Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     krf              = _mm256_set1_pd(fr->ic->k_rf);
128     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
129     crf              = _mm256_set1_pd(fr->ic->c_rf);
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_vdw->data;
135     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
140     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
141     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
176
177         fix0             = _mm256_setzero_pd();
178         fiy0             = _mm256_setzero_pd();
179         fiz0             = _mm256_setzero_pd();
180         fix1             = _mm256_setzero_pd();
181         fiy1             = _mm256_setzero_pd();
182         fiz1             = _mm256_setzero_pd();
183         fix2             = _mm256_setzero_pd();
184         fiy2             = _mm256_setzero_pd();
185         fiz2             = _mm256_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_pd();
189         vvdwsum          = _mm256_setzero_pd();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_pd(ix0,jx0);
212             dy00             = _mm256_sub_pd(iy0,jy0);
213             dz00             = _mm256_sub_pd(iz0,jz0);
214             dx10             = _mm256_sub_pd(ix1,jx0);
215             dy10             = _mm256_sub_pd(iy1,jy0);
216             dz10             = _mm256_sub_pd(iz1,jz0);
217             dx20             = _mm256_sub_pd(ix2,jx0);
218             dy20             = _mm256_sub_pd(iy2,jy0);
219             dz20             = _mm256_sub_pd(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
227             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
229
230             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
231             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
236                                                                  charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm256_setzero_pd();
243             fjy0             = _mm256_setzero_pd();
244             fjz0             = _mm256_setzero_pd();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm256_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm256_mul_pd(iq0,jq0);
254             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
255                                             vdwioffsetptr0+vdwjidx0B,
256                                             vdwioffsetptr0+vdwjidx0C,
257                                             vdwioffsetptr0+vdwjidx0D,
258                                             &c6_00,&c12_00);
259
260             /* Calculate table index by multiplying r with table scale and truncate to integer */
261             rt               = _mm256_mul_pd(r00,vftabscale);
262             vfitab           = _mm256_cvttpd_epi32(rt);
263             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
264             vfitab           = _mm_slli_epi32(vfitab,3);
265
266             /* REACTION-FIELD ELECTROSTATICS */
267             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
268             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             vvdw6            = _mm256_mul_pd(c6_00,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             fvdw6            = _mm256_mul_pd(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw12           = _mm256_mul_pd(c12_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw12           = _mm256_mul_pd(c12_00,FF);
296             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
297             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm256_add_pd(velecsum,velec);
301             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
302
303             fscal            = _mm256_add_pd(felec,fvdw);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm256_mul_pd(fscal,dx00);
307             ty               = _mm256_mul_pd(fscal,dy00);
308             tz               = _mm256_mul_pd(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm256_add_pd(fix0,tx);
312             fiy0             = _mm256_add_pd(fiy0,ty);
313             fiz0             = _mm256_add_pd(fiz0,tz);
314
315             fjx0             = _mm256_add_pd(fjx0,tx);
316             fjy0             = _mm256_add_pd(fjy0,ty);
317             fjz0             = _mm256_add_pd(fjz0,tz);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm256_mul_pd(iq1,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
328             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm256_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx10);
337             ty               = _mm256_mul_pd(fscal,dy10);
338             tz               = _mm256_mul_pd(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm256_add_pd(fix1,tx);
342             fiy1             = _mm256_add_pd(fiy1,ty);
343             fiz1             = _mm256_add_pd(fiz1,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm256_mul_pd(iq2,jq0);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
358             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx20);
367             ty               = _mm256_mul_pd(fscal,dy20);
368             tz               = _mm256_mul_pd(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm256_add_pd(fix2,tx);
372             fiy2             = _mm256_add_pd(fiy2,ty);
373             fiz2             = _mm256_add_pd(fiz2,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             fjptrA             = f+j_coord_offsetA;
380             fjptrB             = f+j_coord_offsetB;
381             fjptrC             = f+j_coord_offsetC;
382             fjptrD             = f+j_coord_offsetD;
383
384             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 134 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             /* Sign of each element will be negative for non-real atoms.
