSTATICS */
355             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
356             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm256_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_pd(fscal,dx20);
365             ty               = _mm256_mul_pd(fscal,dy20);
366             tz               = _mm256_mul_pd(fscal,dz20);
367
368             /* Update vectorial force */
369             fix2             = _mm256_add_pd(fix2,tx);
370             fiy2             = _mm256_add_pd(fiy2,ty);
371             fiz2             = _mm256_add_pd(fiz2,tz);
372
373             fjx0             = _mm256_add_pd(fjx0,tx);
374             fjy0             = _mm256_add_pd(fjy0,ty);
375             fjz0             = _mm256_add_pd(fjz0,tz);
376
377             fjptrA             = f+j_coord_offsetA;
378             fjptrB             = f+j_coord_offsetB;
379             fjptrC             = f+j_coord_offsetC;
380             fjptrD             = f+j_coord_offsetD;
381
382             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
383
384             /* Inner loop uses 134 flops */
385         }
386
387         if(jidx<j_index_end)
388         {
389
390             /* Get j neighbor index, and coordinate index */
391             jnrlistA         = jjnr[jidx];
392             jnrlistB         = jjnr[jidx+1];
393             jnrlistC         = jjnr[jidx+2];
394             jnrlistD         = jjnr[jidx+3];
395             /* Sign of each element will be negative for non-real atoms.
396              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
397              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
398              */
399             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
400
401             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
402             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
403             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
404
405             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
406             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
407             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
408             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
409             j_coord_offsetA  = DIM*jnrA;
410             j_coord_offsetB  = DIM*jnrB;
411             j_coord_offsetC  = DIM*jnrC;
412             j_coord_offsetD  = DIM*jnrD;
413
414             /* load j atom coordinates */
415             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
416                                                  x+j_coord_offsetC,x+j_coord_offsetD,
417                                                  &jx0,&jy0,&jz0);
418
419             /* Calculate displacement vector */
420             dx00             = _mm256_sub_pd(ix0,jx0);
421             dy00             = _mm256_sub_pd(iy0,jy0);
422             dz00             = _mm256_sub_pd(iz0,jz0);
423             dx10             = _mm256_sub_pd(ix1,jx0);
424             dy10             = _mm256_sub_pd(iy1,jy0);
425             dz10             = _mm256_sub_pd(iz1,jz0);
426             dx20             = _mm256_sub_pd(ix2,jx0);
427             dy20             = _mm256_sub_pd(iy2,jy0);
428             dz20             = _mm256_sub_pd(iz2,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
432             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
433             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
434
435             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
436             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
437             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
438
439             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
440             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
441             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
442
443             /* Load parameters for j particles */
444             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
445                                                                  charge+jnrC+0,charge+jnrD+0);
446             vdwjidx0A        = 2*vdwtype[jnrA+0];
447             vdwjidx0B        = 2*vdwtype[jnrB+0];
448             vdwjidx0C        = 2*vdwtype[jnrC+0];
449             vdwjidx0D        = 2*vdwtype[jnrD+0];
450
451             fjx0             = _mm256_setzero_pd();
452             fjy0             = _mm256_setzero_pd();
453             fjz0             = _mm256_setzero_pd();
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             r00              = _mm256_mul_pd(rsq00,rinv00);
460             r00              = _mm256_andnot_pd(dummy_mask,r00);
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq00             = _mm256_mul_pd(iq0,jq0);
464             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
465                                             vdwioffsetptr0+vdwjidx0B,
466                                             vdwioffsetptr0+vdwjidx0C,
467                                             vdwioffsetptr0+vdwjidx0D,
468                                             &c6_00,&c12_00);
469
470             /* Calculate table index by multiplying r with table scale and truncate to integer */
471             rt               = _mm256_mul_pd(r00,vftabscale);
472             vfitab           = _mm256_cvttpd_epi32(rt);
473             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
474             vfitab           = _mm_slli_epi32(vfitab,3);
475
476             /* REACTION-FIELD ELECTROSTATICS */
477             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
478             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
479
480             /* CUBIC SPLINE TABLE DISPERSION */
481             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
482             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
483             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
484             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
485             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
486             Heps             = _mm256_mul_pd(vfeps,H);
487             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
488             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
489             vvdw6            = _mm256_mul_pd(c6_00,VV);
