Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm256_set1_pd(fr->ic->k_rf);
120     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm256_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm256_setzero_pd();
162         fiy0             = _mm256_setzero_pd();
163         fiz0             = _mm256_setzero_pd();
164
165         /* Load parameters for i particles */
166         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
167         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         velecsum         = _mm256_setzero_pd();
171         vvdwsum          = _mm256_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                                  x+j_coord_offsetC,x+j_coord_offsetD,
190                                                  &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm256_sub_pd(ix0,jx0);
194             dy00             = _mm256_sub_pd(iy0,jy0);
195             dz00             = _mm256_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
206                                                                  charge+jnrC+0,charge+jnrD+0);
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             r00              = _mm256_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm256_mul_pd(iq0,jq0);
220             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
221                                             vdwioffsetptr0+vdwjidx0B,
222                                             vdwioffsetptr0+vdwjidx0C,
223                                             vdwioffsetptr0+vdwjidx0D,
224                                             &c6_00,&c12_00);
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = _mm256_mul_pd(r00,vftabscale);
228             vfitab           = _mm256_cvttpd_epi32(rt);
229             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
230             vfitab           = _mm_slli_epi32(vfitab,3);
231
232             /* REACTION-FIELD ELECTROSTATICS */
233             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
234             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
238             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
239             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
240             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
241             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
242             Heps             = _mm256_mul_pd(vfeps,H);
243             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
244             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
245             vvdw6            = _mm256_mul_pd(c6_00,VV);
246             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
247             fvdw6            = _mm256_mul_pd(c6_00,FF);
248
249             /* CUBIC SPLINE TABLE REPULSION */
250             vfitab           = _mm_add_epi32(vfitab,ifour);
251             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
252             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
253             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
254             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
255             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
256             Heps             = _mm256_mul_pd(vfeps,H);
257             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
258             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
259             vvdw12           = _mm256_mul_pd(c12_00,VV);
260             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
261             fvdw12           = _mm256_mul_pd(c12_00,FF);
262             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
263             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm256_add_pd(velecsum,velec);
267             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
268
269             fscal            = _mm256_add_pd(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286
287             /* Inner loop uses 67 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
301              */
302             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303
304             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
305             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
306             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
307
308             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
309             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
310             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
311             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316
317             /* load j atom coordinates */
318             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
319                                                  x+j_coord_offsetC,x+j_coord_offsetD,
320                                                  &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm256_sub_pd(ix0,jx0);
324             dy00             = _mm256_sub_pd(iy0,jy0);
325             dz00             = _mm256_sub_pd(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
329
330             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
331
332             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
333
334             /* Load parameters for j particles */
335             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
336                                                                  charge+jnrC+0,charge+jnrD+0);
337             vdwjidx0A        = 2*vdwtype[jnrA+0];
338             vdwjidx0B        = 2*vdwtype[jnrB+0];
339             vdwjidx0C        = 2*vdwtype[jnrC+0];
340             vdwjidx0D        = 2*vdwtype[jnrD+0];
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             r00              = _mm256_mul_pd(rsq00,rinv00);
347             r00              = _mm256_andnot_pd(dummy_mask,r00);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq00             = _mm256_mul_pd(iq0,jq0);
351             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
352                                             vdwioffsetptr0+vdwjidx0B,
353                                             vdwioffsetptr0+vdwjidx0C,
354                                             vdwioffsetptr0+vdwjidx0D,
355                                             &c6_00,&c12_00);
356
357             /* Calculate table index by multiplying r with table scale and truncate to integer */
358             rt               = _mm256_mul_pd(r00,vftabscale);
359             vfitab           = _mm256_cvttpd_epi32(rt);
360             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
361             vfitab           = _mm_slli_epi32(vfitab,3);
362
363             /* REACTION-FIELD ELECTROSTATICS */
364             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
365             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
366
367             /* CUBIC SPLINE TABLE DISPERSION */
368             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
369             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
