Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     real *           vdwioffsetptr3;
90     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm256_set1_pd(fr->ic->k_rf);
126     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm256_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
135     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
136     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->ic->rcoulomb;
141     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->ic->rvdw_switch;
145     rswitch          = _mm256_set1_pd(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = _mm256_set1_pd(d_scalar);
149     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
188
189         fix0             = _mm256_setzero_pd();
190         fiy0             = _mm256_setzero_pd();
191         fiz0             = _mm256_setzero_pd();
192         fix1             = _mm256_setzero_pd();
193         fiy1             = _mm256_setzero_pd();
194         fiz1             = _mm256_setzero_pd();
195         fix2             = _mm256_setzero_pd();
196         fiy2             = _mm256_setzero_pd();
197         fiz2             = _mm256_setzero_pd();
198         fix3             = _mm256_setzero_pd();
199         fiy3             = _mm256_setzero_pd();
200         fiz3             = _mm256_setzero_pd();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_pd();
204         vvdwsum          = _mm256_setzero_pd();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm256_sub_pd(ix0,jx0);
227             dy00             = _mm256_sub_pd(iy0,jy0);
228             dz00             = _mm256_sub_pd(iz0,jz0);
229             dx10             = _mm256_sub_pd(ix1,jx0);
230             dy10             = _mm256_sub_pd(iy1,jy0);
231             dz10             = _mm256_sub_pd(iz1,jz0);
232             dx20             = _mm256_sub_pd(ix2,jx0);
233             dy20             = _mm256_sub_pd(iy2,jy0);
234             dz20             = _mm256_sub_pd(iz2,jz0);
235             dx30             = _mm256_sub_pd(ix3,jx0);
236             dy30             = _mm256_sub_pd(iy3,jy0);
237             dz30             = _mm256_sub_pd(iz3,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
241             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
242             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
243             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
244
245             rinv00           = avx256_invsqrt_d(rsq00);
246             rinv10           = avx256_invsqrt_d(rsq10);
247             rinv20           = avx256_invsqrt_d(rsq20);
248             rinv30           = avx256_invsqrt_d(rsq30);
249
250             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
251             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
252             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
253             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
254
255             /* Load parameters for j particles */
256             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
257                                                                  charge+jnrC+0,charge+jnrD+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259             vdwjidx0B        = 2*vdwtype[jnrB+0];
260             vdwjidx0C        = 2*vdwtype[jnrC+0];
261             vdwjidx0D        = 2*vdwtype[jnrD+0];
262
263             fjx0             = _mm256_setzero_pd();
264             fjy0             = _mm256_setzero_pd();
265             fjz0             = _mm256_setzero_pd();
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             if (gmx_mm256_any_lt(rsq00,rcutoff2))
272             {
273
274             r00              = _mm256_mul_pd(rsq00,rinv00);
275
276             /* Compute parameters for interactions between i and j atoms */
277             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
278                                             vdwioffsetptr0+vdwjidx0B,
279                                             vdwioffsetptr0+vdwjidx0C,
280                                             vdwioffsetptr0+vdwjidx0D,
281                                             &c6_00,&c12_00);
282
283             /* LENNARD-JONES DISPERSION/REPULSION */
284
285             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
286             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
287             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
288             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
289             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
290
291             d                = _mm256_sub_pd(r00,rswitch);
292             d                = _mm256_max_pd(d,_mm256_setzero_pd());
293             d2               = _mm256_mul_pd(d,d);
294             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
295
296             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
297
298             /* Evaluate switch function */
299             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
300             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
301             vvdw             = _mm256_mul_pd(vvdw,sw);
302             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