490             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
491             fvdw6            = _mm256_mul_pd(c6_00,FF);
492
493             /* CUBIC SPLINE TABLE REPULSION */
494             vfitab           = _mm_add_epi32(vfitab,ifour);
495             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
496             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
497             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
498             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
499             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
500             Heps             = _mm256_mul_pd(vfeps,H);
501             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
502             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
503             vvdw12           = _mm256_mul_pd(c12_00,VV);
504             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
505             fvdw12           = _mm256_mul_pd(c12_00,FF);
506             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
507             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm256_andnot_pd(dummy_mask,velec);
511             velecsum         = _mm256_add_pd(velecsum,velec);
512             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
513             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
514
515             fscal            = _mm256_add_pd(felec,fvdw);
516
517             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
518
519             /* Calculate temporary vectorial force */
520             tx               = _mm256_mul_pd(fscal,dx00);
521             ty               = _mm256_mul_pd(fscal,dy00);
522             tz               = _mm256_mul_pd(fscal,dz00);
523
524             /* Update vectorial force */
525             fix0             = _mm256_add_pd(fix0,tx);
526             fiy0             = _mm256_add_pd(fiy0,ty);
527             fiz0             = _mm256_add_pd(fiz0,tz);
528
529             fjx0             = _mm256_add_pd(fjx0,tx);
530             fjy0             = _mm256_add_pd(fjy0,ty);
531             fjz0             = _mm256_add_pd(fjz0,tz);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq10             = _mm256_mul_pd(iq1,jq0);
539
540             /* REACTION-FIELD ELECTROSTATICS */
541             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
542             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm256_andnot_pd(dummy_mask,velec);
546             velecsum         = _mm256_add_pd(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_pd(fscal,dx10);
554             ty               = _mm256_mul_pd(fscal,dy10);
555             tz               = _mm256_mul_pd(fscal,dz10);
556
557             /* Update vectorial force */
558             fix1             = _mm256_add_pd(fix1,tx);
559             fiy1             = _mm256_add_pd(fiy1,ty);
560             fiz1             = _mm256_add_pd(fiz1,tz);
561
562             fjx0             = _mm256_add_pd(fjx0,tx);
563             fjy0             = _mm256_add_pd(fjy0,ty);
564             fjz0             = _mm256_add_pd(fjz0,tz);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq20             = _mm256_mul_pd(iq2,jq0);
572
573             /* REACTION-FIELD ELECTROSTATICS */
574             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
575             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_pd(dummy_mask,velec);
579             velecsum         = _mm256_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_pd(fscal,dx20);
587             ty               = _mm256_mul_pd(fscal,dy20);
588             tz               = _mm256_mul_pd(fscal,dz20);
589
590             /* Update vectorial force */
591             fix2             = _mm256_add_pd(fix2,tx);
592             fiy2             = _mm256_add_pd(fiy2,ty);
593             fiz2             = _mm256_add_pd(fiz2,tz);
594
595             fjx0             = _mm256_add_pd(fjx0,tx);
596             fjy0             = _mm256_add_pd(fjy0,ty);
597             fjz0             = _mm256_add_pd(fjz0,tz);
598
599             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
600             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
601             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
602             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
603
604             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
605
606             /* Inner loop uses 135 flops */
607         }
608
609         /* End of innermost loop */
610
611         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
612                                                  f+i_coord_offset,fshift+i_shift_offset);
613
614         ggid                        = gid[iidx];
615         /* Update potential energies */
616         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
617         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
618
619         /* Increment number of inner iterations */
620         inneriter                  += j_index_end - j_index_start;
621
622         /* Outer loop uses 20 flops */
623     }
624
625     /* Increment number of outer iterations */
626     outeriter        += nri;
627
628     /* Update outer/inner flops */
629
630     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
631 }
632 /*
633  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
634  * Electrostatics interaction: ReactionField
635  * VdW interaction:            CubicSplineTable
636  * Geometry:                   Water3-Particle
637  * Calculate force/pot:        Force
638  */
639 void
640 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
641                     (t_nblist                    * gmx_restrict       nlist,
642                      rvec                        * gmx_restrict          xx,
643                      rvec                        * gmx_restrict          ff,
644                      t_forcerec                  * gmx_restrict          fr,
645                      t_mdatoms                   * gmx_restrict     mdatoms,
646                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
647                      t_nrnb                      * gmx_restrict        nrnb)
648 {
649     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
650      * just 0 for non-waters.
