f71f51ce825b2b2c69b337dca4b04d8f5338f764
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm256_set1_pd(fr->ic->k_rf);
116     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm256_set1_pd(fr->ic->c_rf);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
122     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
123     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm256_setzero_pd();
164         fiy0             = _mm256_setzero_pd();
165         fiz0             = _mm256_setzero_pd();
166         fix1             = _mm256_setzero_pd();
167         fiy1             = _mm256_setzero_pd();
168         fiz1             = _mm256_setzero_pd();
169         fix2             = _mm256_setzero_pd();
170         fiy2             = _mm256_setzero_pd();
171         fiz2             = _mm256_setzero_pd();
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                                  x+j_coord_offsetC,x+j_coord_offsetD,
193                                                  &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm256_sub_pd(ix0,jx0);
197             dy00             = _mm256_sub_pd(iy0,jy0);
198             dz00             = _mm256_sub_pd(iz0,jz0);
199             dx10             = _mm256_sub_pd(ix1,jx0);
200             dy10             = _mm256_sub_pd(iy1,jy0);
201             dz10             = _mm256_sub_pd(iz1,jz0);
202             dx20             = _mm256_sub_pd(ix2,jx0);
203             dy20             = _mm256_sub_pd(iy2,jy0);
204             dz20             = _mm256_sub_pd(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
210
211             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
212             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
213             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
214
215             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
216             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
217             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0);
222
223             fjx0             = _mm256_setzero_pd();
224             fjy0             = _mm256_setzero_pd();
225             fjz0             = _mm256_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm256_any_lt(rsq00,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm256_mul_pd(iq0,jq0);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
239             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
240
241             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm256_and_pd(velec,cutoff_mask);
245             velecsum         = _mm256_add_pd(velecsum,velec);
246
247             fscal            = felec;
248
249             fscal            = _mm256_and_pd(fscal,cutoff_mask);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm256_mul_pd(fscal,dx00);
253             ty               = _mm256_mul_pd(fscal,dy00);
254             tz               = _mm256_mul_pd(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm256_add_pd(fix0,tx);
258             fiy0             = _mm256_add_pd(fiy0,ty);
259             fiz0             = _mm256_add_pd(fiz0,tz);
260
261             fjx0             = _mm256_add_pd(fjx0,tx);
262             fjy0             = _mm256_add_pd(fjy0,ty);
263             fjz0             = _mm256_add_pd(fjz0,tz);
264
265             }
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             if (gmx_mm256_any_lt(rsq10,rcutoff2))
272             {
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq10             = _mm256_mul_pd(iq1,jq0);
276
277             /* REACTION-FIELD ELECTROSTATICS */
278             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
279             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
280
281             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm256_and_pd(velec,cutoff_mask);
285             velecsum         = _mm256_add_pd(velecsum,velec);
286
287             fscal            = felec;
288
289             fscal            = _mm256_and_pd(fscal,cutoff_mask);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_pd(fscal,dx10);
293             ty               = _mm256_mul_pd(fscal,dy10);
294             tz               = _mm256_mul_pd(fscal,dz10);
295
296             /* Update vectorial force */
297             fix1             = _mm256_add_pd(fix1,tx);
298             fiy1             = _mm256_add_pd(fiy1,ty);
299             fiz1             = _mm256_add_pd(fiz1,tz);
300
301             fjx0             = _mm256_add_pd(fjx0,tx);
302             fjy0             = _mm256_add_pd(fjy0,ty);
303             fjz0             = _mm256_add_pd(fjz0,tz);
304
305             }
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm256_any_lt(rsq20,rcutoff2))
312             {
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq20             = _mm256_mul_pd(iq2,jq0);
316
317             /* REACTION-FIELD ELECTROSTATICS */
318             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
319             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
320
321             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm256_and_pd(velec,cutoff_mask);
325             velecsum         = _mm256_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             fscal            = _mm256_and_pd(fscal,cutoff_mask);
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm256_mul_pd(fscal,dx20);
333             ty               = _mm256_mul_pd(fscal,dy20);
334             tz               = _mm256_mul_pd(fscal,dz20);
335
336             /* Update vectorial force */
337             fix2             = _mm256_add_pd(fix2,tx);
338             fiy2             = _mm256_add_pd(fiy2,ty);
339             fiz2             = _mm256_add_pd(fiz2,tz);
340
341             fjx0             = _mm256_add_pd(fjx0,tx);
342             fjy0             = _mm256_add_pd(fjy0,ty);
343             fjz0             = _mm256_add_pd(fjz0,tz);
344
345             }
346
347             fjptrA             = f+j_coord_offsetA;
348             fjptrB             = f+j_coord_offsetB;
349             fjptrC             = f+j_coord_offsetC;
350             fjptrD             = f+j_coord_offsetD;
351
352             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
353
354             /* Inner loop uses 111 flops */
355         }
356
357         if(jidx<j_index_end)
358         {
359
360             /* Get j neighbor index, and coordinate index */
361             jnrlistA         = jjnr[jidx];
362             jnrlistB         = jjnr[jidx+1];
363             jnrlistC         = jjnr[jidx+2];
364             jnrlistD         = jjnr[jidx+3];
365             /* Sign of each element will be negative for non-real atoms.
