Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93     real             rswitch_scalar,d_scalar;
94     __m256d          dummy_mask,cutoff_mask;
95     __m128           tmpmask0,tmpmask1;
96     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
97     __m256d          one     = _mm256_set1_pd(1.0);
98     __m256d          two     = _mm256_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm256_set1_pd(fr->ic->k_rf);
113     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm256_set1_pd(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
122     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
123     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
124     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rvdw_switch;
132     rswitch          = _mm256_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm256_set1_pd(d_scalar);
136     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm256_setzero_pd();
177         fiy0             = _mm256_setzero_pd();
178         fiz0             = _mm256_setzero_pd();
179         fix1             = _mm256_setzero_pd();
180         fiy1             = _mm256_setzero_pd();
181         fiz1             = _mm256_setzero_pd();
182         fix2             = _mm256_setzero_pd();
183         fiy2             = _mm256_setzero_pd();
184         fiz2             = _mm256_setzero_pd();
185         fix3             = _mm256_setzero_pd();
186         fiy3             = _mm256_setzero_pd();
187         fiz3             = _mm256_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm256_setzero_pd();
191         vvdwsum          = _mm256_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
209                                                  x+j_coord_offsetC,x+j_coord_offsetD,
210                                                  &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm256_sub_pd(ix0,jx0);
214             dy00             = _mm256_sub_pd(iy0,jy0);
215             dz00             = _mm256_sub_pd(iz0,jz0);
216             dx10             = _mm256_sub_pd(ix1,jx0);
217             dy10             = _mm256_sub_pd(iy1,jy0);
218             dz10             = _mm256_sub_pd(iz1,jz0);
219             dx20             = _mm256_sub_pd(ix2,jx0);
220             dy20             = _mm256_sub_pd(iy2,jy0);
221             dz20             = _mm256_sub_pd(iz2,jz0);
222             dx30             = _mm256_sub_pd(ix3,jx0);
223             dy30             = _mm256_sub_pd(iy3,jy0);
224             dz30             = _mm256_sub_pd(iz3,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
228             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
229             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
230             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
231
232             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
233             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
234             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
235             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
236
237             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
238             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
239             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
240             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm256_setzero_pd();
251             fjy0             = _mm256_setzero_pd();
252             fjz0             = _mm256_setzero_pd();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm256_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm256_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
265                                             vdwioffsetptr0+vdwjidx0B,
266                                             vdwioffsetptr0+vdwjidx0C,
267                                             vdwioffsetptr0+vdwjidx0D,
268                                             &c6_00,&c12_00);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
276             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
277
278             d                = _mm256_sub_pd(r00,rswitch);
279             d                = _mm256_max_pd(d,_mm256_setzero_pd());
280             d2               = _mm256_mul_pd(d,d);
281             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
282
283             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
284
285             /* Evaluate switch function */
286             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
287             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
288             vvdw             = _mm256_mul_pd(vvdw,sw);
289             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
293             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjx0             = _mm256_add_pd(fjx0,tx);
310             fjy0             = _mm256_add_pd(fjy0,ty);
311             fjz0             = _mm256_add_pd(fjz0,tz);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_mm256_any_lt(rsq10,rcutoff2))
320             {
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm256_mul_pd(iq1,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
327             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
328
329             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _mm256_and_pd(velec,cutoff_mask);
333             velecsum         = _mm256_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             fscal            = _mm256_and_pd(fscal,cutoff_mask);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_pd(fscal,dx10);
341             ty               = _mm256_mul_pd(fscal,dy10);
342             tz               = _mm256_mul_pd(fscal,dz10);
343
344             /* Update vectorial force */
345             fix1             = _mm256_add_pd(fix1,tx);
