Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
107     real             rswitch_scalar,d_scalar;
108     __m256d          dummy_mask,cutoff_mask;
109     __m128           tmpmask0,tmpmask1;
110     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
111     __m256d          one     = _mm256_set1_pd(1.0);
112     __m256d          two     = _mm256_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm256_set1_pd(fr->ic->k_rf);
127     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
128     crf              = _mm256_set1_pd(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
144
145     rswitch_scalar   = fr->rvdw_switch;
146     rswitch          = _mm256_set1_pd(rswitch_scalar);
147     /* Setup switch parameters */
148     d_scalar         = rcutoff_scalar-rswitch_scalar;
149     d                = _mm256_set1_pd(d_scalar);
150     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
151     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
154     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
189
190         fix0             = _mm256_setzero_pd();
191         fiy0             = _mm256_setzero_pd();
192         fiz0             = _mm256_setzero_pd();
193         fix1             = _mm256_setzero_pd();
194         fiy1             = _mm256_setzero_pd();
195         fiz1             = _mm256_setzero_pd();
196         fix2             = _mm256_setzero_pd();
197         fiy2             = _mm256_setzero_pd();
198         fiz2             = _mm256_setzero_pd();
199         fix3             = _mm256_setzero_pd();
200         fiy3             = _mm256_setzero_pd();
201         fiz3             = _mm256_setzero_pd();
202
203         /* Reset potential sums */
204         velecsum         = _mm256_setzero_pd();
205         vvdwsum          = _mm256_setzero_pd();
206
207         /* Start inner kernel loop */
208         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrA             = jjnr[jidx];
213             jnrB             = jjnr[jidx+1];
214             jnrC             = jjnr[jidx+2];
215             jnrD             = jjnr[jidx+3];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220
221             /* load j atom coordinates */
222             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
223                                                  x+j_coord_offsetC,x+j_coord_offsetD,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_pd(ix0,jx0);
228             dy00             = _mm256_sub_pd(iy0,jy0);
229             dz00             = _mm256_sub_pd(iz0,jz0);
230             dx10             = _mm256_sub_pd(ix1,jx0);
231             dy10             = _mm256_sub_pd(iy1,jy0);
232             dz10             = _mm256_sub_pd(iz1,jz0);
233             dx20             = _mm256_sub_pd(ix2,jx0);
234             dy20             = _mm256_sub_pd(iy2,jy0);
235             dz20             = _mm256_sub_pd(iz2,jz0);
236             dx30             = _mm256_sub_pd(ix3,jx0);
237             dy30             = _mm256_sub_pd(iy3,jy0);
238             dz30             = _mm256_sub_pd(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
244             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
245
246             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
247             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
248             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
249             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
250
251             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
252             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
253             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
254             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
255
256             /* Load parameters for j particles */
257             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
258                                                                  charge+jnrC+0,charge+jnrD+0);
259             vdwjidx0A        = 2*vdwtype[jnrA+0];
260             vdwjidx0B        = 2*vdwtype[jnrB+0];
261             vdwjidx0C        = 2*vdwtype[jnrC+0];
262             vdwjidx0D        = 2*vdwtype[jnrD+0];
263
264             fjx0             = _mm256_setzero_pd();
265             fjy0             = _mm256_setzero_pd();
266             fjz0             = _mm256_setzero_pd();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm256_any_lt(rsq00,rcutoff2))
273             {
274
275             r00              = _mm256_mul_pd(rsq00,rinv00);
276
277             /* Compute parameters for interactions between i and j atoms */
278             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
279                                             vdwioffsetptr0+vdwjidx0B,
280                                             vdwioffsetptr0+vdwjidx0C,
281                                             vdwioffsetptr0+vdwjidx0D,
282                                             &c6_00,&c12_00);
283
284             /* LENNARD-JONES DISPERSION/REPULSION */
285
286             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
287             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
288             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
289             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
290             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