366              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
367              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
368              */
369             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
370
371             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
372             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
373             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
374
375             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
376             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
377             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
378             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
379             j_coord_offsetA  = DIM*jnrA;
380             j_coord_offsetB  = DIM*jnrB;
381             j_coord_offsetC  = DIM*jnrC;
382             j_coord_offsetD  = DIM*jnrD;
383
384             /* load j atom coordinates */
385             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
386                                                  x+j_coord_offsetC,x+j_coord_offsetD,
387                                                  &jx0,&jy0,&jz0);
388
389             /* Calculate displacement vector */
390             dx00             = _mm256_sub_pd(ix0,jx0);
391             dy00             = _mm256_sub_pd(iy0,jy0);
392             dz00             = _mm256_sub_pd(iz0,jz0);
393             dx10             = _mm256_sub_pd(ix1,jx0);
394             dy10             = _mm256_sub_pd(iy1,jy0);
395             dz10             = _mm256_sub_pd(iz1,jz0);
396             dx20             = _mm256_sub_pd(ix2,jx0);
397             dy20             = _mm256_sub_pd(iy2,jy0);
398             dz20             = _mm256_sub_pd(iz2,jz0);
399
400             /* Calculate squared distance and things based on it */
401             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
402             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
403             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
404
405             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
406             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
407             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
408
409             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
410             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
411             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
412
413             /* Load parameters for j particles */
414             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
415                                                                  charge+jnrC+0,charge+jnrD+0);
416
417             fjx0             = _mm256_setzero_pd();
418             fjy0             = _mm256_setzero_pd();
419             fjz0             = _mm256_setzero_pd();
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             if (gmx_mm256_any_lt(rsq00,rcutoff2))
426             {
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq00             = _mm256_mul_pd(iq0,jq0);
430
431             /* REACTION-FIELD ELECTROSTATICS */
432             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
433             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
434
435             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
436
437             /* Update potential sum for this i atom from the interaction with this j atom. */
438             velec            = _mm256_and_pd(velec,cutoff_mask);
439             velec            = _mm256_andnot_pd(dummy_mask,velec);
440             velecsum         = _mm256_add_pd(velecsum,velec);
441
442             fscal            = felec;
443
444             fscal            = _mm256_and_pd(fscal,cutoff_mask);
445
446             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_pd(fscal,dx00);
450             ty               = _mm256_mul_pd(fscal,dy00);
451             tz               = _mm256_mul_pd(fscal,dz00);
452
453             /* Update vectorial force */
454             fix0             = _mm256_add_pd(fix0,tx);
455             fiy0             = _mm256_add_pd(fiy0,ty);
456             fiz0             = _mm256_add_pd(fiz0,tz);
457
458             fjx0             = _mm256_add_pd(fjx0,tx);
459             fjy0             = _mm256_add_pd(fjy0,ty);
460             fjz0             = _mm256_add_pd(fjz0,tz);
461
462             }
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             if (gmx_mm256_any_lt(rsq10,rcutoff2))
469             {
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq10             = _mm256_mul_pd(iq1,jq0);
473
474             /* REACTION-FIELD ELECTROSTATICS */
475             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
476             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
477