346             fiy1             = _mm256_add_pd(fiy1,ty);
347             fiz1             = _mm256_add_pd(fiz1,tz);
348
349             fjx0             = _mm256_add_pd(fjx0,tx);
350             fjy0             = _mm256_add_pd(fjy0,ty);
351             fjz0             = _mm256_add_pd(fjz0,tz);
352
353             }
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (gmx_mm256_any_lt(rsq20,rcutoff2))
360             {
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq20             = _mm256_mul_pd(iq2,jq0);
364
365             /* REACTION-FIELD ELECTROSTATICS */
366             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
367             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
368
369             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm256_and_pd(velec,cutoff_mask);
373             velecsum         = _mm256_add_pd(velecsum,velec);
374
375             fscal            = felec;
376
377             fscal            = _mm256_and_pd(fscal,cutoff_mask);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_pd(fscal,dx20);
381             ty               = _mm256_mul_pd(fscal,dy20);
382             tz               = _mm256_mul_pd(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm256_add_pd(fix2,tx);
386             fiy2             = _mm256_add_pd(fiy2,ty);
387             fiz2             = _mm256_add_pd(fiz2,tz);
388
389             fjx0             = _mm256_add_pd(fjx0,tx);
390             fjy0             = _mm256_add_pd(fjy0,ty);
391             fjz0             = _mm256_add_pd(fjz0,tz);
392
393             }
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm256_any_lt(rsq30,rcutoff2))
400             {
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq30             = _mm256_mul_pd(iq3,jq0);
404
405             /* REACTION-FIELD ELECTROSTATICS */
406             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
407             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
408
409             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm256_and_pd(velec,cutoff_mask);
413             velecsum         = _mm256_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm256_and_pd(fscal,cutoff_mask);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_pd(fscal,dx30);
421             ty               = _mm256_mul_pd(fscal,dy30);
422             tz               = _mm256_mul_pd(fscal,dz30);
423
424             /* Update vectorial force */
425             fix3             = _mm256_add_pd(fix3,tx);
426             fiy3             = _mm256_add_pd(fiy3,ty);
427             fiz3             = _mm256_add_pd(fiz3,tz);
428
429             fjx0             = _mm256_add_pd(fjx0,tx);
430             fjy0             = _mm256_add_pd(fjy0,ty);
431             fjz0             = _mm256_add_pd(fjz0,tz);
432
433             }
434
435             fjptrA             = f+j_coord_offsetA;
436             fjptrB             = f+j_coord_offsetB;
437             fjptrC             = f+j_coord_offsetC;
438             fjptrD             = f+j_coord_offsetD;
439
440             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
441
442             /* Inner loop uses 170 flops */
443         }
444
445         if(jidx<j_index_end)
446         {
447
448             /* Get j neighbor index, and coordinate index */
449             jnrlistA         = jjnr[jidx];
450             jnrlistB         = jjnr[jidx+1];
451             jnrlistC         = jjnr[jidx+2];
452             jnrlistD         = jjnr[jidx+3];
453             /* Sign of each element will be negative for non-real atoms.
454              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
455              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
456              */
457             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
458
459             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
460             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
461             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
462
463             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
464             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
465             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
466             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
467             j_coord_offsetA  = DIM*jnrA;
468             j_coord_offsetB  = DIM*jnrB;
469             j_coord_offsetC  = DIM*jnrC;
470             j_coord_offsetD  = DIM*jnrD;
471
472             /* load j atom coordinates */
473             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474                                                  x+j_coord_offsetC,x+j_coord_offsetD,
475                                                  &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx00             = _mm256_sub_pd(ix0,jx0);
479             dy00             = _mm256_sub_pd(iy0,jy0);
480             dz00             = _mm256_sub_pd(iz0,jz0);
481             dx10             = _mm256_sub_pd(ix1,jx0);
482             dy10             = _mm256_sub_pd(iy1,jy0);
483             dz10             = _mm256_sub_pd(iz1,jz0);
484             dx20             = _mm256_sub_pd(ix2,jx0);
485             dy20             = _mm256_sub_pd(iy2,jy0);
486             dz20             = _mm256_sub_pd(iz2,jz0);
487             dx30             = _mm256_sub_pd(ix3,jx0);
488             dy30             = _mm256_sub_pd(iy3,jy0);
489             dz30             = _mm256_sub_pd(iz3,jz0);
490
491             /* Calculate squared distance and things based on it */
492             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
493             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
494             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
495             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
