Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     krf              = _mm256_set1_pd(fr->ic->k_rf);
102     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
103     crf              = _mm256_set1_pd(fr->ic->c_rf);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
108     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
109     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
114     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
148
149         fix0             = _mm256_setzero_pd();
150         fiy0             = _mm256_setzero_pd();
151         fiz0             = _mm256_setzero_pd();
152         fix1             = _mm256_setzero_pd();
153         fiy1             = _mm256_setzero_pd();
154         fiz1             = _mm256_setzero_pd();
155         fix2             = _mm256_setzero_pd();
156         fiy2             = _mm256_setzero_pd();
157         fiz2             = _mm256_setzero_pd();
158
159         /* Reset potential sums */
160         velecsum         = _mm256_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                                  x+j_coord_offsetC,x+j_coord_offsetD,
179                                                  &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm256_sub_pd(ix0,jx0);
183             dy00             = _mm256_sub_pd(iy0,jy0);
184             dz00             = _mm256_sub_pd(iz0,jz0);
185             dx10             = _mm256_sub_pd(ix1,jx0);
186             dy10             = _mm256_sub_pd(iy1,jy0);
187             dz10             = _mm256_sub_pd(iz1,jz0);
188             dx20             = _mm256_sub_pd(ix2,jx0);
189             dy20             = _mm256_sub_pd(iy2,jy0);
190             dz20             = _mm256_sub_pd(iz2,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
194             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
195             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
199             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
200
201             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
202             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
203             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
207                                                                  charge+jnrC+0,charge+jnrD+0);
208
209             fjx0             = _mm256_setzero_pd();
210             fjy0             = _mm256_setzero_pd();
211             fjz0             = _mm256_setzero_pd();
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm256_any_lt(rsq00,rcutoff2))
218             {
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm256_mul_pd(iq0,jq0);
222
223             /* REACTION-FIELD ELECTROSTATICS */
224             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
225             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
226
227             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velec            = _mm256_and_pd(velec,cutoff_mask);
231             velecsum         = _mm256_add_pd(velecsum,velec);
232
233             fscal            = felec;
234
235             fscal            = _mm256_and_pd(fscal,cutoff_mask);
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm256_mul_pd(fscal,dx00);
239             ty               = _mm256_mul_pd(fscal,dy00);
240             tz               = _mm256_mul_pd(fscal,dz00);
241
242             /* Update vectorial force */
243             fix0             = _mm256_add_pd(fix0,tx);
244             fiy0             = _mm256_add_pd(fiy0,ty);
245             fiz0             = _mm256_add_pd(fiz0,tz);
246
247             fjx0             = _mm256_add_pd(fjx0,tx);
248             fjy0             = _mm256_add_pd(fjy0,ty);
249             fjz0             = _mm256_add_pd(fjz0,tz);
250
251             }
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm256_any_lt(rsq10,rcutoff2))
258             {
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq10             = _mm256_mul_pd(iq1,jq0);
262
263             /* REACTION-FIELD ELECTROSTATICS */
264             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
265             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
266
267             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velec            = _mm256_and_pd(velec,cutoff_mask);
271             velecsum         = _mm256_add_pd(velecsum,velec);
272
273             fscal            = felec;
274
275             fscal            = _mm256_and_pd(fscal,cutoff_mask);
276
277             /* Calculate temporary vectorial force */
278             tx               = _mm256_mul_pd(fscal,dx10);
279             ty               = _mm256_mul_pd(fscal,dy10);
280             tz               = _mm256_mul_pd(fscal,dz10);
281
282             /* Update vectorial force */
283             fix1             = _mm256_add_pd(fix1,tx);
284             fiy1             = _mm256_add_pd(fiy1,ty);
285             fiz1             = _mm256_add_pd(fiz1,tz);
286
287             fjx0             = _mm256_add_pd(fjx0,tx);
288             fjy0             = _mm256_add_pd(fjy0,ty);
289             fjz0             = _mm256_add_pd(fjz0,tz);
290
291             }
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm256_any_lt(rsq20,rcutoff2))
298             {
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq20             = _mm256_mul_pd(iq2,jq0);
302
303             /* REACTION-FIELD ELECTROSTATICS */
304             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
305             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
306
307             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_pd(velec,cutoff_mask);
311             velecsum         = _mm256_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             fscal            = _mm256_and_pd(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm256_mul_pd(fscal,dx20);
319             ty               = _mm256_mul_pd(fscal,dy20);
320             tz               = _mm256_mul_pd(fscal,dz20);
321
322             /* Update vectorial force */
323             fix2             = _mm256_add_pd(fix2,tx);
324             fiy2             = _mm256_add_pd(fiy2,ty);
325             fiz2             = _mm256_add_pd(fiz2,tz);
326
327             fjx0             = _mm256_add_pd(fjx0,tx);
328             fjy0             = _mm256_add_pd(fjy0,ty);
329             fjz0             = _mm256_add_pd(fjz0,tz);
330
331             }
332
333             fjptrA             = f+j_coord_offsetA;
334             fjptrB             = f+j_coord_offsetB;
335             fjptrC             = f+j_coord_offsetC;
336             fjptrD             = f+j_coord_offsetD;
337
338             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
339
340             /* Inner loop uses 111 flops */
341         }
342
343         if(jidx<j_index_end)
344         {
345
346             /* Get j neighbor index, and coordinate index */
347             jnrlistA         = jjnr[jidx];
348             jnrlistB         = jjnr[jidx+1];
349             jnrlistC         = jjnr[jidx+2];
350             jnrlistD         = jjnr[jidx+3];
351             /* Sign of each element will be negative for non-real atoms.