478             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
479
480             /* Update potential sum for this i atom from the interaction with this j atom. */
481             velec            = _mm256_and_pd(velec,cutoff_mask);
482             velec            = _mm256_andnot_pd(dummy_mask,velec);
483             velecsum         = _mm256_add_pd(velecsum,velec);
484
485             fscal            = felec;
486
487             fscal            = _mm256_and_pd(fscal,cutoff_mask);
488
489             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm256_mul_pd(fscal,dx10);
493             ty               = _mm256_mul_pd(fscal,dy10);
494             tz               = _mm256_mul_pd(fscal,dz10);
495
496             /* Update vectorial force */
497             fix1             = _mm256_add_pd(fix1,tx);
498             fiy1             = _mm256_add_pd(fiy1,ty);
499             fiz1             = _mm256_add_pd(fiz1,tz);
500
501             fjx0             = _mm256_add_pd(fjx0,tx);
502             fjy0             = _mm256_add_pd(fjy0,ty);
503             fjz0             = _mm256_add_pd(fjz0,tz);
504
505             }
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             if (gmx_mm256_any_lt(rsq20,rcutoff2))
512             {
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq20             = _mm256_mul_pd(iq2,jq0);
516
517             /* REACTION-FIELD ELECTROSTATICS */
518             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
519             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
520
521             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm256_and_pd(velec,cutoff_mask);
525             velec            = _mm256_andnot_pd(dummy_mask,velec);
526             velecsum         = _mm256_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm256_and_pd(fscal,cutoff_mask);
531
532             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm256_mul_pd(fscal,dx20);
536             ty               = _mm256_mul_pd(fscal,dy20);
537             tz               = _mm256_mul_pd(fscal,dz20);
538
539             /* Update vectorial force */
540             fix2             = _mm256_add_pd(fix2,tx);
541             fiy2             = _mm256_add_pd(fiy2,ty);
542             fiz2             = _mm256_add_pd(fiz2,tz);
543
544             fjx0             = _mm256_add_pd(fjx0,tx);
545             fjy0             = _mm256_add_pd(fjy0,ty);
546             fjz0             = _mm256_add_pd(fjz0,tz);
547
548             }
549
550             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
551             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
552             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
553             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
554
555             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
556
557             /* Inner loop uses 111 flops */
558         }
559
560         /* End of innermost loop */
561
562         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
563                                                  f+i_coord_offset,fshift+i_shift_offset);
564
565         ggid                        = gid[iidx];
566         /* Update potential energies */
567         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
568
569         /* Increment number of inner iterations */
570         inneriter                  += j_index_end - j_index_start;
571
572         /* Outer loop uses 19 flops */
573     }
574
575     /* Increment number of outer iterations */
576     outeriter        += nri;
577
578     /* Update outer/inner flops */
579
580     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*111);
581 }
582 /*
583  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_double
584  * Electrostatics interaction: ReactionField
585  * VdW interaction:            None
586  * Geometry:                   Water3-Particle
587  * Calculate force/pot:        Force
588  */
589 void
590 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_double
591                     (t_nblist                    * gmx_restrict       nlist,
592                      rvec                        * gmx_restrict          xx,
593                      rvec                        * gmx_restrict          ff,
594                      t_forcerec                  * gmx_restrict          fr,
595                      t_mdatoms                   * gmx_restrict     mdatoms,
596                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
597                      t_nrnb                      * gmx_restrict        nrnb)
598 {
599     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
600      * just 0 for non-waters.
601      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
602      * jnr indices corresponding to data put in the four positions in the SIMD register.