306             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             fscal            = _mm256_and_pd(fscal,cutoff_mask);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_pd(fscal,dx00);
314             ty               = _mm256_mul_pd(fscal,dy00);
315             tz               = _mm256_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_pd(fix0,tx);
319             fiy0             = _mm256_add_pd(fiy0,ty);
320             fiz0             = _mm256_add_pd(fiz0,tz);
321
322             fjx0             = _mm256_add_pd(fjx0,tx);
323             fjy0             = _mm256_add_pd(fjy0,ty);
324             fjz0             = _mm256_add_pd(fjz0,tz);
325
326             }
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm256_any_lt(rsq10,rcutoff2))
333             {
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm256_mul_pd(iq1,jq0);
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
340             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
341
342             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm256_and_pd(velec,cutoff_mask);
346             velecsum         = _mm256_add_pd(velecsum,velec);
347
348             fscal            = felec;
349
350             fscal            = _mm256_and_pd(fscal,cutoff_mask);
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_pd(fscal,dx10);
354             ty               = _mm256_mul_pd(fscal,dy10);
355             tz               = _mm256_mul_pd(fscal,dz10);
356
357             /* Update vectorial force */
358             fix1             = _mm256_add_pd(fix1,tx);
359             fiy1             = _mm256_add_pd(fiy1,ty);
360             fiz1             = _mm256_add_pd(fiz1,tz);
361
362             fjx0             = _mm256_add_pd(fjx0,tx);
363             fjy0             = _mm256_add_pd(fjy0,ty);
364             fjz0             = _mm256_add_pd(fjz0,tz);
365
366             }
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (gmx_mm256_any_lt(rsq20,rcutoff2))
373             {
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm256_mul_pd(iq2,jq0);
377
378             /* REACTION-FIELD ELECTROSTATICS */
379             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
380             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
381
382             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm256_and_pd(velec,cutoff_mask);
386             velecsum         = _mm256_add_pd(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm256_and_pd(fscal,cutoff_mask);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_pd(fscal,dx20);
394             ty               = _mm256_mul_pd(fscal,dy20);
395             tz               = _mm256_mul_pd(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm256_add_pd(fix2,tx);
399             fiy2             = _mm256_add_pd(fiy2,ty);
400             fiz2             = _mm256_add_pd(fiz2,tz);
401
402             fjx0             = _mm256_add_pd(fjx0,tx);
403             fjy0             = _mm256_add_pd(fjy0,ty);
404             fjz0             = _mm256_add_pd(fjz0,tz);
405
406             }
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             if (gmx_mm256_any_lt(rsq30,rcutoff2))
413             {
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq30             = _mm256_mul_pd(iq3,jq0);
417
418             /* REACTION-FIELD ELECTROSTATICS */
419             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
420             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
421
422             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
423
424             /* Update potential sum for this i atom from the interaction with this j atom. */
425             velec            = _mm256_and_pd(velec,cutoff_mask);
426             velecsum         = _mm256_add_pd(velecsum,velec);
427
428             fscal            = felec;
429
430             fscal            = _mm256_and_pd(fscal,cutoff_mask);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_pd(fscal,dx30);
434             ty               = _mm256_mul_pd(fscal,dy30);
435             tz               = _mm256_mul_pd(fscal,dz30);
436
437             /* Update vectorial force */
438             fix3             = _mm256_add_pd(fix3,tx);
439             fiy3             = _mm256_add_pd(fiy3,ty);
440             fiz3             = _mm256_add_pd(fiz3,tz);
441
442             fjx0             = _mm256_add_pd(fjx0,tx);
443             fjy0             = _mm256_add_pd(fjy0,ty);
444             fjz0             = _mm256_add_pd(fjz0,tz);
445
446             }
447
448             fjptrA             = f+j_coord_offsetA;
449             fjptrB             = f+j_coord_offsetB;
450             fjptrC             = f+j_coord_offsetC;
451             fjptrD             = f+j_coord_offsetD;
452
453             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
454
455             /* Inner loop uses 170 flops */
456         }
457
458         if(jidx<j_index_end)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrlistA         = jjnr[jidx];
463             jnrlistB         = jjnr[jidx+1];
464             jnrlistC         = jjnr[jidx+2];
465             jnrlistD         = jjnr[jidx+3];
466             /* Sign of each element will be negative for non-real atoms.
