Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm256_set1_pd(fr->ic->k_rf);
118     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm256_set1_pd(fr->ic->c_rf);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
124     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
125     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
163                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix1             = _mm256_setzero_pd();
166         fiy1             = _mm256_setzero_pd();
167         fiz1             = _mm256_setzero_pd();
168         fix2             = _mm256_setzero_pd();
169         fiy2             = _mm256_setzero_pd();
170         fiz2             = _mm256_setzero_pd();
171         fix3             = _mm256_setzero_pd();
172         fiy3             = _mm256_setzero_pd();
173         fiz3             = _mm256_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm256_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx10             = _mm256_sub_pd(ix1,jx0);
199             dy10             = _mm256_sub_pd(iy1,jy0);
200             dz10             = _mm256_sub_pd(iz1,jz0);
201             dx20             = _mm256_sub_pd(ix2,jx0);
202             dy20             = _mm256_sub_pd(iy2,jy0);
203             dz20             = _mm256_sub_pd(iz2,jz0);
204             dx30             = _mm256_sub_pd(ix3,jx0);
205             dy30             = _mm256_sub_pd(iy3,jy0);
206             dz30             = _mm256_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
215             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
216
217             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
219             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
223                                                                  charge+jnrC+0,charge+jnrD+0);
224
225             fjx0             = _mm256_setzero_pd();
226             fjy0             = _mm256_setzero_pd();
227             fjz0             = _mm256_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm256_any_lt(rsq10,rcutoff2))
234             {
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq10             = _mm256_mul_pd(iq1,jq0);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
241             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
242
243             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm256_and_pd(velec,cutoff_mask);
247             velecsum         = _mm256_add_pd(velecsum,velec);
248
249             fscal            = felec;
250
251             fscal            = _mm256_and_pd(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm256_mul_pd(fscal,dx10);
255             ty               = _mm256_mul_pd(fscal,dy10);
256             tz               = _mm256_mul_pd(fscal,dz10);
257
258             /* Update vectorial force */
259             fix1             = _mm256_add_pd(fix1,tx);
260             fiy1             = _mm256_add_pd(fiy1,ty);
261             fiz1             = _mm256_add_pd(fiz1,tz);
262
263             fjx0             = _mm256_add_pd(fjx0,tx);
264             fjy0             = _mm256_add_pd(fjy0,ty);
265             fjz0             = _mm256_add_pd(fjz0,tz);
266
267             }
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (gmx_mm256_any_lt(rsq20,rcutoff2))
274             {
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq20             = _mm256_mul_pd(iq2,jq0);
278
279             /* REACTION-FIELD ELECTROSTATICS */
280             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
281             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
282
283             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velec            = _mm256_and_pd(velec,cutoff_mask);
287             velecsum         = _mm256_add_pd(velecsum,velec);
288
289             fscal            = felec;
290
291             fscal            = _mm256_and_pd(fscal,cutoff_mask);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm256_mul_pd(fscal,dx20);
295             ty               = _mm256_mul_pd(fscal,dy20);
296             tz               = _mm256_mul_pd(fscal,dz20);
297
298             /* Update vectorial force */
299             fix2             = _mm256_add_pd(fix2,tx);
300             fiy2             = _mm256_add_pd(fiy2,ty);
301             fiz2             = _mm256_add_pd(fiz2,tz);
302
303             fjx0             = _mm256_add_pd(fjx0,tx);
304             fjy0             = _mm256_add_pd(fjy0,ty);
305             fjz0             = _mm256_add_pd(fjz0,tz);
306
307             }
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm256_any_lt(rsq30,rcutoff2))
314             {
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq30             = _mm256_mul_pd(iq3,jq0);
318
319             /* REACTION-FIELD ELECTROSTATICS */
320             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
321             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
322
323             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm256_and_pd(velec,cutoff_mask);
327             velecsum         = _mm256_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             fscal            = _mm256_and_pd(fscal,cutoff_mask);
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm256_mul_pd(fscal,dx30);
335             ty               = _mm256_mul_pd(fscal,dy30);
336             tz               = _mm256_mul_pd(fscal,dz30);
337
338             /* Update vectorial force */
339             fix3             = _mm256_add_pd(fix3,tx);
340             fiy3             = _mm256_add_pd(fiy3,ty);
341             fiz3             = _mm256_add_pd(fiz3,tz);
342
343             fjx0             = _mm256_add_pd(fjx0,tx);
344             fjy0             = _mm256_add_pd(fjy0,ty);
345             fjz0             = _mm256_add_pd(fjz0,tz);
346
347             }
348
349             fjptrA             = f+j_coord_offsetA;
350             fjptrB             = f+j_coord_offsetB;
351             fjptrC             = f+j_coord_offsetC;
352             fjptrD             = f+j_coord_offsetD;
353
354             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
355
356             /* Inner loop uses 111 flops */
357         }
358
359         if(jidx<j_index_end)
360         {
361
362             /* Get j neighbor index, and coordinate index */
363             jnrlistA         = jjnr[jidx];
364             jnrlistB         = jjnr[jidx+1];
365             jnrlistC         = jjnr[jidx+2];
366             jnrlistD         = jjnr[jidx+3];
367             /* Sign of each element will be negative for non-real atoms.