352              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
353              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
354              */
355             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
356
357             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
358             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
359             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
360
361             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
362             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
363             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
364             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
365             j_coord_offsetA  = DIM*jnrA;
366             j_coord_offsetB  = DIM*jnrB;
367             j_coord_offsetC  = DIM*jnrC;
368             j_coord_offsetD  = DIM*jnrD;
369
370             /* load j atom coordinates */
371             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
372                                                  x+j_coord_offsetC,x+j_coord_offsetD,
373                                                  &jx0,&jy0,&jz0);
374
375             /* Calculate displacement vector */
376             dx00             = _mm256_sub_pd(ix0,jx0);
377             dy00             = _mm256_sub_pd(iy0,jy0);
378             dz00             = _mm256_sub_pd(iz0,jz0);
379             dx10             = _mm256_sub_pd(ix1,jx0);
380             dy10             = _mm256_sub_pd(iy1,jy0);
381             dz10             = _mm256_sub_pd(iz1,jz0);
382             dx20             = _mm256_sub_pd(ix2,jx0);
383             dy20             = _mm256_sub_pd(iy2,jy0);
384             dz20             = _mm256_sub_pd(iz2,jz0);
385
386             /* Calculate squared distance and things based on it */
387             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
388             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
389             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
390
391             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
392             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
393             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
394
395             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
396             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
397             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
398
399             /* Load parameters for j particles */
400             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
401                                                                  charge+jnrC+0,charge+jnrD+0);
402
403             fjx0             = _mm256_setzero_pd();
404             fjy0             = _mm256_setzero_pd();
405             fjz0             = _mm256_setzero_pd();
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm256_any_lt(rsq00,rcutoff2))
412             {
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq00             = _mm256_mul_pd(iq0,jq0);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
419             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
420
421             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm256_and_pd(velec,cutoff_mask);
425             velec            = _mm256_andnot_pd(dummy_mask,velec);
426             velecsum         = _mm256_add_pd(velecsum,velec);
427
428             fscal            = felec;
429
430             fscal            = _mm256_and_pd(fscal,cutoff_mask);
431
432             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm256_mul_pd(fscal,dx00);
436             ty               = _mm256_mul_pd(fscal,dy00);
437             tz               = _mm256_mul_pd(fscal,dz00);
438
439             /* Update vectorial force */
440             fix0             = _mm256_add_pd(fix0,tx);
441             fiy0             = _mm256_add_pd(fiy0,ty);
442             fiz0             = _mm256_add_pd(fiz0,tz);
443
444             fjx0             = _mm256_add_pd(fjx0,tx);
445             fjy0             = _mm256_add_pd(fjy0,ty);
446             fjz0             = _mm256_add_pd(fjz0,tz);
447
448             }
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             if (gmx_mm256_any_lt(rsq10,rcutoff2))
455             {
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq10             = _mm256_mul_pd(iq1,jq0);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
462             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
463
464             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velec            = _mm256_and_pd(velec,cutoff_mask);