398              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
399              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
400              */
401             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
402
403             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
404             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
405             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
406
407             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
408             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
409             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
410             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
411             j_coord_offsetA  = DIM*jnrA;
412             j_coord_offsetB  = DIM*jnrB;
413             j_coord_offsetC  = DIM*jnrC;
414             j_coord_offsetD  = DIM*jnrD;
415
416             /* load j atom coordinates */
417             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
418                                                  x+j_coord_offsetC,x+j_coord_offsetD,
419                                                  &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm256_sub_pd(ix0,jx0);
423             dy00             = _mm256_sub_pd(iy0,jy0);
424             dz00             = _mm256_sub_pd(iz0,jz0);
425             dx10             = _mm256_sub_pd(ix1,jx0);
426             dy10             = _mm256_sub_pd(iy1,jy0);
427             dz10             = _mm256_sub_pd(iz1,jz0);
428             dx20             = _mm256_sub_pd(ix2,jx0);
429             dy20             = _mm256_sub_pd(iy2,jy0);
430             dz20             = _mm256_sub_pd(iz2,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
434             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
435             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
436
437             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
438             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
439             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
440
441             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
442             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
443             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
447                                                                  charge+jnrC+0,charge+jnrD+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450             vdwjidx0C        = 2*vdwtype[jnrC+0];
451             vdwjidx0D        = 2*vdwtype[jnrD+0];
452
453             fjx0             = _mm256_setzero_pd();
454             fjy0             = _mm256_setzero_pd();
455             fjz0             = _mm256_setzero_pd();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r00              = _mm256_mul_pd(rsq00,rinv00);
462             r00              = _mm256_andnot_pd(dummy_mask,r00);
463
464             /* Compute parameters for interactions between i and j atoms */
465             qq00             = _mm256_mul_pd(iq0,jq0);
466             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
467                                             vdwioffsetptr0+vdwjidx0B,
468                                             vdwioffsetptr0+vdwjidx0C,
469                                             vdwioffsetptr0+vdwjidx0D,
470                                             &c6_00,&c12_00);
471
472             /* Calculate table index by multiplying r with table scale and truncate to integer */
473             rt               = _mm256_mul_pd(r00,vftabscale);
474             vfitab           = _mm256_cvttpd_epi32(rt);
475             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
476             vfitab           = _mm_slli_epi32(vfitab,3);
477
478             /* REACTION-FIELD ELECTROSTATICS */
479             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
480             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
481
482             /* CUBIC SPLINE TABLE DISPERSION */
483             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
484             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
485             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
486             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
487             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
488             Heps             = _mm256_mul_pd(vfeps,H);
489             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
490             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
491             vvdw6            = _mm256_mul_pd(c6_00,VV);
492             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
493             fvdw6            = _mm256_mul_pd(c6_00,FF);
494
495             /* CUBIC SPLINE TABLE REPULSION */
496             vfitab           = _mm_add_epi32(vfitab,ifour);
497             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
498             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
499             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
500             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
501             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
502             Heps             = _mm256_mul_pd(vfeps,H);
503             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
504             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
505             vvdw12           = _mm256_mul_pd(c12_00,VV);
506             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
507             fvdw12           = _mm256_mul_pd(c12_00,FF);
508             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
509             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm256_andnot_pd(dummy_mask,velec);
513             velecsum         = _mm256_add_pd(velecsum,velec);
514             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
515             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
516
517             fscal            = _mm256_add_pd(felec,fvdw);
518
519             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx00);
523             ty               = _mm256_mul_pd(fscal,dy00);
524             tz               = _mm256_mul_pd(fscal,dz00);
525
526             /* Update vectorial force */
527             fix0             = _mm256_add_pd(fix0,tx);
528             fiy0             = _mm256_add_pd(fiy0,ty);
529             fiz0             = _mm256_add_pd(fiz0,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq10             = _mm256_mul_pd(iq1,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
544             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm256_andnot_pd(dummy_mask,velec);
548             velecsum         = _mm256_add_pd(velecsum,velec);
549
550             fscal            = felec;
551
552             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm256_mul_pd(fscal,dx10);
556             ty               = _mm256_mul_pd(fscal,dy10);
557             tz               = _mm256_mul_pd(fscal,dz10);
558
559             /* Update vectorial force */
560             fix1             = _mm256_add_pd(fix1,tx);
561             fiy1             = _mm256_add_pd(fiy1,ty);
562             fiz1             = _mm256_add_pd(fiz1,tz);
563
564             fjx0             = _mm256_add_pd(fjx0,tx);
565             fjy0             = _mm256_add_pd(fjy0,ty);
566             fjz0             = _mm256_add_pd(fjz0,tz);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm256_mul_pd(iq2,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
577             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm256_andnot_pd(dummy_mask,velec);
581             velecsum         = _mm256_add_pd(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx20);
589             ty               = _mm256_mul_pd(fscal,dy20);
590             tz               = _mm256_mul_pd(fscal,dz20);
591
592             /* Update vectorial force */
593             fix2             = _mm256_add_pd(fix2,tx);
594             fiy2             = _mm256_add_pd(fiy2,ty);
595             fiz2             = _mm256_add_pd(fiz2,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605
606             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
607
608             /* Inner loop uses 135 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
614                                                  f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 20 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
636  * Electrostatics interaction: ReactionField
637  * VdW interaction:            CubicSplineTable
638  * Geometry:                   Water3-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_256_double
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      t_forcerec                  * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
652      * just 0 for non-waters.