368              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
369              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
370              */
371             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
372
373             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
374             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
375             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
376
377             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
378             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
379             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
380             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
381             j_coord_offsetA  = DIM*jnrA;
382             j_coord_offsetB  = DIM*jnrB;
383             j_coord_offsetC  = DIM*jnrC;
384             j_coord_offsetD  = DIM*jnrD;
385
386             /* load j atom coordinates */
387             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
388                                                  x+j_coord_offsetC,x+j_coord_offsetD,
389                                                  &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx10             = _mm256_sub_pd(ix1,jx0);
393             dy10             = _mm256_sub_pd(iy1,jy0);
394             dz10             = _mm256_sub_pd(iz1,jz0);
395             dx20             = _mm256_sub_pd(ix2,jx0);
396             dy20             = _mm256_sub_pd(iy2,jy0);
397             dz20             = _mm256_sub_pd(iz2,jz0);
398             dx30             = _mm256_sub_pd(ix3,jx0);
399             dy30             = _mm256_sub_pd(iy3,jy0);
400             dz30             = _mm256_sub_pd(iz3,jz0);
401
402             /* Calculate squared distance and things based on it */
403             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
404             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
405             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
406
407             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
408             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
409             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
410
411             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
412             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
413             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
414
415             /* Load parameters for j particles */
416             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
417                                                                  charge+jnrC+0,charge+jnrD+0);
418
419             fjx0             = _mm256_setzero_pd();
420             fjy0             = _mm256_setzero_pd();
421             fjz0             = _mm256_setzero_pd();
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             if (gmx_mm256_any_lt(rsq10,rcutoff2))
428             {
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq10             = _mm256_mul_pd(iq1,jq0);
432
433             /* REACTION-FIELD ELECTROSTATICS */
434             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
435             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
436
437             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
438
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velec            = _mm256_and_pd(velec,cutoff_mask);
441             velec            = _mm256_andnot_pd(dummy_mask,velec);
442             velecsum         = _mm256_add_pd(velecsum,velec);
443
444             fscal            = felec;
445
446             fscal            = _mm256_and_pd(fscal,cutoff_mask);
447
448             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm256_mul_pd(fscal,dx10);
452             ty               = _mm256_mul_pd(fscal,dy10);
453             tz               = _mm256_mul_pd(fscal,dz10);
454
455             /* Update vectorial force */
456             fix1             = _mm256_add_pd(fix1,tx);
457             fiy1             = _mm256_add_pd(fiy1,ty);
458             fiz1             = _mm256_add_pd(fiz1,tz);
459
460             fjx0             = _mm256_add_pd(fjx0,tx);
461             fjy0             = _mm256_add_pd(fjy0,ty);
462             fjz0             = _mm256_add_pd(fjz0,tz);
463
464             }
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             if (gmx_mm256_any_lt(rsq20,rcutoff2))
471             {
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq20             = _mm256_mul_pd(iq2,jq0);
475
476             /* REACTION-FIELD ELECTROSTATICS */
477             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
478             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
479