468             velec            = _mm256_andnot_pd(dummy_mask,velec);
469             velecsum         = _mm256_add_pd(velecsum,velec);
470
471             fscal            = felec;
472
473             fscal            = _mm256_and_pd(fscal,cutoff_mask);
474
475             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
476
477             /* Calculate temporary vectorial force */
478             tx               = _mm256_mul_pd(fscal,dx10);
479             ty               = _mm256_mul_pd(fscal,dy10);
480             tz               = _mm256_mul_pd(fscal,dz10);
481
482             /* Update vectorial force */
483             fix1             = _mm256_add_pd(fix1,tx);
484             fiy1             = _mm256_add_pd(fiy1,ty);
485             fiz1             = _mm256_add_pd(fiz1,tz);
486
487             fjx0             = _mm256_add_pd(fjx0,tx);
488             fjy0             = _mm256_add_pd(fjy0,ty);
489             fjz0             = _mm256_add_pd(fjz0,tz);
490
491             }
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_mm256_any_lt(rsq20,rcutoff2))
498             {
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq20             = _mm256_mul_pd(iq2,jq0);
502
503             /* REACTION-FIELD ELECTROSTATICS */
504             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
505             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
506
507             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm256_and_pd(velec,cutoff_mask);
511             velec            = _mm256_andnot_pd(dummy_mask,velec);
512             velecsum         = _mm256_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm256_and_pd(fscal,cutoff_mask);
517
518             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
519
520             /* Calculate temporary vectorial force */
521             tx               = _mm256_mul_pd(fscal,dx20);
522             ty               = _mm256_mul_pd(fscal,dy20);
523             tz               = _mm256_mul_pd(fscal,dz20);
524
525             /* Update vectorial force */
526             fix2             = _mm256_add_pd(fix2,tx);
527             fiy2             = _mm256_add_pd(fiy2,ty);
528             fiz2             = _mm256_add_pd(fiz2,tz);
529
530             fjx0             = _mm256_add_pd(fjx0,tx);
531             fjy0             = _mm256_add_pd(fjy0,ty);
532             fjz0             = _mm256_add_pd(fjz0,tz);
533
534             }
535
536             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
537             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
538             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
539             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
540
541             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
542
543             /* Inner loop uses 111 flops */
544         }
545
546         /* End of innermost loop */
547
548         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
549                                                  f+i_coord_offset,fshift+i_shift_offset);
550
551         ggid                        = gid[iidx];
552         /* Update potential energies */
553         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
554
555         /* Increment number of inner iterations */
556         inneriter                  += j_index_end - j_index_start;
557
558         /* Outer loop uses 19 flops */
559     }
560
561     /* Increment number of outer iterations */
562     outeriter        += nri;
563
564     /* Update outer/inner flops */
565
566     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*111);
567 }
568 /*
569  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_double
570  * Electrostatics interaction: ReactionField
571  * VdW interaction:            None
572  * Geometry:                   Water3-Particle
573  * Calculate force/pot:        Force
574  */
575 void
576 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_avx_256_double
577                     (t_nblist * gmx_restrict                nlist,
578                      rvec * gmx_restrict                    xx,
579                      rvec * gmx_restrict                    ff,
580                      t_forcerec * gmx_restrict              fr,
581                      t_mdatoms * gmx_restrict               mdatoms,
582                      nb_kernel_data_t * gmx_restrict        kernel_data,
583                      t_nrnb * gmx_restrict                  nrnb)
584 {
585     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
586      * just 0 for non-waters.
587      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
588      * jnr indices corresponding to data put in the four positions in the SIMD register.