496
497             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
498             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
499             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
500             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
501
502             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
503             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
504             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
505             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
506
507             /* Load parameters for j particles */
508             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
509                                                                  charge+jnrC+0,charge+jnrD+0);
510             vdwjidx0A        = 2*vdwtype[jnrA+0];
511             vdwjidx0B        = 2*vdwtype[jnrB+0];
512             vdwjidx0C        = 2*vdwtype[jnrC+0];
513             vdwjidx0D        = 2*vdwtype[jnrD+0];
514
515             fjx0             = _mm256_setzero_pd();
516             fjy0             = _mm256_setzero_pd();
517             fjz0             = _mm256_setzero_pd();
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             if (gmx_mm256_any_lt(rsq00,rcutoff2))
524             {
525
526             r00              = _mm256_mul_pd(rsq00,rinv00);
527             r00              = _mm256_andnot_pd(dummy_mask,r00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
531                                             vdwioffsetptr0+vdwjidx0B,
532                                             vdwioffsetptr0+vdwjidx0C,
533                                             vdwioffsetptr0+vdwjidx0D,
534                                             &c6_00,&c12_00);
535
536             /* LENNARD-JONES DISPERSION/REPULSION */
537
538             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
539             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
540             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
541             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
542             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
543
544             d                = _mm256_sub_pd(r00,rswitch);
545             d                = _mm256_max_pd(d,_mm256_setzero_pd());
546             d2               = _mm256_mul_pd(d,d);
547             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
548
549             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
550
551             /* Evaluate switch function */
552             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
553             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
554             vvdw             = _mm256_mul_pd(vvdw,sw);
555             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
559             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
560             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
561
562             fscal            = fvdw;
563
564             fscal            = _mm256_and_pd(fscal,cutoff_mask);
565
566             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_pd(fscal,dx00);
570             ty               = _mm256_mul_pd(fscal,dy00);
571             tz               = _mm256_mul_pd(fscal,dz00);
572
573             /* Update vectorial force */
574             fix0             = _mm256_add_pd(fix0,tx);
575             fiy0             = _mm256_add_pd(fiy0,ty);
576             fiz0             = _mm256_add_pd(fiz0,tz);
577
578             fjx0             = _mm256_add_pd(fjx0,tx);
579             fjy0             = _mm256_add_pd(fjy0,ty);
580             fjz0             = _mm256_add_pd(fjz0,tz);
581
582             }
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (gmx_mm256_any_lt(rsq10,rcutoff2))
589             {
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq10             = _mm256_mul_pd(iq1,jq0);
593
594             /* REACTION-FIELD ELECTROSTATICS */
595             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
596             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
597
598             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm256_and_pd(velec,cutoff_mask);
602             velec            = _mm256_andnot_pd(dummy_mask,velec);
603             velecsum         = _mm256_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm256_and_pd(fscal,cutoff_mask);
608
609             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm256_mul_pd(fscal,dx10);
613             ty               = _mm256_mul_pd(fscal,dy10);
614             tz               = _mm256_mul_pd(fscal,dz10);
615
616             /* Update vectorial force */
617             fix1             = _mm256_add_pd(fix1,tx);
618             fiy1             = _mm256_add_pd(fiy1,ty);
619             fiz1             = _mm256_add_pd(fiz1,tz);
620
621             fjx0             = _mm256_add_pd(fjx0,tx);
622             fjy0             = _mm256_add_pd(fjy0,ty);
623             fjz0             = _mm256_add_pd(fjz0,tz);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm256_any_lt(rsq20,rcutoff2))
632             {
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq20             = _mm256_mul_pd(iq2,jq0);
636
637             /* REACTION-FIELD ELECTROSTATICS */
638             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
639             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
640
641             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm256_and_pd(velec,cutoff_mask);
645             velec            = _mm256_andnot_pd(dummy_mask,velec);
646             velecsum         = _mm256_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm256_and_pd(fscal,cutoff_mask);
651