370             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
371             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
372             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
373             Heps             = _mm256_mul_pd(vfeps,H);
374             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
375             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
376             vvdw6            = _mm256_mul_pd(c6_00,VV);
377             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
378             fvdw6            = _mm256_mul_pd(c6_00,FF);
379
380             /* CUBIC SPLINE TABLE REPULSION */
381             vfitab           = _mm_add_epi32(vfitab,ifour);
382             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
383             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
384             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
385             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
386             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
387             Heps             = _mm256_mul_pd(vfeps,H);
388             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
389             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
390             vvdw12           = _mm256_mul_pd(c12_00,VV);
391             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
392             fvdw12           = _mm256_mul_pd(c12_00,FF);
393             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
394             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velec            = _mm256_andnot_pd(dummy_mask,velec);
398             velecsum         = _mm256_add_pd(velecsum,velec);
399             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
400             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
401
402             fscal            = _mm256_add_pd(felec,fvdw);
403
404             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm256_mul_pd(fscal,dx00);
408             ty               = _mm256_mul_pd(fscal,dy00);
409             tz               = _mm256_mul_pd(fscal,dz00);
410
411             /* Update vectorial force */
412             fix0             = _mm256_add_pd(fix0,tx);
413             fiy0             = _mm256_add_pd(fiy0,ty);
414             fiz0             = _mm256_add_pd(fiz0,tz);
415
416             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
417             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
418             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
419             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
420             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
421
422             /* Inner loop uses 68 flops */
423         }
424
425         /* End of innermost loop */
426
427         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
428                                                  f+i_coord_offset,fshift+i_shift_offset);
429
430         ggid                        = gid[iidx];
431         /* Update potential energies */
432         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
433         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
434
435         /* Increment number of inner iterations */
436         inneriter                  += j_index_end - j_index_start;
437
438         /* Outer loop uses 9 flops */
439     }
440
441     /* Increment number of outer iterations */
442     outeriter        += nri;
443
444     /* Update outer/inner flops */
445
446     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
447 }
448 /*
449  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
450  * Electrostatics interaction: ReactionField
451  * VdW interaction:            CubicSplineTable
452  * Geometry:                   Particle-Particle
453  * Calculate force/pot:        Force
454  */
455 void
456 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
457                     (t_nblist                    * gmx_restrict       nlist,
458                      rvec                        * gmx_restrict          xx,
459                      rvec                        * gmx_restrict          ff,
460                      t_forcerec                  * gmx_restrict          fr,
461                      t_mdatoms                   * gmx_restrict     mdatoms,
462                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
463                      t_nrnb                      * gmx_restrict        nrnb)
464 {
465     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
466      * just 0 for non-waters.
467      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
468      * jnr indices corresponding to data put in the four positions in the SIMD register.
469      */
470     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
471     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
472     int              jnrA,jnrB,jnrC,jnrD;
473     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
474     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
475     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
476     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
477     real             rcutoff_scalar;
478     real             *shiftvec,*fshift,*x,*f;
479     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
480     real             scratch[4*DIM];
481     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
482     real *           vdwioffsetptr0;
483     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
484     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
485     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
486     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
487     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
488     real             *charge;
489     int              nvdwtype;
490     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
491     int              *vdwtype;
492     real             *vdwparam;
493     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
494     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
495     __m128i          vfitab;
496     __m128i          ifour       = _mm_set1_epi32(4);
497     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
498     real             *vftab;
499     __m256d          dummy_mask,cutoff_mask;
500     __m128           tmpmask0,tmpmask1;
501     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
502     __m256d          one     = _mm256_set1_pd(1.0);
503     __m256d          two     = _mm256_set1_pd(2.0);
504     x                = xx[0];
505     f                = ff[0];
506
507     nri              = nlist->nri;
508     iinr             = nlist->iinr;
509     jindex           = nlist->jindex;
510     jjnr             = nlist->jjnr;
511     shiftidx         = nlist->shift;
512     gid              = nlist->gid;
513     shiftvec         = fr->shift_vec[0];
514     fshift           = fr->fshift[0];
515     facel            = _mm256_set1_pd(fr->epsfac);
516     charge           = mdatoms->chargeA;