467              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
468              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
469              */
470             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
471
472             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
473             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
474             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
475
476             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
477             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
478             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
479             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
480             j_coord_offsetA  = DIM*jnrA;
481             j_coord_offsetB  = DIM*jnrB;
482             j_coord_offsetC  = DIM*jnrC;
483             j_coord_offsetD  = DIM*jnrD;
484
485             /* load j atom coordinates */
486             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
487                                                  x+j_coord_offsetC,x+j_coord_offsetD,
488                                                  &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm256_sub_pd(ix0,jx0);
492             dy00             = _mm256_sub_pd(iy0,jy0);
493             dz00             = _mm256_sub_pd(iz0,jz0);
494             dx10             = _mm256_sub_pd(ix1,jx0);
495             dy10             = _mm256_sub_pd(iy1,jy0);
496             dz10             = _mm256_sub_pd(iz1,jz0);
497             dx20             = _mm256_sub_pd(ix2,jx0);
498             dy20             = _mm256_sub_pd(iy2,jy0);
499             dz20             = _mm256_sub_pd(iz2,jz0);
500             dx30             = _mm256_sub_pd(ix3,jx0);
501             dy30             = _mm256_sub_pd(iy3,jy0);
502             dz30             = _mm256_sub_pd(iz3,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
506             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
507             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
508             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
509
510             rinv00           = avx256_invsqrt_d(rsq00);
511             rinv10           = avx256_invsqrt_d(rsq10);
512             rinv20           = avx256_invsqrt_d(rsq20);
513             rinv30           = avx256_invsqrt_d(rsq30);
514
515             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
516             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
517             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
518             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
519
520             /* Load parameters for j particles */
521             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
522                                                                  charge+jnrC+0,charge+jnrD+0);
523             vdwjidx0A        = 2*vdwtype[jnrA+0];
524             vdwjidx0B        = 2*vdwtype[jnrB+0];
525             vdwjidx0C        = 2*vdwtype[jnrC+0];
526             vdwjidx0D        = 2*vdwtype[jnrD+0];
527
528             fjx0             = _mm256_setzero_pd();
529             fjy0             = _mm256_setzero_pd();
530             fjz0             = _mm256_setzero_pd();
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm256_any_lt(rsq00,rcutoff2))
537             {
538
539             r00              = _mm256_mul_pd(rsq00,rinv00);
540             r00              = _mm256_andnot_pd(dummy_mask,r00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
544                                             vdwioffsetptr0+vdwjidx0B,
545                                             vdwioffsetptr0+vdwjidx0C,
546                                             vdwioffsetptr0+vdwjidx0D,
547                                             &c6_00,&c12_00);
548
549             /* LENNARD-JONES DISPERSION/REPULSION */
550
551             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
552             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
553             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
554             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
555             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
556
557             d                = _mm256_sub_pd(r00,rswitch);
558             d                = _mm256_max_pd(d,_mm256_setzero_pd());
559             d2               = _mm256_mul_pd(d,d);
560             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
561
562             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
563
564             /* Evaluate switch function */
565             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
566             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
567             vvdw             = _mm256_mul_pd(vvdw,sw);
568             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
572             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
573             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
574
575             fscal            = fvdw;
576
577             fscal            = _mm256_and_pd(fscal,cutoff_mask);
578
579             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm256_mul_pd(fscal,dx00);
583             ty               = _mm256_mul_pd(fscal,dy00);
584             tz               = _mm256_mul_pd(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm256_add_pd(fix0,tx);
588             fiy0             = _mm256_add_pd(fiy0,ty);
589             fiz0             = _mm256_add_pd(fiz0,tz);
590
591             fjx0             = _mm256_add_pd(fjx0,tx);
592             fjy0             = _mm256_add_pd(fjy0,ty);
593             fjz0             = _mm256_add_pd(fjz0,tz);
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm256_any_lt(rsq10,rcutoff2))
602             {
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq10             = _mm256_mul_pd(iq1,jq0);
606
607             /* REACTION-FIELD ELECTROSTATICS */
608             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
609             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
610
611             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm256_and_pd(velec,cutoff_mask);