652             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm256_mul_pd(fscal,dx20);
656             ty               = _mm256_mul_pd(fscal,dy20);
657             tz               = _mm256_mul_pd(fscal,dz20);
658
659             /* Update vectorial force */
660             fix2             = _mm256_add_pd(fix2,tx);
661             fiy2             = _mm256_add_pd(fiy2,ty);
662             fiz2             = _mm256_add_pd(fiz2,tz);
663
664             fjx0             = _mm256_add_pd(fjx0,tx);
665             fjy0             = _mm256_add_pd(fjy0,ty);
666             fjz0             = _mm256_add_pd(fjz0,tz);
667
668             }
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_mm256_any_lt(rsq30,rcutoff2))
675             {
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq30             = _mm256_mul_pd(iq3,jq0);
679
680             /* REACTION-FIELD ELECTROSTATICS */
681             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
682             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
683
684             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
685
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm256_and_pd(velec,cutoff_mask);
688             velec            = _mm256_andnot_pd(dummy_mask,velec);
689             velecsum         = _mm256_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             fscal            = _mm256_and_pd(fscal,cutoff_mask);
694
695             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm256_mul_pd(fscal,dx30);
699             ty               = _mm256_mul_pd(fscal,dy30);
700             tz               = _mm256_mul_pd(fscal,dz30);
701
702             /* Update vectorial force */
703             fix3             = _mm256_add_pd(fix3,tx);
704             fiy3             = _mm256_add_pd(fiy3,ty);
705             fiz3             = _mm256_add_pd(fiz3,tz);
706
707             fjx0             = _mm256_add_pd(fjx0,tx);
708             fjy0             = _mm256_add_pd(fjy0,ty);
709             fjz0             = _mm256_add_pd(fjz0,tz);
710
711             }
712
713             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
714             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
715             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
716             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
717
718             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
719
720             /* Inner loop uses 171 flops */
721         }
722
723         /* End of innermost loop */
724
725         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
726                                                  f+i_coord_offset,fshift+i_shift_offset);
727
728         ggid                        = gid[iidx];
729         /* Update potential energies */
730         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
731         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
732
733         /* Increment number of inner iterations */
734         inneriter                  += j_index_end - j_index_start;
735
736         /* Outer loop uses 26 flops */
737     }
738
739     /* Increment number of outer iterations */
740     outeriter        += nri;
741
742     /* Update outer/inner flops */
743
744     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
745 }
746 /*
747  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
748  * Electrostatics interaction: ReactionField
749  * VdW interaction:            LennardJones
750  * Geometry:                   Water4-Particle
751  * Calculate force/pot:        Force
752  */
753 void
754 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
755                     (t_nblist * gmx_restrict                nlist,
756                      rvec * gmx_restrict                    xx,
757                      rvec * gmx_restrict                    ff,
758                      t_forcerec * gmx_restrict              fr,
759                      t_mdatoms * gmx_restrict               mdatoms,
760                      nb_kernel_data_t * gmx_restrict        kernel_data,
761                      t_nrnb * gmx_restrict                  nrnb)
762 {
763     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
764      * just 0 for non-waters.
765      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
766      * jnr indices corresponding to data put in the four positions in the SIMD register.
767      */
768     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
769     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
770     int              jnrA,jnrB,jnrC,jnrD;
771     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
772     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
773     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
774     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
775     real             rcutoff_scalar;
776     real             *shiftvec,*fshift,*x,*f;
777     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
778     real             scratch[4*DIM];
779     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
780     real *           vdwioffsetptr0;
781     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
782     real *           vdwioffsetptr1;
783     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
784     real *           vdwioffsetptr2;
785     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
786     real *           vdwioffsetptr3;
787     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
788     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
789     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
790     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
791     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
792     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