589      */
590     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
591     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
592     int              jnrA,jnrB,jnrC,jnrD;
593     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
594     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
595     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
596     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
597     real             rcutoff_scalar;
598     real             *shiftvec,*fshift,*x,*f;
599     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
600     real             scratch[4*DIM];
601     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
602     real *           vdwioffsetptr0;
603     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
604     real *           vdwioffsetptr1;
605     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
606     real *           vdwioffsetptr2;
607     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
608     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
609     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
610     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
611     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
612     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
613     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
614     real             *charge;
615     __m256d          dummy_mask,cutoff_mask;
616     __m128           tmpmask0,tmpmask1;
617     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
618     __m256d          one     = _mm256_set1_pd(1.0);
619     __m256d          two     = _mm256_set1_pd(2.0);
620     x                = xx[0];
621     f                = ff[0];
622
623     nri              = nlist->nri;
624     iinr             = nlist->iinr;
625     jindex           = nlist->jindex;
626     jjnr             = nlist->jjnr;
627     shiftidx         = nlist->shift;
628     gid              = nlist->gid;
629     shiftvec         = fr->shift_vec[0];
630     fshift           = fr->fshift[0];
631     facel            = _mm256_set1_pd(fr->epsfac);
632     charge           = mdatoms->chargeA;
633     krf              = _mm256_set1_pd(fr->ic->k_rf);
634     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
635     crf              = _mm256_set1_pd(fr->ic->c_rf);
636
637     /* Setup water-specific parameters */
638     inr              = nlist->iinr[0];
639     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
640     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
641     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
642
643     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
644     rcutoff_scalar   = fr->rcoulomb;
645     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
646     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
647
648     /* Avoid stupid compiler warnings */
649     jnrA = jnrB = jnrC = jnrD = 0;
650     j_coord_offsetA = 0;
651     j_coord_offsetB = 0;
652     j_coord_offsetC = 0;
653     j_coord_offsetD = 0;
654
655     outeriter        = 0;
656     inneriter        = 0;
657
658     for(iidx=0;iidx<4*DIM;iidx++)
659     {
660         scratch[iidx] = 0.0;
661     }
662
663     /* Start outer loop over neighborlists */
664     for(iidx=0; iidx<nri; iidx++)
665     {
666         /* Load shift vector for this list */
667         i_shift_offset   = DIM*shiftidx[iidx];
668
669         /* Load limits for loop over neighbors */
670         j_index_start    = jindex[iidx];
671         j_index_end      = jindex[iidx+1];
672
673         /* Get outer coordinate index */
674         inr              = iinr[iidx];
675         i_coord_offset   = DIM*inr;
676
677         /* Load i particle coords and add shift vector */
678         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
679                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
680
681         fix0             = _mm256_setzero_pd();
682         fiy0             = _mm256_setzero_pd();
683         fiz0             = _mm256_setzero_pd();
684         fix1             = _mm256_setzero_pd();
685         fiy1             = _mm256_setzero_pd();
686         fiz1             = _mm256_setzero_pd();
687         fix2             = _mm256_setzero_pd();
688         fiy2             = _mm256_setzero_pd();
689         fiz2             = _mm256_setzero_pd();
690
691         /* Start inner kernel loop */
692         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
693         {
694
695             /* Get j neighbor index, and coordinate index */
696             jnrA             = jjnr[jidx];
697             jnrB             = jjnr[jidx+1];
698             jnrC             = jjnr[jidx+2];
699             jnrD             = jjnr[jidx+3];
700             j_coord_offsetA  = DIM*jnrA;
701             j_coord_offsetB  = DIM*jnrB;
702             j_coord_offsetC  = DIM*jnrC;
703             j_coord_offsetD  = DIM*jnrD;
704
705             /* load j atom coordinates */
706             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
707                                                  x+j_coord_offsetC,x+j_coord_offsetD,
708                                                  &jx0,&jy0,&jz0);
709
710             /* Calculate displacement vector */
711             dx00             = _mm256_sub_pd(ix0,jx0);
712             dy00             = _mm256_sub_pd(iy0,jy0);
713             dz00             = _mm256_sub_pd(iz0,jz0);
714             dx10             = _mm256_sub_pd(ix1,jx0);
715             dy10             = _mm256_sub_pd(iy1,jy0);
716             dz10             = _mm256_sub_pd(iz1,jz0);
717             dx20             = _mm256_sub_pd(ix2,jx0);