291
292             d                = _mm256_sub_pd(r00,rswitch);
293             d                = _mm256_max_pd(d,_mm256_setzero_pd());
294             d2               = _mm256_mul_pd(d,d);
295             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
296
297             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
298
299             /* Evaluate switch function */
300             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
301             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
302             vvdw             = _mm256_mul_pd(vvdw,sw);
303             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
307             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
308
309             fscal            = fvdw;
310
311             fscal            = _mm256_and_pd(fscal,cutoff_mask);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx00);
315             ty               = _mm256_mul_pd(fscal,dy00);
316             tz               = _mm256_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_pd(fix0,tx);
320             fiy0             = _mm256_add_pd(fiy0,ty);
321             fiz0             = _mm256_add_pd(fiz0,tz);
322
323             fjx0             = _mm256_add_pd(fjx0,tx);
324             fjy0             = _mm256_add_pd(fjy0,ty);
325             fjz0             = _mm256_add_pd(fjz0,tz);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm256_any_lt(rsq10,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq10             = _mm256_mul_pd(iq1,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
341             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
342
343             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm256_and_pd(velec,cutoff_mask);
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm256_and_pd(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_pd(fscal,dx10);
355             ty               = _mm256_mul_pd(fscal,dy10);
356             tz               = _mm256_mul_pd(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm256_add_pd(fix1,tx);
360             fiy1             = _mm256_add_pd(fiy1,ty);
361             fiz1             = _mm256_add_pd(fiz1,tz);
362
363             fjx0             = _mm256_add_pd(fjx0,tx);
364             fjy0             = _mm256_add_pd(fjy0,ty);
365             fjz0             = _mm256_add_pd(fjz0,tz);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm256_any_lt(rsq20,rcutoff2))
374             {
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm256_mul_pd(iq2,jq0);
378
379             /* REACTION-FIELD ELECTROSTATICS */
380             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
381             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
382
383             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm256_and_pd(velec,cutoff_mask);
387             velecsum         = _mm256_add_pd(velecsum,velec);
388
389             fscal            = felec;
390
391             fscal            = _mm256_and_pd(fscal,cutoff_mask);
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm256_mul_pd(fscal,dx20);
395             ty               = _mm256_mul_pd(fscal,dy20);
396             tz               = _mm256_mul_pd(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm256_add_pd(fix2,tx);
400             fiy2             = _mm256_add_pd(fiy2,ty);
401             fiz2             = _mm256_add_pd(fiz2,tz);
402
403             fjx0             = _mm256_add_pd(fjx0,tx);
404             fjy0             = _mm256_add_pd(fjy0,ty);
405             fjz0             = _mm256_add_pd(fjz0,tz);
406
407             }
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             if (gmx_mm256_any_lt(rsq30,rcutoff2))
414             {
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq30             = _mm256_mul_pd(iq3,jq0);
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
421             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
422
423             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm256_and_pd(velec,cutoff_mask);
427             velecsum         = _mm256_add_pd(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm256_and_pd(fscal,cutoff_mask);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_pd(fscal,dx30);
435             ty               = _mm256_mul_pd(fscal,dy30);
436             tz               = _mm256_mul_pd(fscal,dz30);
437
438             /* Update vectorial force */
439             fix3             = _mm256_add_pd(fix3,tx);
440             fiy3             = _mm256_add_pd(fiy3,ty);
441             fiz3             = _mm256_add_pd(fiz3,tz);
442
443             fjx0             = _mm256_add_pd(fjx0,tx);
444             fjy0             = _mm256_add_pd(fjy0,ty);
445             fjz0             = _mm256_add_pd(fjz0,tz);
446
447             }
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453
454             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
455
456             /* Inner loop uses 170 flops */
457         }
458
459         if(jidx<j_index_end)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrlistA         = jjnr[jidx];
464             jnrlistB         = jjnr[jidx+1];
465             jnrlistC         = jjnr[jidx+2];
466             jnrlistD         = jjnr[jidx+3];
467             /* Sign of each element will be negative for non-real atoms.