651      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
652      * jnr indices corresponding to data put in the four positions in the SIMD register.
653      */
654     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
655     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
656     int              jnrA,jnrB,jnrC,jnrD;
657     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
658     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
659     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664     real             scratch[4*DIM];
665     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666     real *           vdwioffsetptr0;
667     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     real *           vdwioffsetptr1;
669     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     real *           vdwioffsetptr2;
671     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
684     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
685     __m128i          vfitab;
686     __m128i          ifour       = _mm_set1_epi32(4);
687     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
688     real             *vftab;
689     __m256d          dummy_mask,cutoff_mask;
690     __m128           tmpmask0,tmpmask1;
691     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
692     __m256d          one     = _mm256_set1_pd(1.0);
693     __m256d          two     = _mm256_set1_pd(2.0);
694     x                = xx[0];
695     f                = ff[0];
696
697     nri              = nlist->nri;
698     iinr             = nlist->iinr;
699     jindex           = nlist->jindex;
700     jjnr             = nlist->jjnr;
701     shiftidx         = nlist->shift;
702     gid              = nlist->gid;
703     shiftvec         = fr->shift_vec[0];
704     fshift           = fr->fshift[0];
705     facel            = _mm256_set1_pd(fr->epsfac);
706     charge           = mdatoms->chargeA;
707     krf              = _mm256_set1_pd(fr->ic->k_rf);
708     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
709     crf              = _mm256_set1_pd(fr->ic->c_rf);
710     nvdwtype         = fr->ntype;
711     vdwparam         = fr->nbfp;
712     vdwtype          = mdatoms->typeA;
713
714     vftab            = kernel_data->table_vdw->data;
715     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
716
717     /* Setup water-specific parameters */
718     inr              = nlist->iinr[0];
719     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
720     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
721     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
722     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
723
724     /* Avoid stupid compiler warnings */
725     jnrA = jnrB = jnrC = jnrD = 0;
726     j_coord_offsetA = 0;
727     j_coord_offsetB = 0;
728     j_coord_offsetC = 0;
729     j_coord_offsetD = 0;
730
731     outeriter        = 0;
732     inneriter        = 0;
733
734     for(iidx=0;iidx<4*DIM;iidx++)
735     {
736         scratch[iidx] = 0.0;
737     }
738
739     /* Start outer loop over neighborlists */
740     for(iidx=0; iidx<nri; iidx++)
741     {
742         /* Load shift vector for this list */
743         i_shift_offset   = DIM*shiftidx[iidx];
744
745         /* Load limits for loop over neighbors */
746         j_index_start    = jindex[iidx];
747         j_index_end      = jindex[iidx+1];
748
749         /* Get outer coordinate index */
750         inr              = iinr[iidx];
751         i_coord_offset   = DIM*inr;
752
753         /* Load i particle coords and add shift vector */
754         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
755                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
756
757         fix0             = _mm256_setzero_pd();
758         fiy0             = _mm256_setzero_pd();
759         fiz0             = _mm256_setzero_pd();
760         fix1             = _mm256_setzero_pd();
761         fiy1             = _mm256_setzero_pd();
762         fiz1             = _mm256_setzero_pd();
763         fix2             = _mm256_setzero_pd();
764         fiy2             = _mm256_setzero_pd();
765         fiz2             = _mm256_setzero_pd();
766
767         /* Start inner kernel loop */
768         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrA             = jjnr[jidx];
773             jnrB             = jjnr[jidx+1];
774             jnrC             = jjnr[jidx+2];
775             jnrD             = jjnr[jidx+3];
776             j_coord_offsetA  = DIM*jnrA;
777             j_coord_offsetB  = DIM*jnrB;
778             j_coord_offsetC  = DIM*jnrC;
779             j_coord_offsetD  = DIM*jnrD;
780
781             /* load j atom coordinates */
782             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
783                                                  x+j_coord_offsetC,x+j_coord_offsetD,
784                                                  &jx0,&jy0,&jz0);
785
786             /* Calculate displacement vector */
787             dx00             = _mm256_sub_pd(ix0,jx0);
788             dy00             = _mm256_sub_pd(iy0,jy0);
789             dz00             = _mm256_sub_pd(iz0,jz0);
790             dx10             = _mm256_sub_pd(ix1,jx0);
791             dy10             = _mm256_sub_pd(iy1,jy0);
792             dz10             = _mm256_sub_pd(iz1,jz0);