615             velec            = _mm256_andnot_pd(dummy_mask,velec);
616             velecsum         = _mm256_add_pd(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm256_and_pd(fscal,cutoff_mask);
621
622             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_pd(fscal,dx10);
626             ty               = _mm256_mul_pd(fscal,dy10);
627             tz               = _mm256_mul_pd(fscal,dz10);
628
629             /* Update vectorial force */
630             fix1             = _mm256_add_pd(fix1,tx);
631             fiy1             = _mm256_add_pd(fiy1,ty);
632             fiz1             = _mm256_add_pd(fiz1,tz);
633
634             fjx0             = _mm256_add_pd(fjx0,tx);
635             fjy0             = _mm256_add_pd(fjy0,ty);
636             fjz0             = _mm256_add_pd(fjz0,tz);
637
638             }
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             if (gmx_mm256_any_lt(rsq20,rcutoff2))
645             {
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq20             = _mm256_mul_pd(iq2,jq0);
649
650             /* REACTION-FIELD ELECTROSTATICS */
651             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
652             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
653
654             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm256_and_pd(velec,cutoff_mask);
658             velec            = _mm256_andnot_pd(dummy_mask,velec);
659             velecsum         = _mm256_add_pd(velecsum,velec);
660
661             fscal            = felec;
662
663             fscal            = _mm256_and_pd(fscal,cutoff_mask);
664
665             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
666
667             /* Calculate temporary vectorial force */
668             tx               = _mm256_mul_pd(fscal,dx20);
669             ty               = _mm256_mul_pd(fscal,dy20);
670             tz               = _mm256_mul_pd(fscal,dz20);
671
672             /* Update vectorial force */
673             fix2             = _mm256_add_pd(fix2,tx);
674             fiy2             = _mm256_add_pd(fiy2,ty);
675             fiz2             = _mm256_add_pd(fiz2,tz);
676
677             fjx0             = _mm256_add_pd(fjx0,tx);
678             fjy0             = _mm256_add_pd(fjy0,ty);
679             fjz0             = _mm256_add_pd(fjz0,tz);
680
681             }
682
683             /**************************
684              * CALCULATE INTERACTIONS *
685              **************************/
686
687             if (gmx_mm256_any_lt(rsq30,rcutoff2))
688             {
689
690             /* Compute parameters for interactions between i and j atoms */
691             qq30             = _mm256_mul_pd(iq3,jq0);
692
693             /* REACTION-FIELD ELECTROSTATICS */
694             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
695             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
696
697             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
698
699             /* Update potential sum for this i atom from the interaction with this j atom. */
700             velec            = _mm256_and_pd(velec,cutoff_mask);
701             velec            = _mm256_andnot_pd(dummy_mask,velec);
702             velecsum         = _mm256_add_pd(velecsum,velec);
703
704             fscal            = felec;
705
706             fscal            = _mm256_and_pd(fscal,cutoff_mask);
707
708             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm256_mul_pd(fscal,dx30);
712             ty               = _mm256_mul_pd(fscal,dy30);
713             tz               = _mm256_mul_pd(fscal,dz30);
714
715             /* Update vectorial force */
716             fix3             = _mm256_add_pd(fix3,tx);
717             fiy3             = _mm256_add_pd(fiy3,ty);
718             fiz3             = _mm256_add_pd(fiz3,tz);
719
720             fjx0             = _mm256_add_pd(fjx0,tx);
721             fjy0             = _mm256_add_pd(fjy0,ty);
722             fjz0             = _mm256_add_pd(fjz0,tz);
723
724             }
725
726             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
727             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
728             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
729             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
730
731             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
732
733             /* Inner loop uses 171 flops */
734         }
735
736         /* End of innermost loop */
737
738         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
739                                                  f+i_coord_offset,fshift+i_shift_offset);
740
741         ggid                        = gid[iidx];
742         /* Update potential energies */
743         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
744         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
745
746         /* Increment number of inner iterations */
747         inneriter                  += j_index_end - j_index_start;
748
749         /* Outer loop uses 26 flops */
750     }
751
752     /* Increment number of outer iterations */
753     outeriter        += nri;
754
755     /* Update outer/inner flops */
756
757     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
758 }
759 /*
760  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
761  * Electrostatics interaction: ReactionField
762  * VdW interaction:            LennardJones
763  * Geometry:                   Water4-Particle
764  * Calculate force/pot:        Force
765  */
766 void
767 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
768                     (t_nblist                    * gmx_restrict       nlist,
769                      rvec                        * gmx_restrict          xx,
770                      rvec                        * gmx_restrict          ff,
771                      struct t_forcerec           * gmx_restrict          fr,
772                      t_mdatoms                   * gmx_restrict     mdatoms,
773                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
774                      t_nrnb                      * gmx_restrict        nrnb)
775 {
776     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
777      * just 0 for non-waters.