653      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB,jnrC,jnrD;
659     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
660     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
661     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
662     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
663     real             rcutoff_scalar;
664     real             *shiftvec,*fshift,*x,*f;
665     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
666     real             scratch[4*DIM];
667     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
668     real *           vdwioffsetptr0;
669     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
670     real *           vdwioffsetptr1;
671     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
672     real *           vdwioffsetptr2;
673     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
674     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
675     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
676     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
677     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
678     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
679     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
680     real             *charge;
681     int              nvdwtype;
682     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
683     int              *vdwtype;
684     real             *vdwparam;
685     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
686     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
687     __m128i          vfitab;
688     __m128i          ifour       = _mm_set1_epi32(4);
689     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
690     real             *vftab;
691     __m256d          dummy_mask,cutoff_mask;
692     __m128           tmpmask0,tmpmask1;
693     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
694     __m256d          one     = _mm256_set1_pd(1.0);
695     __m256d          two     = _mm256_set1_pd(2.0);
696     x                = xx[0];
697     f                = ff[0];
698
699     nri              = nlist->nri;
700     iinr             = nlist->iinr;
701     jindex           = nlist->jindex;
702     jjnr             = nlist->jjnr;
703     shiftidx         = nlist->shift;
704     gid              = nlist->gid;
705     shiftvec         = fr->shift_vec[0];
706     fshift           = fr->fshift[0];
707     facel            = _mm256_set1_pd(fr->epsfac);
708     charge           = mdatoms->chargeA;
709     krf              = _mm256_set1_pd(fr->ic->k_rf);
710     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
711     crf              = _mm256_set1_pd(fr->ic->c_rf);
712     nvdwtype         = fr->ntype;
713     vdwparam         = fr->nbfp;
714     vdwtype          = mdatoms->typeA;
715
716     vftab            = kernel_data->table_vdw->data;
717     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
718
719     /* Setup water-specific parameters */
720     inr              = nlist->iinr[0];
721     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
722     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
723     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
724     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
725
726     /* Avoid stupid compiler warnings */
727     jnrA = jnrB = jnrC = jnrD = 0;
728     j_coord_offsetA = 0;
729     j_coord_offsetB = 0;
730     j_coord_offsetC = 0;
731     j_coord_offsetD = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     for(iidx=0;iidx<4*DIM;iidx++)
737     {
738         scratch[iidx] = 0.0;
739     }
740
741     /* Start outer loop over neighborlists */
742     for(iidx=0; iidx<nri; iidx++)
743     {
744         /* Load shift vector for this list */
745         i_shift_offset   = DIM*shiftidx[iidx];
746
747         /* Load limits for loop over neighbors */
748         j_index_start    = jindex[iidx];
749         j_index_end      = jindex[iidx+1];
750
751         /* Get outer coordinate index */
752         inr              = iinr[iidx];
753         i_coord_offset   = DIM*inr;
754
755         /* Load i particle coords and add shift vector */
756         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
757                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
758
759         fix0             = _mm256_setzero_pd();
760         fiy0             = _mm256_setzero_pd();
761         fiz0             = _mm256_setzero_pd();
762         fix1             = _mm256_setzero_pd();
763         fiy1             = _mm256_setzero_pd();
764         fiz1             = _mm256_setzero_pd();
765         fix2             = _mm256_setzero_pd();
766         fiy2             = _mm256_setzero_pd();
767         fiz2             = _mm256_setzero_pd();
768
769         /* Start inner kernel loop */
770         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrA             = jjnr[jidx];
775             jnrB             = jjnr[jidx+1];
776             jnrC             = jjnr[jidx+2];
777             jnrD             = jjnr[jidx+3];
778             j_coord_offsetA  = DIM*jnrA;
779             j_coord_offsetB  = DIM*jnrB;
780             j_coord_offsetC  = DIM*jnrC;
781             j_coord_offsetD  = DIM*jnrD;
782
783             /* load j atom coordinates */
784             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
785                                                  x+j_coord_offsetC,x+j_coord_offsetD,