480             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm256_and_pd(velec,cutoff_mask);
484             velec            = _mm256_andnot_pd(dummy_mask,velec);
485             velecsum         = _mm256_add_pd(velecsum,velec);
486
487             fscal            = felec;
488
489             fscal            = _mm256_and_pd(fscal,cutoff_mask);
490
491             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm256_mul_pd(fscal,dx20);
495             ty               = _mm256_mul_pd(fscal,dy20);
496             tz               = _mm256_mul_pd(fscal,dz20);
497
498             /* Update vectorial force */
499             fix2             = _mm256_add_pd(fix2,tx);
500             fiy2             = _mm256_add_pd(fiy2,ty);
501             fiz2             = _mm256_add_pd(fiz2,tz);
502
503             fjx0             = _mm256_add_pd(fjx0,tx);
504             fjy0             = _mm256_add_pd(fjy0,ty);
505             fjz0             = _mm256_add_pd(fjz0,tz);
506
507             }
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             if (gmx_mm256_any_lt(rsq30,rcutoff2))
514             {
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq30             = _mm256_mul_pd(iq3,jq0);
518
519             /* REACTION-FIELD ELECTROSTATICS */
520             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
521             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
522
523             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm256_and_pd(velec,cutoff_mask);
527             velec            = _mm256_andnot_pd(dummy_mask,velec);
528             velecsum         = _mm256_add_pd(velecsum,velec);
529
530             fscal            = felec;
531
532             fscal            = _mm256_and_pd(fscal,cutoff_mask);
533
534             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
535
536             /* Calculate temporary vectorial force */
537             tx               = _mm256_mul_pd(fscal,dx30);
538             ty               = _mm256_mul_pd(fscal,dy30);
539             tz               = _mm256_mul_pd(fscal,dz30);
540
541             /* Update vectorial force */
542             fix3             = _mm256_add_pd(fix3,tx);
543             fiy3             = _mm256_add_pd(fiy3,ty);
544             fiz3             = _mm256_add_pd(fiz3,tz);
545
546             fjx0             = _mm256_add_pd(fjx0,tx);
547             fjy0             = _mm256_add_pd(fjy0,ty);
548             fjz0             = _mm256_add_pd(fjz0,tz);
549
550             }
551
552             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
553             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
554             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
555             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
556
557             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
558
559             /* Inner loop uses 111 flops */
560         }
561
562         /* End of innermost loop */
563
564         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
565                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
566
567         ggid                        = gid[iidx];
568         /* Update potential energies */
569         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
570
571         /* Increment number of inner iterations */
572         inneriter                  += j_index_end - j_index_start;
573
574         /* Outer loop uses 19 flops */
575     }
576
577     /* Increment number of outer iterations */
578     outeriter        += nri;
579
580     /* Update outer/inner flops */
581
582     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*111);
583 }
584 /*
585  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_avx_256_double
586  * Electrostatics interaction: ReactionField
587  * VdW interaction:            None
588  * Geometry:                   Water4-Particle
589  * Calculate force/pot:        Force
590  */
591 void
592 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_avx_256_double
593                     (t_nblist                    * gmx_restrict       nlist,
594                      rvec                        * gmx_restrict          xx,
595                      rvec                        * gmx_restrict          ff,
596                      t_forcerec                  * gmx_restrict          fr,
597                      t_mdatoms                   * gmx_restrict     mdatoms,
598                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
599                      t_nrnb                      * gmx_restrict        nrnb)
600 {
601     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
602      * just 0 for non-waters.
603      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
604      * jnr indices corresponding to data put in the four positions in the SIMD register.