778      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
779      * jnr indices corresponding to data put in the four positions in the SIMD register.
780      */
781     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
782     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
783     int              jnrA,jnrB,jnrC,jnrD;
784     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
785     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
786     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
787     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
788     real             rcutoff_scalar;
789     real             *shiftvec,*fshift,*x,*f;
790     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
791     real             scratch[4*DIM];
792     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
793     real *           vdwioffsetptr0;
794     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
795     real *           vdwioffsetptr1;
796     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
797     real *           vdwioffsetptr2;
798     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
799     real *           vdwioffsetptr3;
800     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
801     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
802     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
803     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
804     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
805     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
806     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
807     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
808     real             *charge;
809     int              nvdwtype;
810     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
811     int              *vdwtype;
812     real             *vdwparam;
813     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
814     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
815     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
816     real             rswitch_scalar,d_scalar;
817     __m256d          dummy_mask,cutoff_mask;
818     __m128           tmpmask0,tmpmask1;
819     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
820     __m256d          one     = _mm256_set1_pd(1.0);
821     __m256d          two     = _mm256_set1_pd(2.0);
822     x                = xx[0];
823     f                = ff[0];
824
825     nri              = nlist->nri;
826     iinr             = nlist->iinr;
827     jindex           = nlist->jindex;
828     jjnr             = nlist->jjnr;
829     shiftidx         = nlist->shift;
830     gid              = nlist->gid;
831     shiftvec         = fr->shift_vec[0];
832     fshift           = fr->fshift[0];
833     facel            = _mm256_set1_pd(fr->ic->epsfac);
834     charge           = mdatoms->chargeA;
835     krf              = _mm256_set1_pd(fr->ic->k_rf);
836     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
837     crf              = _mm256_set1_pd(fr->ic->c_rf);
838     nvdwtype         = fr->ntype;
839     vdwparam         = fr->nbfp;
840     vdwtype          = mdatoms->typeA;
841
842     /* Setup water-specific parameters */
843     inr              = nlist->iinr[0];
844     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
845     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
846     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
847     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
848
849     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
850     rcutoff_scalar   = fr->ic->rcoulomb;
851     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
852     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
853
854     rswitch_scalar   = fr->ic->rvdw_switch;
855     rswitch          = _mm256_set1_pd(rswitch_scalar);
856     /* Setup switch parameters */
857     d_scalar         = rcutoff_scalar-rswitch_scalar;
858     d                = _mm256_set1_pd(d_scalar);
859     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
860     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
861     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
862     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
863     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
864     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
865
866     /* Avoid stupid compiler warnings */
867     jnrA = jnrB = jnrC = jnrD = 0;
868     j_coord_offsetA = 0;
869     j_coord_offsetB = 0;
870     j_coord_offsetC = 0;
871     j_coord_offsetD = 0;
872
873     outeriter        = 0;
874     inneriter        = 0;
875
876     for(iidx=0;iidx<4*DIM;iidx++)
877     {
878         scratch[iidx] = 0.0;
879     }
880
881     /* Start outer loop over neighborlists */
882     for(iidx=0; iidx<nri; iidx++)
883     {
884         /* Load shift vector for this list */
885         i_shift_offset   = DIM*shiftidx[iidx];
886
887         /* Load limits for loop over neighbors */
888         j_index_start    = jindex[iidx];
889         j_index_end      = jindex[iidx+1];
890
891         /* Get outer coordinate index */
892         inr              = iinr[iidx];
893         i_coord_offset   = DIM*inr;
894
895         /* Load i particle coords and add shift vector */
896         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
897                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
898
899         fix0             = _mm256_setzero_pd();
900         fiy0             = _mm256_setzero_pd();
