Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_pd(fr->ic->k_rf);
122     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_vdw->data;
129     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm256_setzero_pd();
164         fiy0             = _mm256_setzero_pd();
165         fiz0             = _mm256_setzero_pd();
166
167         /* Load parameters for i particles */
168         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
169         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm256_setzero_pd();
173         vvdwsum          = _mm256_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_pd(ix0,jx0);
196             dy00             = _mm256_sub_pd(iy0,jy0);
197             dz00             = _mm256_sub_pd(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
203
204             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
208                                                                  charge+jnrC+0,charge+jnrD+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             r00              = _mm256_mul_pd(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm256_mul_pd(iq0,jq0);
222             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
223                                             vdwioffsetptr0+vdwjidx0B,
224                                             vdwioffsetptr0+vdwjidx0C,
225                                             vdwioffsetptr0+vdwjidx0D,
226                                             &c6_00,&c12_00);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm256_mul_pd(r00,vftabscale);
230             vfitab           = _mm256_cvttpd_epi32(rt);
231             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
232             vfitab           = _mm_slli_epi32(vfitab,3);
233
234             /* REACTION-FIELD ELECTROSTATICS */
235             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
236             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
237
238             /* CUBIC SPLINE TABLE DISPERSION */
239             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
240             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
241             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
242             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
243             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
244             Heps             = _mm256_mul_pd(vfeps,H);
245             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
246             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
247             vvdw6            = _mm256_mul_pd(c6_00,VV);
248             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
249             fvdw6            = _mm256_mul_pd(c6_00,FF);
250
251             /* CUBIC SPLINE TABLE REPULSION */
252             vfitab           = _mm_add_epi32(vfitab,ifour);
253             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
254             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
255             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
256             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
257             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
258             Heps             = _mm256_mul_pd(vfeps,H);
259             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
260             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
261             vvdw12           = _mm256_mul_pd(c12_00,VV);
262             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
263             fvdw12           = _mm256_mul_pd(c12_00,FF);
264             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
265             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velecsum         = _mm256_add_pd(velecsum,velec);
269             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
270
271             fscal            = _mm256_add_pd(felec,fvdw);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm256_mul_pd(fscal,dx00);
275             ty               = _mm256_mul_pd(fscal,dy00);
276             tz               = _mm256_mul_pd(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm256_add_pd(fix0,tx);
280             fiy0             = _mm256_add_pd(fiy0,ty);
281             fiz0             = _mm256_add_pd(fiz0,tz);
282
283             fjptrA             = f+j_coord_offsetA;
284             fjptrB             = f+j_coord_offsetB;
285             fjptrC             = f+j_coord_offsetC;
286             fjptrD             = f+j_coord_offsetD;
287             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289             /* Inner loop uses 67 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
303              */
304             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305
306             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
307             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
308             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
309
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             j_coord_offsetA  = DIM*jnrA;
315             j_coord_offsetB  = DIM*jnrB;
316             j_coord_offsetC  = DIM*jnrC;
317             j_coord_offsetD  = DIM*jnrD;
318
319             /* load j atom coordinates */
320             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
321                                                  x+j_coord_offsetC,x+j_coord_offsetD,
322                                                  &jx0,&jy0,&jz0);
323
324             /* Calculate displacement vector */
325             dx00             = _mm256_sub_pd(ix0,jx0);
326             dy00             = _mm256_sub_pd(iy0,jy0);
327             dz00             = _mm256_sub_pd(iz0,jz0);
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
331
332             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
333
334             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
335
336             /* Load parameters for j particles */
337             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
338                                                                  charge+jnrC+0,charge+jnrD+0);
339             vdwjidx0A        = 2*vdwtype[jnrA+0];
340             vdwjidx0B        = 2*vdwtype[jnrB+0];
341             vdwjidx0C        = 2*vdwtype[jnrC+0];
342             vdwjidx0D        = 2*vdwtype[jnrD+0];
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r00              = _mm256_mul_pd(rsq00,rinv00);
349             r00              = _mm256_andnot_pd(dummy_mask,r00);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq00             = _mm256_mul_pd(iq0,jq0);
353             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
354                                             vdwioffsetptr0+vdwjidx0B,
355                                             vdwioffsetptr0+vdwjidx0C,
356                                             vdwioffsetptr0+vdwjidx0D,
357                                             &c6_00,&c12_00);
358
359             /* Calculate table index by multiplying r with table scale and truncate to integer */
360             rt               = _mm256_mul_pd(r00,vftabscale);
361             vfitab           = _mm256_cvttpd_epi32(rt);
362             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