605      */
606     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
607     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
608     int              jnrA,jnrB,jnrC,jnrD;
609     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
610     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
611     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
612     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
613     real             rcutoff_scalar;
614     real             *shiftvec,*fshift,*x,*f;
615     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
616     real             scratch[4*DIM];
617     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
618     real *           vdwioffsetptr1;
619     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
620     real *           vdwioffsetptr2;
621     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
622     real *           vdwioffsetptr3;
623     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
624     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
625     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
626     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
627     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
628     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
629     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
630     real             *charge;
631     __m256d          dummy_mask,cutoff_mask;
632     __m128           tmpmask0,tmpmask1;
633     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
634     __m256d          one     = _mm256_set1_pd(1.0);
635     __m256d          two     = _mm256_set1_pd(2.0);
636     x                = xx[0];
637     f                = ff[0];
638
639     nri              = nlist->nri;
640     iinr             = nlist->iinr;
641     jindex           = nlist->jindex;
642     jjnr             = nlist->jjnr;
643     shiftidx         = nlist->shift;
644     gid              = nlist->gid;
645     shiftvec         = fr->shift_vec[0];
646     fshift           = fr->fshift[0];
647     facel            = _mm256_set1_pd(fr->epsfac);
648     charge           = mdatoms->chargeA;
649     krf              = _mm256_set1_pd(fr->ic->k_rf);
650     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
651     crf              = _mm256_set1_pd(fr->ic->c_rf);
652
653     /* Setup water-specific parameters */
654     inr              = nlist->iinr[0];
655     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
656     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
657     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
658
659     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
660     rcutoff_scalar   = fr->rcoulomb;
661     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
662     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
663
664     /* Avoid stupid compiler warnings */
665     jnrA = jnrB = jnrC = jnrD = 0;
666     j_coord_offsetA = 0;
667     j_coord_offsetB = 0;
668     j_coord_offsetC = 0;
669     j_coord_offsetD = 0;
670
671     outeriter        = 0;
672     inneriter        = 0;
673
674     for(iidx=0;iidx<4*DIM;iidx++)
675     {
676         scratch[iidx] = 0.0;
677     }
678
679     /* Start outer loop over neighborlists */
680     for(iidx=0; iidx<nri; iidx++)
681     {
682         /* Load shift vector for this list */
683         i_shift_offset   = DIM*shiftidx[iidx];
684
685         /* Load limits for loop over neighbors */
686         j_index_start    = jindex[iidx];
687         j_index_end      = jindex[iidx+1];
688
689         /* Get outer coordinate index */
690         inr              = iinr[iidx];
691         i_coord_offset   = DIM*inr;
692
693         /* Load i particle coords and add shift vector */
694         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
695                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
696
697         fix1             = _mm256_setzero_pd();
698         fiy1             = _mm256_setzero_pd();
699         fiz1             = _mm256_setzero_pd();
700         fix2             = _mm256_setzero_pd();
701         fiy2             = _mm256_setzero_pd();
702         fiz2             = _mm256_setzero_pd();
703         fix3             = _mm256_setzero_pd();
704         fiy3             = _mm256_setzero_pd();
705         fiz3             = _mm256_setzero_pd();
706
707         /* Start inner kernel loop */
708         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrA             = jjnr[jidx];
713             jnrB             = jjnr[jidx+1];
714             jnrC             = jjnr[jidx+2];
715             jnrD             = jjnr[jidx+3];
716             j_coord_offsetA  = DIM*jnrA;
717             j_coord_offsetB  = DIM*jnrB;
718             j_coord_offsetC  = DIM*jnrC;
719             j_coord_offsetD  = DIM*jnrD;
720
721             /* load j atom coordinates */
722             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
723                                                  x+j_coord_offsetC,x+j_coord_offsetD,
724                                                  &jx0,&jy0,&jz0);
725
726             /* Calculate displacement vector */
727             dx10             = _mm256_sub_pd(ix1,jx0);
728             dy10             = _mm256_sub_pd(iy1,jy0);
729             dz10             = _mm256_sub_pd(iz1,jz0);
730             dx20             = _mm256_sub_pd(ix2,jx0);
731             dy20             = _mm256_sub_pd(iy2,jy0);
732             dz20             = _mm256_sub_pd(iz2,jz0);