793             dx20             = _mm256_sub_pd(ix2,jx0);
794             dy20             = _mm256_sub_pd(iy2,jy0);
795             dz20             = _mm256_sub_pd(iz2,jz0);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
799             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
800             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
801
802             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
803             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
804             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
805
806             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
807             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
808             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
809
810             /* Load parameters for j particles */
811             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
812                                                                  charge+jnrC+0,charge+jnrD+0);
813             vdwjidx0A        = 2*vdwtype[jnrA+0];
814             vdwjidx0B        = 2*vdwtype[jnrB+0];
815             vdwjidx0C        = 2*vdwtype[jnrC+0];
816             vdwjidx0D        = 2*vdwtype[jnrD+0];
817
818             fjx0             = _mm256_setzero_pd();
819             fjy0             = _mm256_setzero_pd();
820             fjz0             = _mm256_setzero_pd();
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             r00              = _mm256_mul_pd(rsq00,rinv00);
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq00             = _mm256_mul_pd(iq0,jq0);
830             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
831                                             vdwioffsetptr0+vdwjidx0B,
832                                             vdwioffsetptr0+vdwjidx0C,
833                                             vdwioffsetptr0+vdwjidx0D,
834                                             &c6_00,&c12_00);
835
836             /* Calculate table index by multiplying r with table scale and truncate to integer */
837             rt               = _mm256_mul_pd(r00,vftabscale);
838             vfitab           = _mm256_cvttpd_epi32(rt);
839             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
840             vfitab           = _mm_slli_epi32(vfitab,3);
841
842             /* REACTION-FIELD ELECTROSTATICS */
843             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
844
845             /* CUBIC SPLINE TABLE DISPERSION */
846             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
847             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
848             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
849             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
850             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
851             Heps             = _mm256_mul_pd(vfeps,H);
852             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
853             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
854             fvdw6            = _mm256_mul_pd(c6_00,FF);
855
856             /* CUBIC SPLINE TABLE REPULSION */
857             vfitab           = _mm_add_epi32(vfitab,ifour);
858             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
859             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
860             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
861             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
862             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
863             Heps             = _mm256_mul_pd(vfeps,H);
864             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
865             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
866             fvdw12           = _mm256_mul_pd(c12_00,FF);
867             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
868
869             fscal            = _mm256_add_pd(felec,fvdw);
870
871             /* Calculate temporary vectorial force */
872             tx               = _mm256_mul_pd(fscal,dx00);
873             ty               = _mm256_mul_pd(fscal,dy00);
874             tz               = _mm256_mul_pd(fscal,dz00);
875
876             /* Update vectorial force */
877             fix0             = _mm256_add_pd(fix0,tx);
878             fiy0             = _mm256_add_pd(fiy0,ty);
879             fiz0             = _mm256_add_pd(fiz0,tz);
880
881             fjx0             = _mm256_add_pd(fjx0,tx);
882             fjy0             = _mm256_add_pd(fjy0,ty);
883             fjz0             = _mm256_add_pd(fjz0,tz);
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq10             = _mm256_mul_pd(iq1,jq0);
891
892             /* REACTION-FIELD ELECTROSTATICS */
893             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
894
895             fscal            = felec;
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm256_mul_pd(fscal,dx10);
899             ty               = _mm256_mul_pd(fscal,dy10);
900             tz               = _mm256_mul_pd(fscal,dz10);
901
902             /* Update vectorial force */
903             fix1             = _mm256_add_pd(fix1,tx);
904             fiy1             = _mm256_add_pd(fiy1,ty);
905             fiz1             = _mm256_add_pd(fiz1,tz);
906