363             vfitab           = _mm_slli_epi32(vfitab,3);
364
365             /* REACTION-FIELD ELECTROSTATICS */
366             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
367             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
368
369             /* CUBIC SPLINE TABLE DISPERSION */
370             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
371             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
372             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
373             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
374             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
375             Heps             = _mm256_mul_pd(vfeps,H);
376             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
377             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
378             vvdw6            = _mm256_mul_pd(c6_00,VV);
379             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
380             fvdw6            = _mm256_mul_pd(c6_00,FF);
381
382             /* CUBIC SPLINE TABLE REPULSION */
383             vfitab           = _mm_add_epi32(vfitab,ifour);
384             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
385             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
386             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
387             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
388             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
389             Heps             = _mm256_mul_pd(vfeps,H);
390             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
391             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
392             vvdw12           = _mm256_mul_pd(c12_00,VV);
393             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
394             fvdw12           = _mm256_mul_pd(c12_00,FF);
395             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
396             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm256_andnot_pd(dummy_mask,velec);
400             velecsum         = _mm256_add_pd(velecsum,velec);
401             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
402             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
403
404             fscal            = _mm256_add_pd(felec,fvdw);
405
406             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_pd(fscal,dx00);
410             ty               = _mm256_mul_pd(fscal,dy00);
411             tz               = _mm256_mul_pd(fscal,dz00);
412
413             /* Update vectorial force */
414             fix0             = _mm256_add_pd(fix0,tx);
415             fiy0             = _mm256_add_pd(fiy0,ty);
416             fiz0             = _mm256_add_pd(fiz0,tz);
417
418             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
419             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
420             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
421             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
422             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
423
424             /* Inner loop uses 68 flops */
425         }
426
427         /* End of innermost loop */
428
429         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
430                                                  f+i_coord_offset,fshift+i_shift_offset);
431
432         ggid                        = gid[iidx];
433         /* Update potential energies */
434         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
435         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
436
437         /* Increment number of inner iterations */
438         inneriter                  += j_index_end - j_index_start;
439
440         /* Outer loop uses 9 flops */
441     }
442
443     /* Increment number of outer iterations */
444     outeriter        += nri;
445
446     /* Update outer/inner flops */
447
448     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
449 }
450 /*
451  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
452  * Electrostatics interaction: ReactionField
453  * VdW interaction:            CubicSplineTable
454  * Geometry:                   Particle-Particle
455  * Calculate force/pot:        Force
456  */
457 void
458 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
459                     (t_nblist                    * gmx_restrict       nlist,
460                      rvec                        * gmx_restrict          xx,
461                      rvec                        * gmx_restrict          ff,
462                      t_forcerec                  * gmx_restrict          fr,
463                      t_mdatoms                   * gmx_restrict     mdatoms,
464                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
465                      t_nrnb                      * gmx_restrict        nrnb)
466 {
467     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
468      * just 0 for non-waters.
469      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
470      * jnr indices corresponding to data put in the four positions in the SIMD register.
471      */
472     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
473     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
474     int              jnrA,jnrB,jnrC,jnrD;
475     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
476     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
477     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
478     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
479     real             rcutoff_scalar;
480     real             *shiftvec,*fshift,*x,*f;
481     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
482     real             scratch[4*DIM];
483     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
484     real *           vdwioffsetptr0;
485     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
486     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
487     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
488     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
489     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
490     real             *charge;
491     int              nvdwtype;
492     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
493     int              *vdwtype;
494     real             *vdwparam;
495     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
496     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
497     __m128i          vfitab;
498     __m128i          ifour       = _mm_set1_epi32(4);
499     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
500     real             *vftab;
501     __m256d          dummy_mask,cutoff_mask;
502     __m128           tmpmask0,tmpmask1;
503     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
504     __m256d          one     = _mm256_set1_pd(1.0);
505     __m256d          two     = _mm256_set1_pd(2.0);
506     x                = xx[0];
507     f                = ff[0];
508
509     nri              = nlist->nri;
510     iinr             = nlist->iinr;
511     jindex           = nlist->jindex;
512     jjnr             = nlist->jjnr;
513     shiftidx         = nlist->shift;
514     gid              = nlist->gid;
515     shiftvec         = fr->shift_vec[0];