603      */
604     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
605     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
606     int              jnrA,jnrB,jnrC,jnrD;
607     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
608     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
609     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
610     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
611     real             rcutoff_scalar;
612     real             *shiftvec,*fshift,*x,*f;
613     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
614     real             scratch[4*DIM];
615     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
616     real *           vdwioffsetptr0;
617     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
618     real *           vdwioffsetptr1;
619     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
620     real *           vdwioffsetptr2;
621     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
622     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
623     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
624     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
625     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
626     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
627     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
628     real             *charge;
629     __m256d          dummy_mask,cutoff_mask;
630     __m128           tmpmask0,tmpmask1;
631     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
632     __m256d          one     = _mm256_set1_pd(1.0);
633     __m256d          two     = _mm256_set1_pd(2.0);
634     x                = xx[0];
635     f                = ff[0];
636
637     nri              = nlist->nri;
638     iinr             = nlist->iinr;
639     jindex           = nlist->jindex;
640     jjnr             = nlist->jjnr;
641     shiftidx         = nlist->shift;
642     gid              = nlist->gid;
643     shiftvec         = fr->shift_vec[0];
644     fshift           = fr->fshift[0];
645     facel            = _mm256_set1_pd(fr->epsfac);
646     charge           = mdatoms->chargeA;
647     krf              = _mm256_set1_pd(fr->ic->k_rf);
648     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
649     crf              = _mm256_set1_pd(fr->ic->c_rf);
650
651     /* Setup water-specific parameters */
652     inr              = nlist->iinr[0];
653     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
654     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
655     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
656
657     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
658     rcutoff_scalar   = fr->rcoulomb;
659     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
660     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
661
662     /* Avoid stupid compiler warnings */
663     jnrA = jnrB = jnrC = jnrD = 0;
664     j_coord_offsetA = 0;
665     j_coord_offsetB = 0;
666     j_coord_offsetC = 0;
667     j_coord_offsetD = 0;
668
669     outeriter        = 0;
670     inneriter        = 0;
671
672     for(iidx=0;iidx<4*DIM;iidx++)
673     {
674         scratch[iidx] = 0.0;
675     }
676
677     /* Start outer loop over neighborlists */
678     for(iidx=0; iidx<nri; iidx++)
679     {
680         /* Load shift vector for this list */
681         i_shift_offset   = DIM*shiftidx[iidx];
682
683         /* Load limits for loop over neighbors */
684         j_index_start    = jindex[iidx];
685         j_index_end      = jindex[iidx+1];
686
687         /* Get outer coordinate index */
688         inr              = iinr[iidx];
689         i_coord_offset   = DIM*inr;
690
691         /* Load i particle coords and add shift vector */
692         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
693                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
694
695         fix0             = _mm256_setzero_pd();
696         fiy0             = _mm256_setzero_pd();
697         fiz0             = _mm256_setzero_pd();
698         fix1             = _mm256_setzero_pd();
699         fiy1             = _mm256_setzero_pd();
700         fiz1             = _mm256_setzero_pd();
701         fix2             = _mm256_setzero_pd();
702         fiy2             = _mm256_setzero_pd();
703         fiz2             = _mm256_setzero_pd();
704
705         /* Start inner kernel loop */
706         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
707         {
708
709             /* Get j neighbor index, and coordinate index */
710             jnrA             = jjnr[jidx];
711             jnrB             = jjnr[jidx+1];
712             jnrC             = jjnr[jidx+2];
713             jnrD             = jjnr[jidx+3];
714             j_coord_offsetA  = DIM*jnrA;
715             j_coord_offsetB  = DIM*jnrB;
716             j_coord_offsetC  = DIM*jnrC;
717             j_coord_offsetD  = DIM*jnrD;
718
719             /* load j atom coordinates */
720             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
721                                                  x+j_coord_offsetC,x+j_coord_offsetD,
722                                                  &jx0,&jy0,&jz0);
723
724             /* Calculate displacement vector */
725             dx00             = _mm256_sub_pd(ix0,jx0);
726             dy00             = _mm256_sub_pd(iy0,jy0);
727             dz00             = _mm256_sub_pd(iz0,jz0);
728             dx10             = _mm256_sub_pd(ix1,jx0);
729             dy10             = _mm256_sub_pd(iy1,jy0);
730             dz10             = _mm256_sub_pd(iz1,jz0);