517     krf              = _mm256_set1_pd(fr->ic->k_rf);
518     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
519     crf              = _mm256_set1_pd(fr->ic->c_rf);
520     nvdwtype         = fr->ntype;
521     vdwparam         = fr->nbfp;
522     vdwtype          = mdatoms->typeA;
523
524     vftab            = kernel_data->table_vdw->data;
525     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
526
527     /* Avoid stupid compiler warnings */
528     jnrA = jnrB = jnrC = jnrD = 0;
529     j_coord_offsetA = 0;
530     j_coord_offsetB = 0;
531     j_coord_offsetC = 0;
532     j_coord_offsetD = 0;
533
534     outeriter        = 0;
535     inneriter        = 0;
536
537     for(iidx=0;iidx<4*DIM;iidx++)
538     {
539         scratch[iidx] = 0.0;
540     }
541
542     /* Start outer loop over neighborlists */
543     for(iidx=0; iidx<nri; iidx++)
544     {
545         /* Load shift vector for this list */
546         i_shift_offset   = DIM*shiftidx[iidx];
547
548         /* Load limits for loop over neighbors */
549         j_index_start    = jindex[iidx];
550         j_index_end      = jindex[iidx+1];
551
552         /* Get outer coordinate index */
553         inr              = iinr[iidx];
554         i_coord_offset   = DIM*inr;
555
556         /* Load i particle coords and add shift vector */
557         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
558
559         fix0             = _mm256_setzero_pd();
560         fiy0             = _mm256_setzero_pd();
561         fiz0             = _mm256_setzero_pd();
562
563         /* Load parameters for i particles */
564         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
565         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
566
567         /* Start inner kernel loop */
568         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
569         {
570
571             /* Get j neighbor index, and coordinate index */
572             jnrA             = jjnr[jidx];
573             jnrB             = jjnr[jidx+1];
574             jnrC             = jjnr[jidx+2];
575             jnrD             = jjnr[jidx+3];
576             j_coord_offsetA  = DIM*jnrA;
577             j_coord_offsetB  = DIM*jnrB;
578             j_coord_offsetC  = DIM*jnrC;
579             j_coord_offsetD  = DIM*jnrD;
580
581             /* load j atom coordinates */
582             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
583                                                  x+j_coord_offsetC,x+j_coord_offsetD,
584                                                  &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm256_sub_pd(ix0,jx0);
588             dy00             = _mm256_sub_pd(iy0,jy0);
589             dz00             = _mm256_sub_pd(iz0,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
593
594             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
595
596             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
597
598             /* Load parameters for j particles */
599             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
600                                                                  charge+jnrC+0,charge+jnrD+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602             vdwjidx0B        = 2*vdwtype[jnrB+0];
603             vdwjidx0C        = 2*vdwtype[jnrC+0];
604             vdwjidx0D        = 2*vdwtype[jnrD+0];
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             r00              = _mm256_mul_pd(rsq00,rinv00);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq00             = _mm256_mul_pd(iq0,jq0);
614             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
615                                             vdwioffsetptr0+vdwjidx0B,
616                                             vdwioffsetptr0+vdwjidx0C,
617                                             vdwioffsetptr0+vdwjidx0D,
618                                             &c6_00,&c12_00);
619
620             /* Calculate table index by multiplying r with table scale and truncate to integer */
621             rt               = _mm256_mul_pd(r00,vftabscale);
622             vfitab           = _mm256_cvttpd_epi32(rt);
623             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
624             vfitab           = _mm_slli_epi32(vfitab,3);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
628
629             /* CUBIC SPLINE TABLE DISPERSION */
630             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
631             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
632             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
633             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
634             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
635             Heps             = _mm256_mul_pd(vfeps,H);
636             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
637             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
638             fvdw6            = _mm256_mul_pd(c6_00,FF);
639
640             /* CUBIC SPLINE TABLE REPULSION */
641             vfitab           = _mm_add_epi32(vfitab,ifour);
642             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
643             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
644             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
645             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
646             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
647             Heps             = _mm256_mul_pd(vfeps,H);
648             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
649             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
650             fvdw12           = _mm256_mul_pd(c12_00,FF);
651             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
652
653             fscal            = _mm256_add_pd(felec,fvdw);
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm256_mul_pd(fscal,dx00);
657             ty               = _mm256_mul_pd(fscal,dy00);
658             tz               = _mm256_mul_pd(fscal,dz00);
659
660             /* Update vectorial force */
661             fix0             = _mm256_add_pd(fix0,tx);
662             fiy0             = _mm256_add_pd(fiy0,ty);
663             fiz0             = _mm256_add_pd(fiz0,tz);
664
665             fjptrA             = f+j_coord_offsetA;
666             fjptrB             = f+j_coord_offsetB;
667             fjptrC             = f+j_coord_offsetC;
668             fjptrD             = f+j_coord_offsetD;
669             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
670
671             /* Inner loop uses 54 flops */
672         }
673
674         if(jidx<j_index_end)
675         {
676
677             /* Get j neighbor index, and coordinate index */
678             jnrlistA         = jjnr[jidx];
679             jnrlistB         = jjnr[jidx+1];
680             jnrlistC         = jjnr[jidx+2];
681             jnrlistD         = jjnr[jidx+3];
682             /* Sign of each element will be negative for non-real atoms.