901         fiz0             = _mm256_setzero_pd();
902         fix1             = _mm256_setzero_pd();
903         fiy1             = _mm256_setzero_pd();
904         fiz1             = _mm256_setzero_pd();
905         fix2             = _mm256_setzero_pd();
906         fiy2             = _mm256_setzero_pd();
907         fiz2             = _mm256_setzero_pd();
908         fix3             = _mm256_setzero_pd();
909         fiy3             = _mm256_setzero_pd();
910         fiz3             = _mm256_setzero_pd();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
928                                                  x+j_coord_offsetC,x+j_coord_offsetD,
929                                                  &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm256_sub_pd(ix0,jx0);
933             dy00             = _mm256_sub_pd(iy0,jy0);
934             dz00             = _mm256_sub_pd(iz0,jz0);
935             dx10             = _mm256_sub_pd(ix1,jx0);
936             dy10             = _mm256_sub_pd(iy1,jy0);
937             dz10             = _mm256_sub_pd(iz1,jz0);
938             dx20             = _mm256_sub_pd(ix2,jx0);
939             dy20             = _mm256_sub_pd(iy2,jy0);
940             dz20             = _mm256_sub_pd(iz2,jz0);
941             dx30             = _mm256_sub_pd(ix3,jx0);
942             dy30             = _mm256_sub_pd(iy3,jy0);
943             dz30             = _mm256_sub_pd(iz3,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
947             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
948             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
949             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
950
951             rinv00           = avx256_invsqrt_d(rsq00);
952             rinv10           = avx256_invsqrt_d(rsq10);
953             rinv20           = avx256_invsqrt_d(rsq20);
954             rinv30           = avx256_invsqrt_d(rsq30);
955
956             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
957             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
958             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
959             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
960
961             /* Load parameters for j particles */
962             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
963                                                                  charge+jnrC+0,charge+jnrD+0);
964             vdwjidx0A        = 2*vdwtype[jnrA+0];
965             vdwjidx0B        = 2*vdwtype[jnrB+0];
966             vdwjidx0C        = 2*vdwtype[jnrC+0];
967             vdwjidx0D        = 2*vdwtype[jnrD+0];
968
969             fjx0             = _mm256_setzero_pd();
970             fjy0             = _mm256_setzero_pd();
971             fjz0             = _mm256_setzero_pd();
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             if (gmx_mm256_any_lt(rsq00,rcutoff2))
978             {
979
980             r00              = _mm256_mul_pd(rsq00,rinv00);
981
982             /* Compute parameters for interactions between i and j atoms */
983             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
984                                             vdwioffsetptr0+vdwjidx0B,
985                                             vdwioffsetptr0+vdwjidx0C,
986                                             vdwioffsetptr0+vdwjidx0D,
987                                             &c6_00,&c12_00);
988
989             /* LENNARD-JONES DISPERSION/REPULSION */
990
991             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
992             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
993             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
994             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
995             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
996
997             d                = _mm256_sub_pd(r00,rswitch);
998             d                = _mm256_max_pd(d,_mm256_setzero_pd());
999             d2               = _mm256_mul_pd(d,d);
1000             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1001
1002             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1003
1004             /* Evaluate switch function */
1005             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1006             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1007             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1008
1009             fscal            = fvdw;
1010
1011             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = _mm256_mul_pd(fscal,dx00);
1015             ty               = _mm256_mul_pd(fscal,dy00);
1016             tz               = _mm256_mul_pd(fscal,dz00);
1017
1018             /* Update vectorial force */
1019             fix0             = _mm256_add_pd(fix0,tx);
1020             fiy0             = _mm256_add_pd(fiy0,ty);
1021             fiz0             = _mm256_add_pd(fiz0,tz);
1022
1023             fjx0             = _mm256_add_pd(fjx0,tx);
1024             fjy0             = _mm256_add_pd(fjy0,ty);
1025             fjz0             = _mm256_add_pd(fjz0,tz);
1026
1027             }
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1034             {
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq10             = _mm256_mul_pd(iq1,jq0);
1038
1039             /* REACTION-FIELD ELECTROSTATICS */
1040             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1041