468              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
469              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
470              */
471             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
472
473             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
474             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
475             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
476
477             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
478             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
479             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
480             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
481             j_coord_offsetA  = DIM*jnrA;
482             j_coord_offsetB  = DIM*jnrB;
483             j_coord_offsetC  = DIM*jnrC;
484             j_coord_offsetD  = DIM*jnrD;
485
486             /* load j atom coordinates */
487             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
488                                                  x+j_coord_offsetC,x+j_coord_offsetD,
489                                                  &jx0,&jy0,&jz0);
490
491             /* Calculate displacement vector */
492             dx00             = _mm256_sub_pd(ix0,jx0);
493             dy00             = _mm256_sub_pd(iy0,jy0);
494             dz00             = _mm256_sub_pd(iz0,jz0);
495             dx10             = _mm256_sub_pd(ix1,jx0);
496             dy10             = _mm256_sub_pd(iy1,jy0);
497             dz10             = _mm256_sub_pd(iz1,jz0);
498             dx20             = _mm256_sub_pd(ix2,jx0);
499             dy20             = _mm256_sub_pd(iy2,jy0);
500             dz20             = _mm256_sub_pd(iz2,jz0);
501             dx30             = _mm256_sub_pd(ix3,jx0);
502             dy30             = _mm256_sub_pd(iy3,jy0);
503             dz30             = _mm256_sub_pd(iz3,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
507             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
508             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
509             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
510
511             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
512             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
513             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
514             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
515
516             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
517             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
518             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
519             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
520
521             /* Load parameters for j particles */
522             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
523                                                                  charge+jnrC+0,charge+jnrD+0);
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525             vdwjidx0B        = 2*vdwtype[jnrB+0];
526             vdwjidx0C        = 2*vdwtype[jnrC+0];
527             vdwjidx0D        = 2*vdwtype[jnrD+0];
528
529             fjx0             = _mm256_setzero_pd();
530             fjy0             = _mm256_setzero_pd();
531             fjz0             = _mm256_setzero_pd();
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             if (gmx_mm256_any_lt(rsq00,rcutoff2))
538             {
539
540             r00              = _mm256_mul_pd(rsq00,rinv00);
541             r00              = _mm256_andnot_pd(dummy_mask,r00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
545                                             vdwioffsetptr0+vdwjidx0B,
546                                             vdwioffsetptr0+vdwjidx0C,
547                                             vdwioffsetptr0+vdwjidx0D,
548                                             &c6_00,&c12_00);
549
550             /* LENNARD-JONES DISPERSION/REPULSION */
551
552             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
553             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
554             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
555             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
556             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
557
558             d                = _mm256_sub_pd(r00,rswitch);
559             d                = _mm256_max_pd(d,_mm256_setzero_pd());
560             d2               = _mm256_mul_pd(d,d);
561             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
562
563             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
564
565             /* Evaluate switch function */
566             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
567             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
568             vvdw             = _mm256_mul_pd(vvdw,sw);
569             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
573             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
574             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
575
576             fscal            = fvdw;
577
578             fscal            = _mm256_and_pd(fscal,cutoff_mask);
579
580             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx00);
584             ty               = _mm256_mul_pd(fscal,dy00);
585             tz               = _mm256_mul_pd(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm256_add_pd(fix0,tx);
589             fiy0             = _mm256_add_pd(fiy0,ty);
590             fiz0             = _mm256_add_pd(fiz0,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             }
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm256_any_lt(rsq10,rcutoff2))
603             {
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq10             = _mm256_mul_pd(iq1,jq0);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