718             dy20             = _mm256_sub_pd(iy2,jy0);
719             dz20             = _mm256_sub_pd(iz2,jz0);
720
721             /* Calculate squared distance and things based on it */
722             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
723             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
724             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
725
726             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
727             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
728             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
729
730             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
731             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
732             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
733
734             /* Load parameters for j particles */
735             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
736                                                                  charge+jnrC+0,charge+jnrD+0);
737
738             fjx0             = _mm256_setzero_pd();
739             fjy0             = _mm256_setzero_pd();
740             fjz0             = _mm256_setzero_pd();
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             if (gmx_mm256_any_lt(rsq00,rcutoff2))
747             {
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm256_mul_pd(iq0,jq0);
751
752             /* REACTION-FIELD ELECTROSTATICS */
753             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
754
755             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
756
757             fscal            = felec;
758
759             fscal            = _mm256_and_pd(fscal,cutoff_mask);
760
761             /* Calculate temporary vectorial force */
762             tx               = _mm256_mul_pd(fscal,dx00);
763             ty               = _mm256_mul_pd(fscal,dy00);
764             tz               = _mm256_mul_pd(fscal,dz00);
765
766             /* Update vectorial force */
767             fix0             = _mm256_add_pd(fix0,tx);
768             fiy0             = _mm256_add_pd(fiy0,ty);
769             fiz0             = _mm256_add_pd(fiz0,tz);
770
771             fjx0             = _mm256_add_pd(fjx0,tx);
772             fjy0             = _mm256_add_pd(fjy0,ty);
773             fjz0             = _mm256_add_pd(fjz0,tz);
774
775             }
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             if (gmx_mm256_any_lt(rsq10,rcutoff2))
782             {
783
784             /* Compute parameters for interactions between i and j atoms */
785             qq10             = _mm256_mul_pd(iq1,jq0);
786
787             /* REACTION-FIELD ELECTROSTATICS */
788             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
789
790             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
791
792             fscal            = felec;
793
794             fscal            = _mm256_and_pd(fscal,cutoff_mask);
795
796             /* Calculate temporary vectorial force */
797             tx               = _mm256_mul_pd(fscal,dx10);
798             ty               = _mm256_mul_pd(fscal,dy10);
799             tz               = _mm256_mul_pd(fscal,dz10);
800
801             /* Update vectorial force */
802             fix1             = _mm256_add_pd(fix1,tx);
803             fiy1             = _mm256_add_pd(fiy1,ty);
804             fiz1             = _mm256_add_pd(fiz1,tz);
805
806             fjx0             = _mm256_add_pd(fjx0,tx);
807             fjy0             = _mm256_add_pd(fjy0,ty);
808             fjz0             = _mm256_add_pd(fjz0,tz);
809
810             }
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             if (gmx_mm256_any_lt(rsq20,rcutoff2))
817             {
818
819             /* Compute parameters for interactions between i and j atoms */
820             qq20             = _mm256_mul_pd(iq2,jq0);
821
822             /* REACTION-FIELD ELECTROSTATICS */
823             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
824
825             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
826
827             fscal            = felec;
828
829             fscal            = _mm256_and_pd(fscal,cutoff_mask);
830
831             /* Calculate temporary vectorial force */
832             tx               = _mm256_mul_pd(fscal,dx20);
833             ty               = _mm256_mul_pd(fscal,dy20);
834             tz               = _mm256_mul_pd(fscal,dz20);
835
836             /* Update vectorial force */
837             fix2             = _mm256_add_pd(fix2,tx);
838             fiy2             = _mm256_add_pd(fiy2,ty);
839             fiz2             = _mm256_add_pd(fiz2,tz);
840
841             fjx0             = _mm256_add_pd(fjx0,tx);
842             fjy0             = _mm256_add_pd(fjy0,ty);
843             fjz0             = _mm256_add_pd(fjz0,tz);
844
845             }
846
847             fjptrA             = f+j_coord_offsetA;
848             fjptrB             = f+j_coord_offsetB;
849             fjptrC             = f+j_coord_offsetC;
850             fjptrD             = f+j_coord_offsetD;
851
852             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
853
854             /* Inner loop uses 93 flops */
855         }
856
857         if(jidx<j_index_end)
858         {
859
860             /* Get j neighbor index, and coordinate index */
861             jnrlistA         = jjnr[jidx];
862             jnrlistB         = jjnr[jidx+1];
863             jnrlistC         = jjnr[jidx+2];
864             jnrlistD         = jjnr[jidx+3];
865             /* Sign of each element will be negative for non-real atoms.