731             dx20             = _mm256_sub_pd(ix2,jx0);
732             dy20             = _mm256_sub_pd(iy2,jy0);
733             dz20             = _mm256_sub_pd(iz2,jz0);
734
735             /* Calculate squared distance and things based on it */
736             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
737             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
738             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
739
740             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
741             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
742             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
743
744             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
745             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
746             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
747
748             /* Load parameters for j particles */
749             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
750                                                                  charge+jnrC+0,charge+jnrD+0);
751
752             fjx0             = _mm256_setzero_pd();
753             fjy0             = _mm256_setzero_pd();
754             fjz0             = _mm256_setzero_pd();
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm256_any_lt(rsq00,rcutoff2))
761             {
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq00             = _mm256_mul_pd(iq0,jq0);
765
766             /* REACTION-FIELD ELECTROSTATICS */
767             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
768
769             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
770
771             fscal            = felec;
772
773             fscal            = _mm256_and_pd(fscal,cutoff_mask);
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm256_mul_pd(fscal,dx00);
777             ty               = _mm256_mul_pd(fscal,dy00);
778             tz               = _mm256_mul_pd(fscal,dz00);
779
780             /* Update vectorial force */
781             fix0             = _mm256_add_pd(fix0,tx);
782             fiy0             = _mm256_add_pd(fiy0,ty);
783             fiz0             = _mm256_add_pd(fiz0,tz);
784
785             fjx0             = _mm256_add_pd(fjx0,tx);
786             fjy0             = _mm256_add_pd(fjy0,ty);
787             fjz0             = _mm256_add_pd(fjz0,tz);
788
789             }
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             if (gmx_mm256_any_lt(rsq10,rcutoff2))
796             {
797
798             /* Compute parameters for interactions between i and j atoms */
799             qq10             = _mm256_mul_pd(iq1,jq0);
800
801             /* REACTION-FIELD ELECTROSTATICS */
802             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
803
804             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
805
806             fscal            = felec;
807
808             fscal            = _mm256_and_pd(fscal,cutoff_mask);
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm256_mul_pd(fscal,dx10);
812             ty               = _mm256_mul_pd(fscal,dy10);
813             tz               = _mm256_mul_pd(fscal,dz10);
814
815             /* Update vectorial force */
816             fix1             = _mm256_add_pd(fix1,tx);
817             fiy1             = _mm256_add_pd(fiy1,ty);
818             fiz1             = _mm256_add_pd(fiz1,tz);
819
820             fjx0             = _mm256_add_pd(fjx0,tx);
821             fjy0             = _mm256_add_pd(fjy0,ty);
822             fjz0             = _mm256_add_pd(fjz0,tz);
823
824             }
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             if (gmx_mm256_any_lt(rsq20,rcutoff2))
831             {
832
833             /* Compute parameters for interactions between i and j atoms */
834             qq20             = _mm256_mul_pd(iq2,jq0);
835
836             /* REACTION-FIELD ELECTROSTATICS */
837             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
838
839             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
840
841             fscal            = felec;
842
843             fscal            = _mm256_and_pd(fscal,cutoff_mask);
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm256_mul_pd(fscal,dx20);
847             ty               = _mm256_mul_pd(fscal,dy20);
848             tz               = _mm256_mul_pd(fscal,dz20);
849
850             /* Update vectorial force */
851             fix2             = _mm256_add_pd(fix2,tx);
852             fiy2             = _mm256_add_pd(fiy2,ty);
853             fiz2             = _mm256_add_pd(fiz2,tz);
854
855             fjx0             = _mm256_add_pd(fjx0,tx);
856             fjy0             = _mm256_add_pd(fjy0,ty);
857             fjz0             = _mm256_add_pd(fjz0,tz);
858
859             }
860
861             fjptrA             = f+j_coord_offsetA;
862             fjptrB             = f+j_coord_offsetB;
863             fjptrC             = f+j_coord_offsetC;
864             fjptrD             = f+j_coord_offsetD;
865
866             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
867
868             /* Inner loop uses 93 flops */
869         }
870
871         if(jidx<j_index_end)
872         {
873
874             /* Get j neighbor index, and coordinate index */
875             jnrlistA         = jjnr[jidx];
876             jnrlistB         = jjnr[jidx+1];
877             jnrlistC         = jjnr[jidx+2];
878             jnrlistD         = jjnr[jidx+3];
879             /* Sign of each element will be negative for non-real atoms.