610             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
611
612             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm256_and_pd(velec,cutoff_mask);
616             velec            = _mm256_andnot_pd(dummy_mask,velec);
617             velecsum         = _mm256_add_pd(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm256_and_pd(fscal,cutoff_mask);
622
623             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_pd(fscal,dx10);
627             ty               = _mm256_mul_pd(fscal,dy10);
628             tz               = _mm256_mul_pd(fscal,dz10);
629
630             /* Update vectorial force */
631             fix1             = _mm256_add_pd(fix1,tx);
632             fiy1             = _mm256_add_pd(fiy1,ty);
633             fiz1             = _mm256_add_pd(fiz1,tz);
634
635             fjx0             = _mm256_add_pd(fjx0,tx);
636             fjy0             = _mm256_add_pd(fjy0,ty);
637             fjz0             = _mm256_add_pd(fjz0,tz);
638
639             }
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm256_any_lt(rsq20,rcutoff2))
646             {
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq20             = _mm256_mul_pd(iq2,jq0);
650
651             /* REACTION-FIELD ELECTROSTATICS */
652             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
653             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
654
655             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm256_and_pd(velec,cutoff_mask);
659             velec            = _mm256_andnot_pd(dummy_mask,velec);
660             velecsum         = _mm256_add_pd(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm256_and_pd(fscal,cutoff_mask);
665
666             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm256_mul_pd(fscal,dx20);
670             ty               = _mm256_mul_pd(fscal,dy20);
671             tz               = _mm256_mul_pd(fscal,dz20);
672
673             /* Update vectorial force */
674             fix2             = _mm256_add_pd(fix2,tx);
675             fiy2             = _mm256_add_pd(fiy2,ty);
676             fiz2             = _mm256_add_pd(fiz2,tz);
677
678             fjx0             = _mm256_add_pd(fjx0,tx);
679             fjy0             = _mm256_add_pd(fjy0,ty);
680             fjz0             = _mm256_add_pd(fjz0,tz);
681
682             }
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             if (gmx_mm256_any_lt(rsq30,rcutoff2))
689             {
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq30             = _mm256_mul_pd(iq3,jq0);
693
694             /* REACTION-FIELD ELECTROSTATICS */
695             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
696             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
697
698             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             velec            = _mm256_and_pd(velec,cutoff_mask);
702             velec            = _mm256_andnot_pd(dummy_mask,velec);
703             velecsum         = _mm256_add_pd(velecsum,velec);
704
705             fscal            = felec;
706
707             fscal            = _mm256_and_pd(fscal,cutoff_mask);
708
709             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm256_mul_pd(fscal,dx30);
713             ty               = _mm256_mul_pd(fscal,dy30);
714             tz               = _mm256_mul_pd(fscal,dz30);
715
716             /* Update vectorial force */
717             fix3             = _mm256_add_pd(fix3,tx);
718             fiy3             = _mm256_add_pd(fiy3,ty);
719             fiz3             = _mm256_add_pd(fiz3,tz);
720
721             fjx0             = _mm256_add_pd(fjx0,tx);
722             fjy0             = _mm256_add_pd(fjy0,ty);
723             fjz0             = _mm256_add_pd(fjz0,tz);
724
725             }
726
727             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
728             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
729             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
730             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
731
732             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
733
734             /* Inner loop uses 171 flops */
735         }
736
737         /* End of innermost loop */
738
739         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
740                                                  f+i_coord_offset,fshift+i_shift_offset);
741
742         ggid                        = gid[iidx];
743         /* Update potential energies */
744         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
745         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 26 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
759 }
760 /*
761  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
762  * Electrostatics interaction: ReactionField
763  * VdW interaction:            LennardJones
764  * Geometry:                   Water4-Particle
765  * Calculate force/pot:        Force
766  */
767 void
768 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
769                     (t_nblist                    * gmx_restrict       nlist,
770                      rvec                        * gmx_restrict          xx,
771                      rvec                        * gmx_restrict          ff,
772                      t_forcerec                  * gmx_restrict          fr,
773                      t_mdatoms                   * gmx_restrict     mdatoms,
774                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
775                      t_nrnb                      * gmx_restrict        nrnb)
776 {
777     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
778      * just 0 for non-waters.
779      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
780      * jnr indices corresponding to data put in the four positions in the SIMD register.