793     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
794     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
795     real             *charge;
796     int              nvdwtype;
797     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
798     int              *vdwtype;
799     real             *vdwparam;
800     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
801     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
802     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
803     real             rswitch_scalar,d_scalar;
804     __m256d          dummy_mask,cutoff_mask;
805     __m128           tmpmask0,tmpmask1;
806     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
807     __m256d          one     = _mm256_set1_pd(1.0);
808     __m256d          two     = _mm256_set1_pd(2.0);
809     x                = xx[0];
810     f                = ff[0];
811
812     nri              = nlist->nri;
813     iinr             = nlist->iinr;
814     jindex           = nlist->jindex;
815     jjnr             = nlist->jjnr;
816     shiftidx         = nlist->shift;
817     gid              = nlist->gid;
818     shiftvec         = fr->shift_vec[0];
819     fshift           = fr->fshift[0];
820     facel            = _mm256_set1_pd(fr->epsfac);
821     charge           = mdatoms->chargeA;
822     krf              = _mm256_set1_pd(fr->ic->k_rf);
823     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
824     crf              = _mm256_set1_pd(fr->ic->c_rf);
825     nvdwtype         = fr->ntype;
826     vdwparam         = fr->nbfp;
827     vdwtype          = mdatoms->typeA;
828
829     /* Setup water-specific parameters */
830     inr              = nlist->iinr[0];
831     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
832     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
833     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
834     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
835
836     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
837     rcutoff_scalar   = fr->rcoulomb;
838     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
839     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
840
841     rswitch_scalar   = fr->rvdw_switch;
842     rswitch          = _mm256_set1_pd(rswitch_scalar);
843     /* Setup switch parameters */
844     d_scalar         = rcutoff_scalar-rswitch_scalar;
845     d                = _mm256_set1_pd(d_scalar);
846     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
847     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
848     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
849     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
850     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
851     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
852
853     /* Avoid stupid compiler warnings */
854     jnrA = jnrB = jnrC = jnrD = 0;
855     j_coord_offsetA = 0;
856     j_coord_offsetB = 0;
857     j_coord_offsetC = 0;
858     j_coord_offsetD = 0;
859
860     outeriter        = 0;
861     inneriter        = 0;
862
863     for(iidx=0;iidx<4*DIM;iidx++)
864     {
865         scratch[iidx] = 0.0;
866     }
867
868     /* Start outer loop over neighborlists */
869     for(iidx=0; iidx<nri; iidx++)
870     {
871         /* Load shift vector for this list */
872         i_shift_offset   = DIM*shiftidx[iidx];
873
874         /* Load limits for loop over neighbors */
875         j_index_start    = jindex[iidx];
876         j_index_end      = jindex[iidx+1];
877
878         /* Get outer coordinate index */
879         inr              = iinr[iidx];
880         i_coord_offset   = DIM*inr;
881
882         /* Load i particle coords and add shift vector */
883         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
884                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
885
886         fix0             = _mm256_setzero_pd();
887         fiy0             = _mm256_setzero_pd();
888         fiz0             = _mm256_setzero_pd();
889         fix1             = _mm256_setzero_pd();
890         fiy1             = _mm256_setzero_pd();
891         fiz1             = _mm256_setzero_pd();
892         fix2             = _mm256_setzero_pd();
893         fiy2             = _mm256_setzero_pd();
894         fiz2             = _mm256_setzero_pd();
895         fix3             = _mm256_setzero_pd();
896         fiy3             = _mm256_setzero_pd();
897         fiz3             = _mm256_setzero_pd();
898
899         /* Start inner kernel loop */
900         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrA             = jjnr[jidx];
905             jnrB             = jjnr[jidx+1];
906             jnrC             = jjnr[jidx+2];
907             jnrD             = jjnr[jidx+3];
908             j_coord_offsetA  = DIM*jnrA;
909             j_coord_offsetB  = DIM*jnrB;
910             j_coord_offsetC  = DIM*jnrC;
911             j_coord_offsetD  = DIM*jnrD;
912
913             /* load j atom coordinates */
914             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
915                                                  x+j_coord_offsetC,x+j_coord_offsetD,
916                                                  &jx0,&jy0,&jz0);
917
918             /* Calculate displacement vector */
919             dx00             = _mm256_sub_pd(ix0,jx0);
920             dy00             = _mm256_sub_pd(iy0,jy0);
921             dz00             = _mm256_sub_pd(iz0,jz0);
922             dx10             = _mm256_sub_pd(ix1,jx0);
923             dy10             = _mm256_sub_pd(iy1,jy0);
924             dz10             = _mm256_sub_pd(iz1,jz0);
925             dx20             = _mm256_sub_pd(ix2,jx0);
926             dy20             = _mm256_sub_pd(iy2,jy0);
927             dz20             = _mm256_sub_pd(iz2,jz0);