907             fjx0             = _mm256_add_pd(fjx0,tx);
908             fjy0             = _mm256_add_pd(fjy0,ty);
909             fjz0             = _mm256_add_pd(fjz0,tz);
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq20             = _mm256_mul_pd(iq2,jq0);
917
918             /* REACTION-FIELD ELECTROSTATICS */
919             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
920
921             fscal            = felec;
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm256_mul_pd(fscal,dx20);
925             ty               = _mm256_mul_pd(fscal,dy20);
926             tz               = _mm256_mul_pd(fscal,dz20);
927
928             /* Update vectorial force */
929             fix2             = _mm256_add_pd(fix2,tx);
930             fiy2             = _mm256_add_pd(fiy2,ty);
931             fiz2             = _mm256_add_pd(fiz2,tz);
932
933             fjx0             = _mm256_add_pd(fjx0,tx);
934             fjy0             = _mm256_add_pd(fjy0,ty);
935             fjz0             = _mm256_add_pd(fjz0,tz);
936
937             fjptrA             = f+j_coord_offsetA;
938             fjptrB             = f+j_coord_offsetB;
939             fjptrC             = f+j_coord_offsetC;
940             fjptrD             = f+j_coord_offsetD;
941
942             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
943
944             /* Inner loop uses 111 flops */
945         }
946
947         if(jidx<j_index_end)
948         {
949
950             /* Get j neighbor index, and coordinate index */
951             jnrlistA         = jjnr[jidx];
952             jnrlistB         = jjnr[jidx+1];
953             jnrlistC         = jjnr[jidx+2];
954             jnrlistD         = jjnr[jidx+3];
955             /* Sign of each element will be negative for non-real atoms.
956              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
957              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
958              */
959             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
960
961             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
962             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
963             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
964
965             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
966             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
967             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
968             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
969             j_coord_offsetA  = DIM*jnrA;
970             j_coord_offsetB  = DIM*jnrB;
971             j_coord_offsetC  = DIM*jnrC;
972             j_coord_offsetD  = DIM*jnrD;
973
974             /* load j atom coordinates */
975             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
976                                                  x+j_coord_offsetC,x+j_coord_offsetD,
977                                                  &jx0,&jy0,&jz0);
978
979             /* Calculate displacement vector */
980             dx00             = _mm256_sub_pd(ix0,jx0);
981             dy00             = _mm256_sub_pd(iy0,jy0);
982             dz00             = _mm256_sub_pd(iz0,jz0);
983             dx10             = _mm256_sub_pd(ix1,jx0);
984             dy10             = _mm256_sub_pd(iy1,jy0);
985             dz10             = _mm256_sub_pd(iz1,jz0);
986             dx20             = _mm256_sub_pd(ix2,jx0);
987             dy20             = _mm256_sub_pd(iy2,jy0);
988             dz20             = _mm256_sub_pd(iz2,jz0);
989
990             /* Calculate squared distance and things based on it */
991             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
992             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
993             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
994
995             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
996             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
997             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
998
999             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1000             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1001             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1002
1003             /* Load parameters for j particles */
1004             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1005                                                                  charge+jnrC+0,charge+jnrD+0);
1006             vdwjidx0A        = 2*vdwtype[jnrA+0];
1007             vdwjidx0B        = 2*vdwtype[jnrB+0];
1008             vdwjidx0C        = 2*vdwtype[jnrC+0];
1009             vdwjidx0D        = 2*vdwtype[jnrD+0];
1010
1011             fjx0             = _mm256_setzero_pd();
1012             fjy0             = _mm256_setzero_pd();
1013             fjz0             = _mm256_setzero_pd();
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             r00              = _mm256_mul_pd(rsq00,rinv00);
1020             r00              = _mm256_andnot_pd(dummy_mask,r00);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq00             = _mm256_mul_pd(iq0,jq0);
1024             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1025                                             vdwioffsetptr0+vdwjidx0B,
1026                                             vdwioffsetptr0+vdwjidx0C,