781      */
782     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
783     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
784     int              jnrA,jnrB,jnrC,jnrD;
785     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
786     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
787     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
788     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
789     real             rcutoff_scalar;
790     real             *shiftvec,*fshift,*x,*f;
791     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
792     real             scratch[4*DIM];
793     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
794     real *           vdwioffsetptr0;
795     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
796     real *           vdwioffsetptr1;
797     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
798     real *           vdwioffsetptr2;
799     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
800     real *           vdwioffsetptr3;
801     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
802     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
803     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
804     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
805     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
806     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
807     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
808     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
809     real             *charge;
810     int              nvdwtype;
811     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
812     int              *vdwtype;
813     real             *vdwparam;
814     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
815     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
816     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
817     real             rswitch_scalar,d_scalar;
818     __m256d          dummy_mask,cutoff_mask;
819     __m128           tmpmask0,tmpmask1;
820     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
821     __m256d          one     = _mm256_set1_pd(1.0);
822     __m256d          two     = _mm256_set1_pd(2.0);
823     x                = xx[0];
824     f                = ff[0];
825
826     nri              = nlist->nri;
827     iinr             = nlist->iinr;
828     jindex           = nlist->jindex;
829     jjnr             = nlist->jjnr;
830     shiftidx         = nlist->shift;
831     gid              = nlist->gid;
832     shiftvec         = fr->shift_vec[0];
833     fshift           = fr->fshift[0];
834     facel            = _mm256_set1_pd(fr->epsfac);
835     charge           = mdatoms->chargeA;
836     krf              = _mm256_set1_pd(fr->ic->k_rf);
837     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
838     crf              = _mm256_set1_pd(fr->ic->c_rf);
839     nvdwtype         = fr->ntype;
840     vdwparam         = fr->nbfp;
841     vdwtype          = mdatoms->typeA;
842
843     /* Setup water-specific parameters */
844     inr              = nlist->iinr[0];
845     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
846     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
847     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
848     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
849
850     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
851     rcutoff_scalar   = fr->rcoulomb;
852     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
853     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
854
855     rswitch_scalar   = fr->rvdw_switch;
856     rswitch          = _mm256_set1_pd(rswitch_scalar);
857     /* Setup switch parameters */
858     d_scalar         = rcutoff_scalar-rswitch_scalar;
859     d                = _mm256_set1_pd(d_scalar);
860     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
861     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
862     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
863     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
864     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
865     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899
900         fix0             = _mm256_setzero_pd();
901         fiy0             = _mm256_setzero_pd();
902         fiz0             = _mm256_setzero_pd();
903         fix1             = _mm256_setzero_pd();
904         fiy1             = _mm256_setzero_pd();
905         fiz1             = _mm256_setzero_pd();
906         fix2             = _mm256_setzero_pd();
907         fiy2             = _mm256_setzero_pd();
908         fiz2             = _mm256_setzero_pd();
909         fix3             = _mm256_setzero_pd();
910         fiy3             = _mm256_setzero_pd();
911         fiz3             = _mm256_setzero_pd();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             jnrC             = jjnr[jidx+2];
921             jnrD             = jjnr[jidx+3];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
929                                                  x+j_coord_offsetC,x+j_coord_offsetD,
930                                                  &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm256_sub_pd(ix0,jx0);
934             dy00             = _mm256_sub_pd(iy0,jy0);
935             dz00             = _mm256_sub_pd(iz0,jz0);
936             dx10             = _mm256_sub_pd(ix1,jx0);
937             dy10             = _mm256_sub_pd(iy1,jy0);
938             dz10             = _mm256_sub_pd(iz1,jz0);
939             dx20             = _mm256_sub_pd(ix2,jx0);
940             dy20             = _mm256_sub_pd(iy2,jy0);
941             dz20             = _mm256_sub_pd(iz2,jz0);
942             dx30             = _mm256_sub_pd(ix3,jx0);
943             dy30             = _mm256_sub_pd(iy3,jy0);
944             dz30             = _mm256_sub_pd(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
948             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
949             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
950             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
951
952             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
953             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
954             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
955             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
956
957             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
958             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