786                                                  &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm256_sub_pd(ix0,jx0);
790             dy00             = _mm256_sub_pd(iy0,jy0);
791             dz00             = _mm256_sub_pd(iz0,jz0);
792             dx10             = _mm256_sub_pd(ix1,jx0);
793             dy10             = _mm256_sub_pd(iy1,jy0);
794             dz10             = _mm256_sub_pd(iz1,jz0);
795             dx20             = _mm256_sub_pd(ix2,jx0);
796             dy20             = _mm256_sub_pd(iy2,jy0);
797             dz20             = _mm256_sub_pd(iz2,jz0);
798
799             /* Calculate squared distance and things based on it */
800             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
801             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
802             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
803
804             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
805             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
806             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
807
808             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
809             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
810             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
811
812             /* Load parameters for j particles */
813             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
814                                                                  charge+jnrC+0,charge+jnrD+0);
815             vdwjidx0A        = 2*vdwtype[jnrA+0];
816             vdwjidx0B        = 2*vdwtype[jnrB+0];
817             vdwjidx0C        = 2*vdwtype[jnrC+0];
818             vdwjidx0D        = 2*vdwtype[jnrD+0];
819
820             fjx0             = _mm256_setzero_pd();
821             fjy0             = _mm256_setzero_pd();
822             fjz0             = _mm256_setzero_pd();
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             r00              = _mm256_mul_pd(rsq00,rinv00);
829
830             /* Compute parameters for interactions between i and j atoms */
831             qq00             = _mm256_mul_pd(iq0,jq0);
832             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
833                                             vdwioffsetptr0+vdwjidx0B,
834                                             vdwioffsetptr0+vdwjidx0C,
835                                             vdwioffsetptr0+vdwjidx0D,
836                                             &c6_00,&c12_00);
837
838             /* Calculate table index by multiplying r with table scale and truncate to integer */
839             rt               = _mm256_mul_pd(r00,vftabscale);
840             vfitab           = _mm256_cvttpd_epi32(rt);
841             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
842             vfitab           = _mm_slli_epi32(vfitab,3);
843
844             /* REACTION-FIELD ELECTROSTATICS */
845             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
846
847             /* CUBIC SPLINE TABLE DISPERSION */
848             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
849             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
850             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
851             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
852             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
853             Heps             = _mm256_mul_pd(vfeps,H);
854             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
855             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
856             fvdw6            = _mm256_mul_pd(c6_00,FF);
857
858             /* CUBIC SPLINE TABLE REPULSION */
859             vfitab           = _mm_add_epi32(vfitab,ifour);
860             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
861             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
862             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
863             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
864             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
865             Heps             = _mm256_mul_pd(vfeps,H);
866             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
867             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
868             fvdw12           = _mm256_mul_pd(c12_00,FF);
869             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
870
871             fscal            = _mm256_add_pd(felec,fvdw);
872
873             /* Calculate temporary vectorial force */
874             tx               = _mm256_mul_pd(fscal,dx00);
875             ty               = _mm256_mul_pd(fscal,dy00);
876             tz               = _mm256_mul_pd(fscal,dz00);
877
878             /* Update vectorial force */
879             fix0             = _mm256_add_pd(fix0,tx);
880             fiy0             = _mm256_add_pd(fiy0,ty);
881             fiz0             = _mm256_add_pd(fiz0,tz);
882
883             fjx0             = _mm256_add_pd(fjx0,tx);
884             fjy0             = _mm256_add_pd(fjy0,ty);
885             fjz0             = _mm256_add_pd(fjz0,tz);
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq10             = _mm256_mul_pd(iq1,jq0);
893
894             /* REACTION-FIELD ELECTROSTATICS */
895             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
896
897             fscal            = felec;