928             dx30             = _mm256_sub_pd(ix3,jx0);
929             dy30             = _mm256_sub_pd(iy3,jy0);
930             dz30             = _mm256_sub_pd(iz3,jz0);
931
932             /* Calculate squared distance and things based on it */
933             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
934             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
935             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
936             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
937
938             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
939             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
940             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
941             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
942
943             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
944             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
945             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
946             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
947
948             /* Load parameters for j particles */
949             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
950                                                                  charge+jnrC+0,charge+jnrD+0);
951             vdwjidx0A        = 2*vdwtype[jnrA+0];
952             vdwjidx0B        = 2*vdwtype[jnrB+0];
953             vdwjidx0C        = 2*vdwtype[jnrC+0];
954             vdwjidx0D        = 2*vdwtype[jnrD+0];
955
956             fjx0             = _mm256_setzero_pd();
957             fjy0             = _mm256_setzero_pd();
958             fjz0             = _mm256_setzero_pd();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (gmx_mm256_any_lt(rsq00,rcutoff2))
965             {
966
967             r00              = _mm256_mul_pd(rsq00,rinv00);
968
969             /* Compute parameters for interactions between i and j atoms */
970             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
971                                             vdwioffsetptr0+vdwjidx0B,
972                                             vdwioffsetptr0+vdwjidx0C,
973                                             vdwioffsetptr0+vdwjidx0D,
974                                             &c6_00,&c12_00);
975
976             /* LENNARD-JONES DISPERSION/REPULSION */
977
978             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
979             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
980             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
981             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
982             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
983
984             d                = _mm256_sub_pd(r00,rswitch);
985             d                = _mm256_max_pd(d,_mm256_setzero_pd());
986             d2               = _mm256_mul_pd(d,d);
987             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
988
989             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
990
991             /* Evaluate switch function */
992             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
993             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
994             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
995
996             fscal            = fvdw;
997
998             fscal            = _mm256_and_pd(fscal,cutoff_mask);
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_pd(fscal,dx00);
1002             ty               = _mm256_mul_pd(fscal,dy00);
1003             tz               = _mm256_mul_pd(fscal,dz00);
1004
1005             /* Update vectorial force */
1006             fix0             = _mm256_add_pd(fix0,tx);
1007             fiy0             = _mm256_add_pd(fiy0,ty);
1008             fiz0             = _mm256_add_pd(fiz0,tz);
1009
1010             fjx0             = _mm256_add_pd(fjx0,tx);
1011             fjy0             = _mm256_add_pd(fjy0,ty);
1012             fjz0             = _mm256_add_pd(fjz0,tz);
1013
1014             }
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1021             {
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq10             = _mm256_mul_pd(iq1,jq0);
1025
1026             /* REACTION-FIELD ELECTROSTATICS */
1027             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1028
1029             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm256_mul_pd(fscal,dx10);
1037             ty               = _mm256_mul_pd(fscal,dy10);
1038             tz               = _mm256_mul_pd(fscal,dz10);
1039
1040             /* Update vectorial force */
1041             fix1             = _mm256_add_pd(fix1,tx);
1042             fiy1             = _mm256_add_pd(fiy1,ty);
1043             fiz1             = _mm256_add_pd(fiz1,tz);
1044
1045             fjx0             = _mm256_add_pd(fjx0,tx);
1046             fjy0             = _mm256_add_pd(fjy0,ty);
1047             fjz0             = _mm256_add_pd(fjz0,tz);
1048
1049             }
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1056             {
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _mm256_mul_pd(iq2,jq0);
1060
1061             /* REACTION-FIELD ELECTROSTATICS */
1062             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1063
1064             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm256_mul_pd(fscal,dx20);
1072             ty               = _mm256_mul_pd(fscal,dy20);
1073             tz               = _mm256_mul_pd(fscal,dz20);
1074
1075             /* Update vectorial force */
1076             fix2             = _mm256_add_pd(fix2,tx);
1077             fiy2             = _mm256_add_pd(fiy2,ty);
1078             fiz2             = _mm256_add_pd(fiz2,tz);
1079