959             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
960             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
961
962             /* Load parameters for j particles */
963             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
964                                                                  charge+jnrC+0,charge+jnrD+0);
965             vdwjidx0A        = 2*vdwtype[jnrA+0];
966             vdwjidx0B        = 2*vdwtype[jnrB+0];
967             vdwjidx0C        = 2*vdwtype[jnrC+0];
968             vdwjidx0D        = 2*vdwtype[jnrD+0];
969
970             fjx0             = _mm256_setzero_pd();
971             fjy0             = _mm256_setzero_pd();
972             fjz0             = _mm256_setzero_pd();
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             if (gmx_mm256_any_lt(rsq00,rcutoff2))
979             {
980
981             r00              = _mm256_mul_pd(rsq00,rinv00);
982
983             /* Compute parameters for interactions between i and j atoms */
984             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
985                                             vdwioffsetptr0+vdwjidx0B,
986                                             vdwioffsetptr0+vdwjidx0C,
987                                             vdwioffsetptr0+vdwjidx0D,
988                                             &c6_00,&c12_00);
989
990             /* LENNARD-JONES DISPERSION/REPULSION */
991
992             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
993             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
994             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
995             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
996             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
997
998             d                = _mm256_sub_pd(r00,rswitch);
999             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1000             d2               = _mm256_mul_pd(d,d);
1001             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1002
1003             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1004
1005             /* Evaluate switch function */
1006             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1007             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1008             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1009
1010             fscal            = fvdw;
1011
1012             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_pd(fscal,dx00);
1016             ty               = _mm256_mul_pd(fscal,dy00);
1017             tz               = _mm256_mul_pd(fscal,dz00);
1018
1019             /* Update vectorial force */
1020             fix0             = _mm256_add_pd(fix0,tx);
1021             fiy0             = _mm256_add_pd(fiy0,ty);
1022             fiz0             = _mm256_add_pd(fiz0,tz);
1023
1024             fjx0             = _mm256_add_pd(fjx0,tx);
1025             fjy0             = _mm256_add_pd(fjy0,ty);
1026             fjz0             = _mm256_add_pd(fjz0,tz);
1027
1028             }
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1035             {
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm256_mul_pd(iq1,jq0);
1039
1040             /* REACTION-FIELD ELECTROSTATICS */
1041             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1042
1043             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm256_mul_pd(fscal,dx10);
1051             ty               = _mm256_mul_pd(fscal,dy10);
1052             tz               = _mm256_mul_pd(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm256_add_pd(fix1,tx);
1056             fiy1             = _mm256_add_pd(fiy1,ty);
1057             fiz1             = _mm256_add_pd(fiz1,tz);
1058
1059             fjx0             = _mm256_add_pd(fjx0,tx);
1060             fjy0             = _mm256_add_pd(fjy0,ty);
1061             fjz0             = _mm256_add_pd(fjz0,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1070             {
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq20             = _mm256_mul_pd(iq2,jq0);
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1077
1078             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_pd(fscal,dx20);
1086             ty               = _mm256_mul_pd(fscal,dy20);
1087             tz               = _mm256_mul_pd(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm256_add_pd(fix2,tx);
1091             fiy2             = _mm256_add_pd(fiy2,ty);
1092             fiz2             = _mm256_add_pd(fiz2,tz);
1093
1094             fjx0             = _mm256_add_pd(fjx0,tx);
1095             fjy0             = _mm256_add_pd(fjy0,ty);
1096             fjz0             = _mm256_add_pd(fjz0,tz);
1097
1098             }
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1105             {
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             qq30             = _mm256_mul_pd(iq3,jq0);
1109
1110             /* REACTION-FIELD ELECTROSTATICS */
1111             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1112
1113             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm256_mul_pd(fscal,dx30);
1121             ty               = _mm256_mul_pd(fscal,dy30);
1122             tz               = _mm256_mul_pd(fscal,dz30);
1123
1124             /* Update vectorial force */
1125             fix3             = _mm256_add_pd(fix3,tx);
1126             fiy3             = _mm256_add_pd(fiy3,ty);
1127             fiz3             = _mm256_add_pd(fiz3,tz);
1128
1129             fjx0             = _mm256_add_pd(fjx0,tx);
1130             fjy0             = _mm256_add_pd(fjy0,ty);
1131             fjz0             = _mm256_add_pd(fjz0,tz);
1132
1133             }
1134
1135             fjptrA             = f+j_coord_offsetA;
1136             fjptrB             = f+j_coord_offsetB;
1137             fjptrC             = f+j_coord_offsetC;
1138             fjptrD             = f+j_coord_offsetD;
1139
1140             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1141
1142             /* Inner loop uses 149 flops */
1143         }
1144
1145         if(jidx<j_index_end)
1146         {
1147
1148             /* Get j neighbor index, and coordinate index */
1149             jnrlistA         = jjnr[jidx];
1150             jnrlistB         = jjnr[jidx+1];
1151             jnrlistC         = jjnr[jidx+2];
1152             jnrlistD         = jjnr[jidx+3];
1153             /* Sign of each element will be negative for non-real atoms.