516     fshift           = fr->fshift[0];
517     facel            = _mm256_set1_pd(fr->epsfac);
518     charge           = mdatoms->chargeA;
519     krf              = _mm256_set1_pd(fr->ic->k_rf);
520     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
521     crf              = _mm256_set1_pd(fr->ic->c_rf);
522     nvdwtype         = fr->ntype;
523     vdwparam         = fr->nbfp;
524     vdwtype          = mdatoms->typeA;
525
526     vftab            = kernel_data->table_vdw->data;
527     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
528
529     /* Avoid stupid compiler warnings */
530     jnrA = jnrB = jnrC = jnrD = 0;
531     j_coord_offsetA = 0;
532     j_coord_offsetB = 0;
533     j_coord_offsetC = 0;
534     j_coord_offsetD = 0;
535
536     outeriter        = 0;
537     inneriter        = 0;
538
539     for(iidx=0;iidx<4*DIM;iidx++)
540     {
541         scratch[iidx] = 0.0;
542     }
543
544     /* Start outer loop over neighborlists */
545     for(iidx=0; iidx<nri; iidx++)
546     {
547         /* Load shift vector for this list */
548         i_shift_offset   = DIM*shiftidx[iidx];
549
550         /* Load limits for loop over neighbors */
551         j_index_start    = jindex[iidx];
552         j_index_end      = jindex[iidx+1];
553
554         /* Get outer coordinate index */
555         inr              = iinr[iidx];
556         i_coord_offset   = DIM*inr;
557
558         /* Load i particle coords and add shift vector */
559         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
560
561         fix0             = _mm256_setzero_pd();
562         fiy0             = _mm256_setzero_pd();
563         fiz0             = _mm256_setzero_pd();
564
565         /* Load parameters for i particles */
566         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
567         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
568
569         /* Start inner kernel loop */
570         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
571         {
572
573             /* Get j neighbor index, and coordinate index */
574             jnrA             = jjnr[jidx];
575             jnrB             = jjnr[jidx+1];
576             jnrC             = jjnr[jidx+2];
577             jnrD             = jjnr[jidx+3];
578             j_coord_offsetA  = DIM*jnrA;
579             j_coord_offsetB  = DIM*jnrB;
580             j_coord_offsetC  = DIM*jnrC;
581             j_coord_offsetD  = DIM*jnrD;
582
583             /* load j atom coordinates */
584             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
585                                                  x+j_coord_offsetC,x+j_coord_offsetD,
586                                                  &jx0,&jy0,&jz0);
587
588             /* Calculate displacement vector */
589             dx00             = _mm256_sub_pd(ix0,jx0);
590             dy00             = _mm256_sub_pd(iy0,jy0);
591             dz00             = _mm256_sub_pd(iz0,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
595
596             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
597
598             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
599
600             /* Load parameters for j particles */
601             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
602                                                                  charge+jnrC+0,charge+jnrD+0);
603             vdwjidx0A        = 2*vdwtype[jnrA+0];
604             vdwjidx0B        = 2*vdwtype[jnrB+0];
605             vdwjidx0C        = 2*vdwtype[jnrC+0];
606             vdwjidx0D        = 2*vdwtype[jnrD+0];
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r00              = _mm256_mul_pd(rsq00,rinv00);
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq00             = _mm256_mul_pd(iq0,jq0);
616             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
617                                             vdwioffsetptr0+vdwjidx0B,
618                                             vdwioffsetptr0+vdwjidx0C,
619                                             vdwioffsetptr0+vdwjidx0D,
620                                             &c6_00,&c12_00);
621
622             /* Calculate table index by multiplying r with table scale and truncate to integer */
623             rt               = _mm256_mul_pd(r00,vftabscale);
624             vfitab           = _mm256_cvttpd_epi32(rt);
625             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
626             vfitab           = _mm_slli_epi32(vfitab,3);
627
628             /* REACTION-FIELD ELECTROSTATICS */
629             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
630
631             /* CUBIC SPLINE TABLE DISPERSION */
632             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
633             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
634             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
635             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
636             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
637             Heps             = _mm256_mul_pd(vfeps,H);
638             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
639             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
640             fvdw6            = _mm256_mul_pd(c6_00,FF);
641
642             /* CUBIC SPLINE TABLE REPULSION */
643             vfitab           = _mm_add_epi32(vfitab,ifour);
644             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
645             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
646             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
647             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
648             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
649             Heps             = _mm256_mul_pd(vfeps,H);
650             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
651             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
652             fvdw12           = _mm256_mul_pd(c12_00,FF);
653             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
654
655             fscal            = _mm256_add_pd(felec,fvdw);
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm256_mul_pd(fscal,dx00);
659             ty               = _mm256_mul_pd(fscal,dy00);
660             tz               = _mm256_mul_pd(fscal,dz00);
661
662             /* Update vectorial force */
663             fix0             = _mm256_add_pd(fix0,tx);
664             fiy0             = _mm256_add_pd(fiy0,ty);
665             fiz0             = _mm256_add_pd(fiz0,tz);
666
667             fjptrA             = f+j_coord_offsetA;
668             fjptrB             = f+j_coord_offsetB;
669             fjptrC             = f+j_coord_offsetC;
670             fjptrD             = f+j_coord_offsetD;
671             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
672
673             /* Inner loop uses 54 flops */
674         }
675
676         if(jidx<j_index_end)
677         {
678
679             /* Get j neighbor index, and coordinate index */
680             jnrlistA         = jjnr[jidx];
681             jnrlistB         = jjnr[jidx+1];
682             jnrlistC         = jjnr[jidx+2];
683             jnrlistD         = jjnr[jidx+3];
684             /* Sign of each element will be negative for non-real atoms.