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm256_mul_pd(fscal,dx10);
901             ty               = _mm256_mul_pd(fscal,dy10);
902             tz               = _mm256_mul_pd(fscal,dz10);
903
904             /* Update vectorial force */
905             fix1             = _mm256_add_pd(fix1,tx);
906             fiy1             = _mm256_add_pd(fiy1,ty);
907             fiz1             = _mm256_add_pd(fiz1,tz);
908
909             fjx0             = _mm256_add_pd(fjx0,tx);
910             fjy0             = _mm256_add_pd(fjy0,ty);
911             fjz0             = _mm256_add_pd(fjz0,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             /* Compute parameters for interactions between i and j atoms */
918             qq20             = _mm256_mul_pd(iq2,jq0);
919
920             /* REACTION-FIELD ELECTROSTATICS */
921             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
922
923             fscal            = felec;
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm256_mul_pd(fscal,dx20);
927             ty               = _mm256_mul_pd(fscal,dy20);
928             tz               = _mm256_mul_pd(fscal,dz20);
929
930             /* Update vectorial force */
931             fix2             = _mm256_add_pd(fix2,tx);
932             fiy2             = _mm256_add_pd(fiy2,ty);
933             fiz2             = _mm256_add_pd(fiz2,tz);
934
935             fjx0             = _mm256_add_pd(fjx0,tx);
936             fjy0             = _mm256_add_pd(fjy0,ty);
937             fjz0             = _mm256_add_pd(fjz0,tz);
938
939             fjptrA             = f+j_coord_offsetA;
940             fjptrB             = f+j_coord_offsetB;
941             fjptrC             = f+j_coord_offsetC;
942             fjptrD             = f+j_coord_offsetD;
943
944             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
945
946             /* Inner loop uses 111 flops */
947         }
948
949         if(jidx<j_index_end)
950         {
951
952             /* Get j neighbor index, and coordinate index */
953             jnrlistA         = jjnr[jidx];
954             jnrlistB         = jjnr[jidx+1];
955             jnrlistC         = jjnr[jidx+2];
956             jnrlistD         = jjnr[jidx+3];
957             /* Sign of each element will be negative for non-real atoms.
958              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
959              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
960              */
961             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
962
963             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
964             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
965             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
966
967             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
968             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
969             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
970             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
971             j_coord_offsetA  = DIM*jnrA;
972             j_coord_offsetB  = DIM*jnrB;
973             j_coord_offsetC  = DIM*jnrC;
974             j_coord_offsetD  = DIM*jnrD;
975
976             /* load j atom coordinates */
977             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
978                                                  x+j_coord_offsetC,x+j_coord_offsetD,
979                                                  &jx0,&jy0,&jz0);
980
981             /* Calculate displacement vector */
982             dx00             = _mm256_sub_pd(ix0,jx0);
983             dy00             = _mm256_sub_pd(iy0,jy0);
984             dz00             = _mm256_sub_pd(iz0,jz0);
985             dx10             = _mm256_sub_pd(ix1,jx0);
986             dy10             = _mm256_sub_pd(iy1,jy0);
987             dz10             = _mm256_sub_pd(iz1,jz0);
988             dx20             = _mm256_sub_pd(ix2,jx0);
989             dy20             = _mm256_sub_pd(iy2,jy0);
990             dz20             = _mm256_sub_pd(iz2,jz0);
991
992             /* Calculate squared distance and things based on it */
993             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
994             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
995             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
996
997             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
998             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
999             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1000
1001             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1002             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1003             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1004
1005             /* Load parameters for j particles */
1006             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1007                                                                  charge+jnrC+0,charge+jnrD+0);
1008             vdwjidx0A        = 2*vdwtype[jnrA+0];
1009             vdwjidx0B        = 2*vdwtype[jnrB+0];
1010             vdwjidx0C        = 2*vdwtype[jnrC+0];
1011             vdwjidx0D        = 2*vdwtype[jnrD+0];
1012
1013             fjx0             = _mm256_setzero_pd();
1014             fjy0             = _mm256_setzero_pd();
1015             fjz0             = _mm256_setzero_pd();
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             r00              = _mm256_mul_pd(rsq00,rinv00);