1154              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1155              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1156              */
1157             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1158
1159             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1160             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1161             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1162
1163             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1164             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1165             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1166             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1167             j_coord_offsetA  = DIM*jnrA;
1168             j_coord_offsetB  = DIM*jnrB;
1169             j_coord_offsetC  = DIM*jnrC;
1170             j_coord_offsetD  = DIM*jnrD;
1171
1172             /* load j atom coordinates */
1173             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1174                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1175                                                  &jx0,&jy0,&jz0);
1176
1177             /* Calculate displacement vector */
1178             dx00             = _mm256_sub_pd(ix0,jx0);
1179             dy00             = _mm256_sub_pd(iy0,jy0);
1180             dz00             = _mm256_sub_pd(iz0,jz0);
1181             dx10             = _mm256_sub_pd(ix1,jx0);
1182             dy10             = _mm256_sub_pd(iy1,jy0);
1183             dz10             = _mm256_sub_pd(iz1,jz0);
1184             dx20             = _mm256_sub_pd(ix2,jx0);
1185             dy20             = _mm256_sub_pd(iy2,jy0);
1186             dz20             = _mm256_sub_pd(iz2,jz0);
1187             dx30             = _mm256_sub_pd(ix3,jx0);
1188             dy30             = _mm256_sub_pd(iy3,jy0);
1189             dz30             = _mm256_sub_pd(iz3,jz0);
1190
1191             /* Calculate squared distance and things based on it */
1192             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1193             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1194             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1195             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1196
1197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1198             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1199             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1200             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1201
1202             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1203             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1204             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1205             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1206
1207             /* Load parameters for j particles */
1208             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1209                                                                  charge+jnrC+0,charge+jnrD+0);
1210             vdwjidx0A        = 2*vdwtype[jnrA+0];
1211             vdwjidx0B        = 2*vdwtype[jnrB+0];
1212             vdwjidx0C        = 2*vdwtype[jnrC+0];
1213             vdwjidx0D        = 2*vdwtype[jnrD+0];
1214
1215             fjx0             = _mm256_setzero_pd();
1216             fjy0             = _mm256_setzero_pd();
1217             fjz0             = _mm256_setzero_pd();
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1224             {
1225
1226             r00              = _mm256_mul_pd(rsq00,rinv00);
1227             r00              = _mm256_andnot_pd(dummy_mask,r00);
1228
1229             /* Compute parameters for interactions between i and j atoms */
1230             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1231                                             vdwioffsetptr0+vdwjidx0B,
1232                                             vdwioffsetptr0+vdwjidx0C,
1233                                             vdwioffsetptr0+vdwjidx0D,
1234                                             &c6_00,&c12_00);
1235
1236             /* LENNARD-JONES DISPERSION/REPULSION */
1237
1238             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1239             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1240             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1241             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1242             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1243
1244             d                = _mm256_sub_pd(r00,rswitch);
1245             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1246             d2               = _mm256_mul_pd(d,d);
1247             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1248
1249             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1250
1251             /* Evaluate switch function */
1252             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1253             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1254             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1255
1256             fscal            = fvdw;
1257
1258             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1259
1260             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm256_mul_pd(fscal,dx00);
1264             ty               = _mm256_mul_pd(fscal,dy00);
1265             tz               = _mm256_mul_pd(fscal,dz00);
1266
1267             /* Update vectorial force */