685              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
686              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
687              */
688             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
689
690             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
691             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
692             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
693
694             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
695             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
696             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
697             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
698             j_coord_offsetA  = DIM*jnrA;
699             j_coord_offsetB  = DIM*jnrB;
700             j_coord_offsetC  = DIM*jnrC;
701             j_coord_offsetD  = DIM*jnrD;
702
703             /* load j atom coordinates */
704             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
705                                                  x+j_coord_offsetC,x+j_coord_offsetD,
706                                                  &jx0,&jy0,&jz0);
707
708             /* Calculate displacement vector */
709             dx00             = _mm256_sub_pd(ix0,jx0);
710             dy00             = _mm256_sub_pd(iy0,jy0);
711             dz00             = _mm256_sub_pd(iz0,jz0);
712
713             /* Calculate squared distance and things based on it */
714             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
715
716             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
717
718             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
719
720             /* Load parameters for j particles */
721             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
722                                                                  charge+jnrC+0,charge+jnrD+0);
723             vdwjidx0A        = 2*vdwtype[jnrA+0];
724             vdwjidx0B        = 2*vdwtype[jnrB+0];
725             vdwjidx0C        = 2*vdwtype[jnrC+0];
726             vdwjidx0D        = 2*vdwtype[jnrD+0];
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             r00              = _mm256_mul_pd(rsq00,rinv00);
733             r00              = _mm256_andnot_pd(dummy_mask,r00);
734
735             /* Compute parameters for interactions between i and j atoms */
736             qq00             = _mm256_mul_pd(iq0,jq0);
737             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
738                                             vdwioffsetptr0+vdwjidx0B,
739                                             vdwioffsetptr0+vdwjidx0C,
740                                             vdwioffsetptr0+vdwjidx0D,
741                                             &c6_00,&c12_00);
742
743             /* Calculate table index by multiplying r with table scale and truncate to integer */
744             rt               = _mm256_mul_pd(r00,vftabscale);
745             vfitab           = _mm256_cvttpd_epi32(rt);
746             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
747             vfitab           = _mm_slli_epi32(vfitab,3);
748
749             /* REACTION-FIELD ELECTROSTATICS */
750             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
751
752             /* CUBIC SPLINE TABLE DISPERSION */
753             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
754             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
755             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
756             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
757             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
758             Heps             = _mm256_mul_pd(vfeps,H);
759             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
760             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
761             fvdw6            = _mm256_mul_pd(c6_00,FF);
762
763             /* CUBIC SPLINE TABLE REPULSION */
764             vfitab           = _mm_add_epi32(vfitab,ifour);
765             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
766             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
767             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
768             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
769             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
770             Heps             = _mm256_mul_pd(vfeps,H);
771             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
772             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
773             fvdw12           = _mm256_mul_pd(c12_00,FF);
774             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
775
776             fscal            = _mm256_add_pd(felec,fvdw);
777
778             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
779
780             /* Calculate temporary vectorial force */
781             tx               = _mm256_mul_pd(fscal,dx00);
782             ty               = _mm256_mul_pd(fscal,dy00);
783             tz               = _mm256_mul_pd(fscal,dz00);
784
785             /* Update vectorial force */
786             fix0             = _mm256_add_pd(fix0,tx);
787             fiy0             = _mm256_add_pd(fiy0,ty);
788             fiz0             = _mm256_add_pd(fiz0,tz);
789
790             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
791             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
792             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
793             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
794             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
795
796             /* Inner loop uses 55 flops */
797         }
798
799         /* End of innermost loop */
800
801         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
802                                                  f+i_coord_offset,fshift+i_shift_offset);
803
804         /* Increment number of inner iterations */
805         inneriter                  += j_index_end - j_index_start;
806
807         /* Outer loop uses 7 flops */
808     }
809
810     /* Increment number of outer iterations */
811     outeriter        += nri;
812
813     /* Update outer/inner flops */
814
815     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
816 }