1080             fjx0             = _mm256_add_pd(fjx0,tx);
1081             fjy0             = _mm256_add_pd(fjy0,ty);
1082             fjz0             = _mm256_add_pd(fjz0,tz);
1083
1084             }
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1091             {
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq30             = _mm256_mul_pd(iq3,jq0);
1095
1096             /* REACTION-FIELD ELECTROSTATICS */
1097             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1098
1099             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1100
1101             fscal            = felec;
1102
1103             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1104
1105             /* Calculate temporary vectorial force */
1106             tx               = _mm256_mul_pd(fscal,dx30);
1107             ty               = _mm256_mul_pd(fscal,dy30);
1108             tz               = _mm256_mul_pd(fscal,dz30);
1109
1110             /* Update vectorial force */
1111             fix3             = _mm256_add_pd(fix3,tx);
1112             fiy3             = _mm256_add_pd(fiy3,ty);
1113             fiz3             = _mm256_add_pd(fiz3,tz);
1114
1115             fjx0             = _mm256_add_pd(fjx0,tx);
1116             fjy0             = _mm256_add_pd(fjy0,ty);
1117             fjz0             = _mm256_add_pd(fjz0,tz);
1118
1119             }
1120
1121             fjptrA             = f+j_coord_offsetA;
1122             fjptrB             = f+j_coord_offsetB;
1123             fjptrC             = f+j_coord_offsetC;
1124             fjptrD             = f+j_coord_offsetD;
1125
1126             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1127
1128             /* Inner loop uses 149 flops */
1129         }
1130
1131         if(jidx<j_index_end)
1132         {
1133
1134             /* Get j neighbor index, and coordinate index */
1135             jnrlistA         = jjnr[jidx];
1136             jnrlistB         = jjnr[jidx+1];
1137             jnrlistC         = jjnr[jidx+2];
1138             jnrlistD         = jjnr[jidx+3];
1139             /* Sign of each element will be negative for non-real atoms.
1140              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1141              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1142              */
1143             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1144
1145             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1146             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1147             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1148
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             j_coord_offsetA  = DIM*jnrA;
1154             j_coord_offsetB  = DIM*jnrB;
1155             j_coord_offsetC  = DIM*jnrC;
1156             j_coord_offsetD  = DIM*jnrD;
1157
1158             /* load j atom coordinates */
1159             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1161                                                  &jx0,&jy0,&jz0);
1162
1163             /* Calculate displacement vector */
1164             dx00             = _mm256_sub_pd(ix0,jx0);
1165             dy00             = _mm256_sub_pd(iy0,jy0);
1166             dz00             = _mm256_sub_pd(iz0,jz0);
1167             dx10             = _mm256_sub_pd(ix1,jx0);
1168             dy10             = _mm256_sub_pd(iy1,jy0);
1169             dz10             = _mm256_sub_pd(iz1,jz0);
1170             dx20             = _mm256_sub_pd(ix2,jx0);
1171             dy20             = _mm256_sub_pd(iy2,jy0);
1172             dz20             = _mm256_sub_pd(iz2,jz0);
1173             dx30             = _mm256_sub_pd(ix3,jx0);
1174             dy30             = _mm256_sub_pd(iy3,jy0);
1175             dz30             = _mm256_sub_pd(iz3,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1179             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1180             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1181             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1182
1183             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1184             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1185             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1186             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1187
1188             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1189             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1190             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1191             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1192
1193             /* Load parameters for j particles */
1194             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1195                                                                  charge+jnrC+0,charge+jnrD+0);
1196             vdwjidx0A        = 2*vdwtype[jnrA+0];
1197             vdwjidx0B        = 2*vdwtype[jnrB+0];
1198             vdwjidx0C        = 2*vdwtype[jnrC+0];
1199             vdwjidx0D        = 2*vdwtype[jnrD+0];
1200
1201             fjx0             = _mm256_setzero_pd();
1202             fjy0             = _mm256_setzero_pd();
1203             fjz0             = _mm256_setzero_pd();
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1210             {
1211
1212             r00              = _mm256_mul_pd(rsq00,rinv00);
1213             r00              = _mm256_andnot_pd(dummy_mask,r00);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1217                                             vdwioffsetptr0+vdwjidx0B,
1218                                             vdwioffsetptr0+vdwjidx0C,
1219                                             vdwioffsetptr0+vdwjidx0D,
1220                                             &c6_00,&c12_00);
1221