880              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
881              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
882              */
883             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
884
885             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
886             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
887             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
888
889             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
890             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
891             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
892             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
893             j_coord_offsetA  = DIM*jnrA;
894             j_coord_offsetB  = DIM*jnrB;
895             j_coord_offsetC  = DIM*jnrC;
896             j_coord_offsetD  = DIM*jnrD;
897
898             /* load j atom coordinates */
899             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
900                                                  x+j_coord_offsetC,x+j_coord_offsetD,
901                                                  &jx0,&jy0,&jz0);
902
903             /* Calculate displacement vector */
904             dx00             = _mm256_sub_pd(ix0,jx0);
905             dy00             = _mm256_sub_pd(iy0,jy0);
906             dz00             = _mm256_sub_pd(iz0,jz0);
907             dx10             = _mm256_sub_pd(ix1,jx0);
908             dy10             = _mm256_sub_pd(iy1,jy0);
909             dz10             = _mm256_sub_pd(iz1,jz0);
910             dx20             = _mm256_sub_pd(ix2,jx0);
911             dy20             = _mm256_sub_pd(iy2,jy0);
912             dz20             = _mm256_sub_pd(iz2,jz0);
913
914             /* Calculate squared distance and things based on it */
915             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
916             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
917             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
918
919             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
920             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
921             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
922
923             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
924             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
925             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
926
927             /* Load parameters for j particles */
928             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
929                                                                  charge+jnrC+0,charge+jnrD+0);
930
931             fjx0             = _mm256_setzero_pd();
932             fjy0             = _mm256_setzero_pd();
933             fjz0             = _mm256_setzero_pd();
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             if (gmx_mm256_any_lt(rsq00,rcutoff2))
940             {
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq00             = _mm256_mul_pd(iq0,jq0);
944
945             /* REACTION-FIELD ELECTROSTATICS */
946             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
947
948             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
949
950             fscal            = felec;
951
952             fscal            = _mm256_and_pd(fscal,cutoff_mask);
953
954             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
955
956             /* Calculate temporary vectorial force */
957             tx               = _mm256_mul_pd(fscal,dx00);
958             ty               = _mm256_mul_pd(fscal,dy00);
959             tz               = _mm256_mul_pd(fscal,dz00);
960
961             /* Update vectorial force */
962             fix0             = _mm256_add_pd(fix0,tx);
963             fiy0             = _mm256_add_pd(fiy0,ty);
964             fiz0             = _mm256_add_pd(fiz0,tz);
965
966             fjx0             = _mm256_add_pd(fjx0,tx);
967             fjy0             = _mm256_add_pd(fjy0,ty);
968             fjz0             = _mm256_add_pd(fjz0,tz);
969
970             }
971
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             if (gmx_mm256_any_lt(rsq10,rcutoff2))
977             {
978
979             /* Compute parameters for interactions between i and j atoms */
980             qq10             = _mm256_mul_pd(iq1,jq0);
981
982             /* REACTION-FIELD ELECTROSTATICS */
983             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
984
985             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
986
987             fscal            = felec;
988
989             fscal            = _mm256_and_pd(fscal,cutoff_mask);
990
991             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm256_mul_pd(fscal,dx10);
995             ty               = _mm256_mul_pd(fscal,dy10);
996             tz               = _mm256_mul_pd(fscal,dz10);
997
998             /* Update vectorial force */
999             fix1             = _mm256_add_pd(fix1,tx);
1000             fiy1             = _mm256_add_pd(fiy1,ty);
1001             fiz1             = _mm256_add_pd(fiz1,tz);
1002
1003             fjx0             = _mm256_add_pd(fjx0,tx);
1004             fjy0             = _mm256_add_pd(fjy0,ty);
1005             fjz0             = _mm256_add_pd(fjz0,tz);
1006
1007             }
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1014             {
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq20             = _mm256_mul_pd(iq2,jq0);
1018
1019             /* REACTION-FIELD ELECTROSTATICS */
1020             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1021
1022             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1027
1028             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm256_mul_pd(fscal,dx20);
1032             ty               = _mm256_mul_pd(fscal,dy20);
1033             tz               = _mm256_mul_pd(fscal,dz20);
1034
1035             /* Update vectorial force */
1036             fix2             = _mm256_add_pd(fix2,tx);
1037             fiy2             = _mm256_add_pd(fiy2,ty);
1038             fiz2             = _mm256_add_pd(fiz2,tz);
1039
1040             fjx0             = _mm256_add_pd(fjx0,tx);
1041             fjy0             = _mm256_add_pd(fjy0,ty);
1042             fjz0             = _mm256_add_pd(fjz0,tz);
1043
1044             }
1045
1046             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1047             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1048             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1049             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1050
1051             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1052
1053             /* Inner loop uses 93 flops */
1054         }
1055
1056         /* End of innermost loop */
1057
1058         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1059                                                  f+i_coord_offset,fshift+i_shift_offset);
1060
1061         /* Increment number of inner iterations */
1062         inneriter                  += j_index_end - j_index_start;
1063
1064         /* Outer loop uses 18 flops */
1065     }
1066
1067     /* Increment number of outer iterations */
1068     outeriter        += nri;
1069
1070     /* Update outer/inner flops */
1071
1072     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*93);
1073 }