1268             fix0             = _mm256_add_pd(fix0,tx);
1269             fiy0             = _mm256_add_pd(fiy0,ty);
1270             fiz0             = _mm256_add_pd(fiz0,tz);
1271
1272             fjx0             = _mm256_add_pd(fjx0,tx);
1273             fjy0             = _mm256_add_pd(fjy0,ty);
1274             fjz0             = _mm256_add_pd(fjz0,tz);
1275
1276             }
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1283             {
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq10             = _mm256_mul_pd(iq1,jq0);
1287
1288             /* REACTION-FIELD ELECTROSTATICS */
1289             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1290
1291             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1292
1293             fscal            = felec;
1294
1295             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1296
1297             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm256_mul_pd(fscal,dx10);
1301             ty               = _mm256_mul_pd(fscal,dy10);
1302             tz               = _mm256_mul_pd(fscal,dz10);
1303
1304             /* Update vectorial force */
1305             fix1             = _mm256_add_pd(fix1,tx);
1306             fiy1             = _mm256_add_pd(fiy1,ty);
1307             fiz1             = _mm256_add_pd(fiz1,tz);
1308
1309             fjx0             = _mm256_add_pd(fjx0,tx);
1310             fjy0             = _mm256_add_pd(fjy0,ty);
1311             fjz0             = _mm256_add_pd(fjz0,tz);
1312
1313             }
1314
1315             /**************************
1316              * CALCULATE INTERACTIONS *
1317              **************************/
1318
1319             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1320             {
1321
1322             /* Compute parameters for interactions between i and j atoms */
1323             qq20             = _mm256_mul_pd(iq2,jq0);
1324
1325             /* REACTION-FIELD ELECTROSTATICS */
1326             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1327
1328             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1329
1330             fscal            = felec;
1331
1332             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1333
1334             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1335
1336             /* Calculate temporary vectorial force */
1337             tx               = _mm256_mul_pd(fscal,dx20);
1338             ty               = _mm256_mul_pd(fscal,dy20);
1339             tz               = _mm256_mul_pd(fscal,dz20);
1340
1341             /* Update vectorial force */
1342             fix2             = _mm256_add_pd(fix2,tx);
1343             fiy2             = _mm256_add_pd(fiy2,ty);
1344             fiz2             = _mm256_add_pd(fiz2,tz);
1345
1346             fjx0             = _mm256_add_pd(fjx0,tx);
1347             fjy0             = _mm256_add_pd(fjy0,ty);
1348             fjz0             = _mm256_add_pd(fjz0,tz);
1349
1350             }
1351
1352             /**************************
1353              * CALCULATE INTERACTIONS *
1354              **************************/
1355
1356             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1357             {
1358
1359             /* Compute parameters for interactions between i and j atoms */
1360             qq30             = _mm256_mul_pd(iq3,jq0);
1361
1362             /* REACTION-FIELD ELECTROSTATICS */
1363             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1364
1365             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1366
1367             fscal            = felec;
1368
1369             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1370
1371             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1372
1373             /* Calculate temporary vectorial force */
1374             tx               = _mm256_mul_pd(fscal,dx30);
1375             ty               = _mm256_mul_pd(fscal,dy30);
1376             tz               = _mm256_mul_pd(fscal,dz30);
1377
1378             /* Update vectorial force */
1379             fix3             = _mm256_add_pd(fix3,tx);
1380             fiy3             = _mm256_add_pd(fiy3,ty);
1381             fiz3             = _mm256_add_pd(fiz3,tz);
1382
1383             fjx0             = _mm256_add_pd(fjx0,tx);
1384             fjy0             = _mm256_add_pd(fjy0,ty);
1385             fjz0             = _mm256_add_pd(fjz0,tz);
1386
1387             }
1388
1389             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1390             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1391             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1392             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1393
1394             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1395
1396             /* Inner loop uses 150 flops */
1397         }
1398
1399         /* End of innermost loop */
1400
1401         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1402                                                  f+i_coord_offset,fshift+i_shift_offset);
1403
1404         /* Increment number of inner iterations */
1405         inneriter                  += j_index_end - j_index_start;
1406
1407         /* Outer loop uses 24 flops */
1408     }
1409
1410     /* Increment number of outer iterations */
1411     outeriter        += nri;
1412
1413     /* Update outer/inner flops */
1414
1415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1416 }