1222             /* LENNARD-JONES DISPERSION/REPULSION */
1223
1224             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1225             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1226             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1227             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1228             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1229
1230             d                = _mm256_sub_pd(r00,rswitch);
1231             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1232             d2               = _mm256_mul_pd(d,d);
1233             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1234
1235             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1236
1237             /* Evaluate switch function */
1238             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1239             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1240             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1241
1242             fscal            = fvdw;
1243
1244             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1245
1246             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm256_mul_pd(fscal,dx00);
1250             ty               = _mm256_mul_pd(fscal,dy00);
1251             tz               = _mm256_mul_pd(fscal,dz00);
1252
1253             /* Update vectorial force */
1254             fix0             = _mm256_add_pd(fix0,tx);
1255             fiy0             = _mm256_add_pd(fiy0,ty);
1256             fiz0             = _mm256_add_pd(fiz0,tz);
1257
1258             fjx0             = _mm256_add_pd(fjx0,tx);
1259             fjy0             = _mm256_add_pd(fjy0,ty);
1260             fjz0             = _mm256_add_pd(fjz0,tz);
1261
1262             }
1263
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1269             {
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm256_mul_pd(iq1,jq0);
1273
1274             /* REACTION-FIELD ELECTROSTATICS */
1275             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1276
1277             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1282
1283             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm256_mul_pd(fscal,dx10);
1287             ty               = _mm256_mul_pd(fscal,dy10);
1288             tz               = _mm256_mul_pd(fscal,dz10);
1289
1290             /* Update vectorial force */
1291             fix1             = _mm256_add_pd(fix1,tx);
1292             fiy1             = _mm256_add_pd(fiy1,ty);
1293             fiz1             = _mm256_add_pd(fiz1,tz);
1294
1295             fjx0             = _mm256_add_pd(fjx0,tx);
1296             fjy0             = _mm256_add_pd(fjy0,ty);
1297             fjz0             = _mm256_add_pd(fjz0,tz);
1298
1299             }
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1306             {
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq20             = _mm256_mul_pd(iq2,jq0);
1310
1311             /* REACTION-FIELD ELECTROSTATICS */
1312             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1313
1314             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1315
1316             fscal            = felec;
1317
1318             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1319
1320             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1321
1322             /* Calculate temporary vectorial force */
1323             tx               = _mm256_mul_pd(fscal,dx20);
1324             ty               = _mm256_mul_pd(fscal,dy20);
1325             tz               = _mm256_mul_pd(fscal,dz20);
1326
1327             /* Update vectorial force */
1328             fix2             = _mm256_add_pd(fix2,tx);
1329             fiy2             = _mm256_add_pd(fiy2,ty);
1330             fiz2             = _mm256_add_pd(fiz2,tz);
1331
1332             fjx0             = _mm256_add_pd(fjx0,tx);
1333             fjy0             = _mm256_add_pd(fjy0,ty);
1334             fjz0             = _mm256_add_pd(fjz0,tz);
1335
1336             }
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1343             {
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq30             = _mm256_mul_pd(iq3,jq0);
1347
1348             /* REACTION-FIELD ELECTROSTATICS */
1349             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1350
1351             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1356
1357             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm256_mul_pd(fscal,dx30);
1361             ty               = _mm256_mul_pd(fscal,dy30);
1362             tz               = _mm256_mul_pd(fscal,dz30);
1363
1364             /* Update vectorial force */
1365             fix3             = _mm256_add_pd(fix3,tx);
1366             fiy3             = _mm256_add_pd(fiy3,ty);
1367             fiz3             = _mm256_add_pd(fiz3,tz);
1368
1369             fjx0             = _mm256_add_pd(fjx0,tx);
1370             fjy0             = _mm256_add_pd(fjy0,ty);
1371             fjz0             = _mm256_add_pd(fjz0,tz);
1372
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382             /* Inner loop uses 150 flops */
1383         }
1384
1385         /* End of innermost loop */
1386
1387         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1388                                                  f+i_coord_offset,fshift+i_shift_offset);
1389
1390         /* Increment number of inner iterations */
1391         inneriter                  += j_index_end - j_index_start;
1392
1393         /* Outer loop uses 24 flops */
1394     }
1395
1396     /* Increment number of outer iterations */
1397     outeriter        += nri;
1398
1399     /* Update outer/inner flops */
1400
1401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1402 }