1027                                             vdwioffsetptr0+vdwjidx0D,
1028                                             &c6_00,&c12_00);
1029
1030             /* Calculate table index by multiplying r with table scale and truncate to integer */
1031             rt               = _mm256_mul_pd(r00,vftabscale);
1032             vfitab           = _mm256_cvttpd_epi32(rt);
1033             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1034             vfitab           = _mm_slli_epi32(vfitab,3);
1035
1036             /* REACTION-FIELD ELECTROSTATICS */
1037             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1038
1039             /* CUBIC SPLINE TABLE DISPERSION */
1040             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1041             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1042             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1043             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1044             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1045             Heps             = _mm256_mul_pd(vfeps,H);
1046             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1047             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1048             fvdw6            = _mm256_mul_pd(c6_00,FF);
1049
1050             /* CUBIC SPLINE TABLE REPULSION */
1051             vfitab           = _mm_add_epi32(vfitab,ifour);
1052             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1053             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1054             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1055             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1056             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1057             Heps             = _mm256_mul_pd(vfeps,H);
1058             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1059             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1060             fvdw12           = _mm256_mul_pd(c12_00,FF);
1061             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1062
1063             fscal            = _mm256_add_pd(felec,fvdw);
1064
1065             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_pd(fscal,dx00);
1069             ty               = _mm256_mul_pd(fscal,dy00);
1070             tz               = _mm256_mul_pd(fscal,dz00);
1071
1072             /* Update vectorial force */
1073             fix0             = _mm256_add_pd(fix0,tx);
1074             fiy0             = _mm256_add_pd(fiy0,ty);
1075             fiz0             = _mm256_add_pd(fiz0,tz);
1076
1077             fjx0             = _mm256_add_pd(fjx0,tx);
1078             fjy0             = _mm256_add_pd(fjy0,ty);
1079             fjz0             = _mm256_add_pd(fjz0,tz);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq10             = _mm256_mul_pd(iq1,jq0);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm256_mul_pd(fscal,dx10);
1097             ty               = _mm256_mul_pd(fscal,dy10);
1098             tz               = _mm256_mul_pd(fscal,dz10);
1099
1100             /* Update vectorial force */
1101             fix1             = _mm256_add_pd(fix1,tx);
1102             fiy1             = _mm256_add_pd(fiy1,ty);
1103             fiz1             = _mm256_add_pd(fiz1,tz);
1104
1105             fjx0             = _mm256_add_pd(fjx0,tx);
1106             fjy0             = _mm256_add_pd(fjy0,ty);
1107             fjz0             = _mm256_add_pd(fjz0,tz);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq20             = _mm256_mul_pd(iq2,jq0);
1115
1116             /* REACTION-FIELD ELECTROSTATICS */
1117             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm256_mul_pd(fscal,dx20);
1125             ty               = _mm256_mul_pd(fscal,dy20);
1126             tz               = _mm256_mul_pd(fscal,dz20);
1127
1128             /* Update vectorial force */
1129             fix2             = _mm256_add_pd(fix2,tx);
1130             fiy2             = _mm256_add_pd(fiy2,ty);
1131             fiz2             = _mm256_add_pd(fiz2,tz);
1132
1133             fjx0             = _mm256_add_pd(fjx0,tx);
1134             fjy0             = _mm256_add_pd(fjy0,ty);
1135             fjz0             = _mm256_add_pd(fjz0,tz);
1136
1137             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1138             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1139             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1140             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1141
1142             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1143
1144             /* Inner loop uses 112 flops */
1145         }
1146
1147         /* End of innermost loop */
1148
1149         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1150                                                  f+i_coord_offset,fshift+i_shift_offset);
1151
1152         /* Increment number of inner iterations */
1153         inneriter                  += j_index_end - j_index_start;
1154
1155         /* Outer loop uses 18 flops */
1156     }
1157
1158     /* Increment number of outer iterations */
1159     outeriter        += nri;
1160
1161     /* Update outer/inner flops */
1162
1163     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*112);
1164 }