1022             r00              = _mm256_andnot_pd(dummy_mask,r00);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq00             = _mm256_mul_pd(iq0,jq0);
1026             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1027                                             vdwioffsetptr0+vdwjidx0B,
1028                                             vdwioffsetptr0+vdwjidx0C,
1029                                             vdwioffsetptr0+vdwjidx0D,
1030                                             &c6_00,&c12_00);
1031
1032             /* Calculate table index by multiplying r with table scale and truncate to integer */
1033             rt               = _mm256_mul_pd(r00,vftabscale);
1034             vfitab           = _mm256_cvttpd_epi32(rt);
1035             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1036             vfitab           = _mm_slli_epi32(vfitab,3);
1037
1038             /* REACTION-FIELD ELECTROSTATICS */
1039             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1040
1041             /* CUBIC SPLINE TABLE DISPERSION */
1042             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1043             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1044             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1045             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1046             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1047             Heps             = _mm256_mul_pd(vfeps,H);
1048             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1049             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1050             fvdw6            = _mm256_mul_pd(c6_00,FF);
1051
1052             /* CUBIC SPLINE TABLE REPULSION */
1053             vfitab           = _mm_add_epi32(vfitab,ifour);
1054             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1055             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1056             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1057             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1058             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1059             Heps             = _mm256_mul_pd(vfeps,H);
1060             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1061             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1062             fvdw12           = _mm256_mul_pd(c12_00,FF);
1063             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1064
1065             fscal            = _mm256_add_pd(felec,fvdw);
1066
1067             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_pd(fscal,dx00);
1071             ty               = _mm256_mul_pd(fscal,dy00);
1072             tz               = _mm256_mul_pd(fscal,dz00);
1073
1074             /* Update vectorial force */
1075             fix0             = _mm256_add_pd(fix0,tx);
1076             fiy0             = _mm256_add_pd(fiy0,ty);
1077             fiz0             = _mm256_add_pd(fiz0,tz);
1078
1079             fjx0             = _mm256_add_pd(fjx0,tx);
1080             fjy0             = _mm256_add_pd(fjy0,ty);
1081             fjz0             = _mm256_add_pd(fjz0,tz);
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             /* Compute parameters for interactions between i and j atoms */
1088             qq10             = _mm256_mul_pd(iq1,jq0);
1089
1090             /* REACTION-FIELD ELECTROSTATICS */
1091             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm256_mul_pd(fscal,dx10);
1099             ty               = _mm256_mul_pd(fscal,dy10);
1100             tz               = _mm256_mul_pd(fscal,dz10);
1101
1102             /* Update vectorial force */
1103             fix1             = _mm256_add_pd(fix1,tx);
1104             fiy1             = _mm256_add_pd(fiy1,ty);
1105             fiz1             = _mm256_add_pd(fiz1,tz);
1106
1107             fjx0             = _mm256_add_pd(fjx0,tx);
1108             fjy0             = _mm256_add_pd(fjy0,ty);
1109             fjz0             = _mm256_add_pd(fjz0,tz);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq20             = _mm256_mul_pd(iq2,jq0);
1117
1118             /* REACTION-FIELD ELECTROSTATICS */
1119             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_pd(fscal,dx20);
1127             ty               = _mm256_mul_pd(fscal,dy20);
1128             tz               = _mm256_mul_pd(fscal,dz20);
1129
1130             /* Update vectorial force */
1131             fix2             = _mm256_add_pd(fix2,tx);
1132             fiy2             = _mm256_add_pd(fiy2,ty);
1133             fiz2             = _mm256_add_pd(fiz2,tz);
1134
1135             fjx0             = _mm256_add_pd(fjx0,tx);
1136             fjy0             = _mm256_add_pd(fjy0,ty);
1137             fjz0             = _mm256_add_pd(fjz0,tz);
1138
1139             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1140             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1141             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1142             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1143
1144             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 112 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1152                                                  f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 18 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*112);
1166 }