866              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
867              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
868              */
869             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
870
871             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
872             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
873             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
874
875             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
876             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
877             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
878             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
879             j_coord_offsetA  = DIM*jnrA;
880             j_coord_offsetB  = DIM*jnrB;
881             j_coord_offsetC  = DIM*jnrC;
882             j_coord_offsetD  = DIM*jnrD;
883
884             /* load j atom coordinates */
885             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
886                                                  x+j_coord_offsetC,x+j_coord_offsetD,
887                                                  &jx0,&jy0,&jz0);
888
889             /* Calculate displacement vector */
890             dx00             = _mm256_sub_pd(ix0,jx0);
891             dy00             = _mm256_sub_pd(iy0,jy0);
892             dz00             = _mm256_sub_pd(iz0,jz0);
893             dx10             = _mm256_sub_pd(ix1,jx0);
894             dy10             = _mm256_sub_pd(iy1,jy0);
895             dz10             = _mm256_sub_pd(iz1,jz0);
896             dx20             = _mm256_sub_pd(ix2,jx0);
897             dy20             = _mm256_sub_pd(iy2,jy0);
898             dz20             = _mm256_sub_pd(iz2,jz0);
899
900             /* Calculate squared distance and things based on it */
901             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
902             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
903             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
904
905             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
906             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
907             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
908
909             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
910             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
911             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
912
913             /* Load parameters for j particles */
914             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
915                                                                  charge+jnrC+0,charge+jnrD+0);
916
917             fjx0             = _mm256_setzero_pd();
918             fjy0             = _mm256_setzero_pd();
919             fjz0             = _mm256_setzero_pd();
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             if (gmx_mm256_any_lt(rsq00,rcutoff2))
926             {
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq00             = _mm256_mul_pd(iq0,jq0);
930
931             /* REACTION-FIELD ELECTROSTATICS */
932             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
933
934             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
935
936             fscal            = felec;
937
938             fscal            = _mm256_and_pd(fscal,cutoff_mask);
939
940             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
941
942             /* Calculate temporary vectorial force */
943             tx               = _mm256_mul_pd(fscal,dx00);
944             ty               = _mm256_mul_pd(fscal,dy00);
945             tz               = _mm256_mul_pd(fscal,dz00);
946
947             /* Update vectorial force */
948             fix0             = _mm256_add_pd(fix0,tx);
949             fiy0             = _mm256_add_pd(fiy0,ty);
950             fiz0             = _mm256_add_pd(fiz0,tz);
951
952             fjx0             = _mm256_add_pd(fjx0,tx);
953             fjy0             = _mm256_add_pd(fjy0,ty);
954             fjz0             = _mm256_add_pd(fjz0,tz);
955
956             }
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             if (gmx_mm256_any_lt(rsq10,rcutoff2))
963             {
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq10             = _mm256_mul_pd(iq1,jq0);
967
968             /* REACTION-FIELD ELECTROSTATICS */
969             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
970
971             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
972
973             fscal            = felec;
974
975             fscal            = _mm256_and_pd(fscal,cutoff_mask);
976
977             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
978
979             /* Calculate temporary vectorial force */
980             tx               = _mm256_mul_pd(fscal,dx10);
981             ty               = _mm256_mul_pd(fscal,dy10);
982             tz               = _mm256_mul_pd(fscal,dz10);
983
984             /* Update vectorial force */
985             fix1             = _mm256_add_pd(fix1,tx);
986             fiy1             = _mm256_add_pd(fiy1,ty);
987             fiz1             = _mm256_add_pd(fiz1,tz);
988
989             fjx0             = _mm256_add_pd(fjx0,tx);
990             fjy0             = _mm256_add_pd(fjy0,ty);
991             fjz0             = _mm256_add_pd(fjz0,tz);
992
993             }
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1000             {
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq20             = _mm256_mul_pd(iq2,jq0);
1004
1005             /* REACTION-FIELD ELECTROSTATICS */
1006             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1007
1008             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1013
1014             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm256_mul_pd(fscal,dx20);
1018             ty               = _mm256_mul_pd(fscal,dy20);
1019             tz               = _mm256_mul_pd(fscal,dz20);
1020
1021             /* Update vectorial force */
1022             fix2             = _mm256_add_pd(fix2,tx);
1023             fiy2             = _mm256_add_pd(fiy2,ty);
1024             fiz2             = _mm256_add_pd(fiz2,tz);
1025
1026             fjx0             = _mm256_add_pd(fjx0,tx);
1027             fjy0             = _mm256_add_pd(fjy0,ty);
1028             fjz0             = _mm256_add_pd(fjz0,tz);
1029
1030             }
1031
1032             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1033             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1034             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1035             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1036
1037             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1038
1039             /* Inner loop uses 93 flops */
1040         }
1041
1042         /* End of innermost loop */
1043
1044         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1045                                                  f+i_coord_offset,fshift+i_shift_offset);
1046
1047         /* Increment number of inner iterations */
1048         inneriter                  += j_index_end - j_index_start;
1049
1050         /* Outer loop uses 18 flops */
1051     }
1052
1053     /* Increment number of outer iterations */
1054     outeriter        += nri;
1055
1056     /* Update outer/inner flops */
1057
1058     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*93);
1059 }