683              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
684              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
685              */
686             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
687
688             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
689             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
690             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
691
692             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
693             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
694             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
695             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
696             j_coord_offsetA  = DIM*jnrA;
697             j_coord_offsetB  = DIM*jnrB;
698             j_coord_offsetC  = DIM*jnrC;
699             j_coord_offsetD  = DIM*jnrD;
700
701             /* load j atom coordinates */
702             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
703                                                  x+j_coord_offsetC,x+j_coord_offsetD,
704                                                  &jx0,&jy0,&jz0);
705
706             /* Calculate displacement vector */
707             dx00             = _mm256_sub_pd(ix0,jx0);
708             dy00             = _mm256_sub_pd(iy0,jy0);
709             dz00             = _mm256_sub_pd(iz0,jz0);
710
711             /* Calculate squared distance and things based on it */
712             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
713
714             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
715
716             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
717
718             /* Load parameters for j particles */
719             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
720                                                                  charge+jnrC+0,charge+jnrD+0);
721             vdwjidx0A        = 2*vdwtype[jnrA+0];
722             vdwjidx0B        = 2*vdwtype[jnrB+0];
723             vdwjidx0C        = 2*vdwtype[jnrC+0];
724             vdwjidx0D        = 2*vdwtype[jnrD+0];
725
726             /**************************
727              * CALCULATE INTERACTIONS *
728              **************************/
729
730             r00              = _mm256_mul_pd(rsq00,rinv00);
731             r00              = _mm256_andnot_pd(dummy_mask,r00);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm256_mul_pd(iq0,jq0);
735             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
736                                             vdwioffsetptr0+vdwjidx0B,
737                                             vdwioffsetptr0+vdwjidx0C,
738                                             vdwioffsetptr0+vdwjidx0D,
739                                             &c6_00,&c12_00);
740
741             /* Calculate table index by multiplying r with table scale and truncate to integer */
742             rt               = _mm256_mul_pd(r00,vftabscale);
743             vfitab           = _mm256_cvttpd_epi32(rt);
744             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
745             vfitab           = _mm_slli_epi32(vfitab,3);
746
747             /* REACTION-FIELD ELECTROSTATICS */
748             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
749
750             /* CUBIC SPLINE TABLE DISPERSION */
751             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
752             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
753             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
754             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
755             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
756             Heps             = _mm256_mul_pd(vfeps,H);
757             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
758             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
759             fvdw6            = _mm256_mul_pd(c6_00,FF);
760
761             /* CUBIC SPLINE TABLE REPULSION */
762             vfitab           = _mm_add_epi32(vfitab,ifour);
763             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
764             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
765             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
766             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
767             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
768             Heps             = _mm256_mul_pd(vfeps,H);
769             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
770             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
771             fvdw12           = _mm256_mul_pd(c12_00,FF);
772             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
773
774             fscal            = _mm256_add_pd(felec,fvdw);
775
776             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
777
778             /* Calculate temporary vectorial force */
779             tx               = _mm256_mul_pd(fscal,dx00);
780             ty               = _mm256_mul_pd(fscal,dy00);
781             tz               = _mm256_mul_pd(fscal,dz00);
782
783             /* Update vectorial force */
784             fix0             = _mm256_add_pd(fix0,tx);
785             fiy0             = _mm256_add_pd(fiy0,ty);
786             fiz0             = _mm256_add_pd(fiz0,tz);
787
788             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
789             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
790             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
791             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
792             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
793
794             /* Inner loop uses 55 flops */
795         }
796
797         /* End of innermost loop */
798
799         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
800                                                  f+i_coord_offset,fshift+i_shift_offset);
801
802         /* Increment number of inner iterations */
803         inneriter                  += j_index_end - j_index_start;
804
805         /* Outer loop uses 7 flops */
806     }
807
808     /* Increment number of outer iterations */
809     outeriter        += nri;
810
811     /* Update outer/inner flops */
812
813     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
814 }