733             dx30             = _mm256_sub_pd(ix3,jx0);
734             dy30             = _mm256_sub_pd(iy3,jy0);
735             dz30             = _mm256_sub_pd(iz3,jz0);
736
737             /* Calculate squared distance and things based on it */
738             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
739             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
740             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
741
742             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
743             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
744             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
745
746             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
747             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
748             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
749
750             /* Load parameters for j particles */
751             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
752                                                                  charge+jnrC+0,charge+jnrD+0);
753
754             fjx0             = _mm256_setzero_pd();
755             fjy0             = _mm256_setzero_pd();
756             fjz0             = _mm256_setzero_pd();
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             if (gmx_mm256_any_lt(rsq10,rcutoff2))
763             {
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq10             = _mm256_mul_pd(iq1,jq0);
767
768             /* REACTION-FIELD ELECTROSTATICS */
769             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
770
771             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
772
773             fscal            = felec;
774
775             fscal            = _mm256_and_pd(fscal,cutoff_mask);
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm256_mul_pd(fscal,dx10);
779             ty               = _mm256_mul_pd(fscal,dy10);
780             tz               = _mm256_mul_pd(fscal,dz10);
781
782             /* Update vectorial force */
783             fix1             = _mm256_add_pd(fix1,tx);
784             fiy1             = _mm256_add_pd(fiy1,ty);
785             fiz1             = _mm256_add_pd(fiz1,tz);
786
787             fjx0             = _mm256_add_pd(fjx0,tx);
788             fjy0             = _mm256_add_pd(fjy0,ty);
789             fjz0             = _mm256_add_pd(fjz0,tz);
790
791             }
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             if (gmx_mm256_any_lt(rsq20,rcutoff2))
798             {
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq20             = _mm256_mul_pd(iq2,jq0);
802
803             /* REACTION-FIELD ELECTROSTATICS */
804             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
805
806             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
807
808             fscal            = felec;
809
810             fscal            = _mm256_and_pd(fscal,cutoff_mask);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm256_mul_pd(fscal,dx20);
814             ty               = _mm256_mul_pd(fscal,dy20);
815             tz               = _mm256_mul_pd(fscal,dz20);
816
817             /* Update vectorial force */
818             fix2             = _mm256_add_pd(fix2,tx);
819             fiy2             = _mm256_add_pd(fiy2,ty);
820             fiz2             = _mm256_add_pd(fiz2,tz);
821
822             fjx0             = _mm256_add_pd(fjx0,tx);
823             fjy0             = _mm256_add_pd(fjy0,ty);
824             fjz0             = _mm256_add_pd(fjz0,tz);
825
826             }
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             if (gmx_mm256_any_lt(rsq30,rcutoff2))
833             {
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq30             = _mm256_mul_pd(iq3,jq0);
837
838             /* REACTION-FIELD ELECTROSTATICS */
839             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
840
841             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
842
843             fscal            = felec;
844
845             fscal            = _mm256_and_pd(fscal,cutoff_mask);
846
847             /* Calculate temporary vectorial force */
848             tx               = _mm256_mul_pd(fscal,dx30);
849             ty               = _mm256_mul_pd(fscal,dy30);
850             tz               = _mm256_mul_pd(fscal,dz30);
851
852             /* Update vectorial force */
853             fix3             = _mm256_add_pd(fix3,tx);
854             fiy3             = _mm256_add_pd(fiy3,ty);
855             fiz3             = _mm256_add_pd(fiz3,tz);
856
857             fjx0             = _mm256_add_pd(fjx0,tx);
858             fjy0             = _mm256_add_pd(fjy0,ty);
859             fjz0             = _mm256_add_pd(fjz0,tz);
860
861             }
862
863             fjptrA             = f+j_coord_offsetA;
864             fjptrB             = f+j_coord_offsetB;
865             fjptrC             = f+j_coord_offsetC;
866             fjptrD             = f+j_coord_offsetD;
867
868             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
869
870             /* Inner loop uses 93 flops */
871         }
872
873         if(jidx<j_index_end)
874         {
875
876             /* Get j neighbor index, and coordinate index */
877             jnrlistA         = jjnr[jidx];
878             jnrlistB         = jjnr[jidx+1];
879             jnrlistC         = jjnr[jidx+2];
880             jnrlistD         = jjnr[jidx+3];
881             /* Sign of each element will be negative for non-real atoms.
882              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
883              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
884              */
885             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
886
887             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
888             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
889             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
890
891             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
892             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
893             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
894             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
895             j_coord_offsetA  = DIM*jnrA;
896             j_coord_offsetB  = DIM*jnrB;
897             j_coord_offsetC  = DIM*jnrC;
898             j_coord_offsetD  = DIM*jnrD;
899
900             /* load j atom coordinates */
901             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
902                                                  x+j_coord_offsetC,x+j_coord_offsetD,
903                                                  &jx0,&jy0,&jz0);
904
905             /* Calculate displacement vector */
906             dx10             = _mm256_sub_pd(ix1,jx0);
907             dy10             = _mm256_sub_pd(iy1,jy0);
908             dz10             = _mm256_sub_pd(iz1,jz0);
909             dx20             = _mm256_sub_pd(ix2,jx0);
910             dy20             = _mm256_sub_pd(iy2,jy0);
911             dz20             = _mm256_sub_pd(iz2,jz0);
912             dx30             = _mm256_sub_pd(ix3,jx0);
913             dy30             = _mm256_sub_pd(iy3,jy0);
914             dz30             = _mm256_sub_pd(iz3,jz0);
915
916             /* Calculate squared distance and things based on it */
917             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
918             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
919             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
920
921             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
922             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
923             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
924
925             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
926             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
927             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
928
929             /* Load parameters for j particles */
930             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
931                                                                  charge+jnrC+0,charge+jnrD+0);
932
933             fjx0             = _mm256_setzero_pd();
934             fjy0             = _mm256_setzero_pd();
935             fjz0             = _mm256_setzero_pd();
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             if (gmx_mm256_any_lt(rsq10,rcutoff2))
942             {
943
944             /* Compute parameters for interactions between i and j atoms */
945             qq10             = _mm256_mul_pd(iq1,jq0);
946
947             /* REACTION-FIELD ELECTROSTATICS */
948             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
949
950             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
951
952             fscal            = felec;
953
954             fscal            = _mm256_and_pd(fscal,cutoff_mask);
955
956             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm256_mul_pd(fscal,dx10);
960             ty               = _mm256_mul_pd(fscal,dy10);
961             tz               = _mm256_mul_pd(fscal,dz10);
962
963             /* Update vectorial force */
964             fix1             = _mm256_add_pd(fix1,tx);
965             fiy1             = _mm256_add_pd(fiy1,ty);
966             fiz1             = _mm256_add_pd(fiz1,tz);
967
968             fjx0             = _mm256_add_pd(fjx0,tx);
969             fjy0             = _mm256_add_pd(fjy0,ty);
970             fjz0             = _mm256_add_pd(fjz0,tz);
971
972             }
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             if (gmx_mm256_any_lt(rsq20,rcutoff2))
979             {
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq20             = _mm256_mul_pd(iq2,jq0);
983
984             /* REACTION-FIELD ELECTROSTATICS */
985             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
986
987             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
988
989             fscal            = felec;
990
991             fscal            = _mm256_and_pd(fscal,cutoff_mask);
992
993             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm256_mul_pd(fscal,dx20);
997             ty               = _mm256_mul_pd(fscal,dy20);
998             tz               = _mm256_mul_pd(fscal,dz20);
999
1000             /* Update vectorial force */
1001             fix2             = _mm256_add_pd(fix2,tx);
1002             fiy2             = _mm256_add_pd(fiy2,ty);
1003             fiz2             = _mm256_add_pd(fiz2,tz);
1004
1005             fjx0             = _mm256_add_pd(fjx0,tx);
1006             fjy0             = _mm256_add_pd(fjy0,ty);
1007             fjz0             = _mm256_add_pd(fjz0,tz);
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1016             {
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm256_mul_pd(iq3,jq0);
1020
1021             /* REACTION-FIELD ELECTROSTATICS */
1022             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1023
1024             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1025
1026             fscal            = felec;
1027
1028             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1029
1030             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1031
1032             /* Calculate temporary vectorial force */
1033             tx               = _mm256_mul_pd(fscal,dx30);
1034             ty               = _mm256_mul_pd(fscal,dy30);
1035             tz               = _mm256_mul_pd(fscal,dz30);
1036
1037             /* Update vectorial force */
1038             fix3             = _mm256_add_pd(fix3,tx);
1039             fiy3             = _mm256_add_pd(fiy3,ty);
1040             fiz3             = _mm256_add_pd(fiz3,tz);
1041
1042             fjx0             = _mm256_add_pd(fjx0,tx);
1043             fjy0             = _mm256_add_pd(fjy0,ty);
1044             fjz0             = _mm256_add_pd(fjz0,tz);
1045
1046             }
1047
1048             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1049             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1050             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1051             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1052
1053             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1054
1055             /* Inner loop uses 93 flops */
1056         }
1057
1058         /* End of innermost loop */
1059
1060         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1061                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1062
1063         /* Increment number of inner iterations */
1064         inneriter                  += j_index_end - j_index_start;
1065
1066         /* Outer loop uses 18 flops */
1067     }
1068
1069     /* Increment number of outer iterations */
1070     outeriter        += nri;
1071
1072     /* Update outer/inner flops */
1073
1074     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*93);
1075 }