1042             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1043
1044             fscal            = felec;
1045
1046             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_pd(fscal,dx10);
1050             ty               = _mm256_mul_pd(fscal,dy10);
1051             tz               = _mm256_mul_pd(fscal,dz10);
1052
1053             /* Update vectorial force */
1054             fix1             = _mm256_add_pd(fix1,tx);
1055             fiy1             = _mm256_add_pd(fiy1,ty);
1056             fiz1             = _mm256_add_pd(fiz1,tz);
1057
1058             fjx0             = _mm256_add_pd(fjx0,tx);
1059             fjy0             = _mm256_add_pd(fjy0,ty);
1060             fjz0             = _mm256_add_pd(fjz0,tz);
1061
1062             }
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1069             {
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq20             = _mm256_mul_pd(iq2,jq0);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1076
1077             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm256_mul_pd(fscal,dx20);
1085             ty               = _mm256_mul_pd(fscal,dy20);
1086             tz               = _mm256_mul_pd(fscal,dz20);
1087
1088             /* Update vectorial force */
1089             fix2             = _mm256_add_pd(fix2,tx);
1090             fiy2             = _mm256_add_pd(fiy2,ty);
1091             fiz2             = _mm256_add_pd(fiz2,tz);
1092
1093             fjx0             = _mm256_add_pd(fjx0,tx);
1094             fjy0             = _mm256_add_pd(fjy0,ty);
1095             fjz0             = _mm256_add_pd(fjz0,tz);
1096
1097             }
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1104             {
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             qq30             = _mm256_mul_pd(iq3,jq0);
1108
1109             /* REACTION-FIELD ELECTROSTATICS */
1110             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1111
1112             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1113
1114             fscal            = felec;
1115
1116             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm256_mul_pd(fscal,dx30);
1120             ty               = _mm256_mul_pd(fscal,dy30);
1121             tz               = _mm256_mul_pd(fscal,dz30);
1122
1123             /* Update vectorial force */
1124             fix3             = _mm256_add_pd(fix3,tx);
1125             fiy3             = _mm256_add_pd(fiy3,ty);
1126             fiz3             = _mm256_add_pd(fiz3,tz);
1127
1128             fjx0             = _mm256_add_pd(fjx0,tx);
1129             fjy0             = _mm256_add_pd(fjy0,ty);
1130             fjz0             = _mm256_add_pd(fjz0,tz);
1131
1132             }
1133
1134             fjptrA             = f+j_coord_offsetA;
1135             fjptrB             = f+j_coord_offsetB;
1136             fjptrC             = f+j_coord_offsetC;
1137             fjptrD             = f+j_coord_offsetD;
1138
1139             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1140
1141             /* Inner loop uses 149 flops */
1142         }
1143
1144         if(jidx<j_index_end)
1145         {
1146
1147             /* Get j neighbor index, and coordinate index */
1148             jnrlistA         = jjnr[jidx];
1149             jnrlistB         = jjnr[jidx+1];
1150             jnrlistC         = jjnr[jidx+2];
1151             jnrlistD         = jjnr[jidx+3];
1152             /* Sign of each element will be negative for non-real atoms.
1153              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1154              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1155              */
1156             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1157
1158             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1159             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1160             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1161
1162             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1163             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1164             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1165             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1166             j_coord_offsetA  = DIM*jnrA;
1167             j_coord_offsetB  = DIM*jnrB;
1168             j_coord_offsetC  = DIM*jnrC;
1169             j_coord_offsetD  = DIM*jnrD;
1170
1171             /* load j atom coordinates */
1172             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1173                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1174                                                  &jx0,&jy0,&jz0);
1175
1176             /* Calculate displacement vector */
1177             dx00             = _mm256_sub_pd(ix0,jx0);
1178             dy00             = _mm256_sub_pd(iy0,jy0);
1179             dz00             = _mm256_sub_pd(iz0,jz0);
1180             dx10             = _mm256_sub_pd(ix1,jx0);
1181             dy10             = _mm256_sub_pd(iy1,jy0);
1182             dz10             = _mm256_sub_pd(iz1,jz0);
1183             dx20             = _mm256_sub_pd(ix2,jx0);
1184             dy20             = _mm256_sub_pd(iy2,jy0);
1185             dz20             = _mm256_sub_pd(iz2,jz0);
1186             dx30             = _mm256_sub_pd(ix3,jx0);
1187             dy30             = _mm256_sub_pd(iy3,jy0);
1188             dz30             = _mm256_sub_pd(iz3,jz0);
1189
1190             /* Calculate squared distance and things based on it */
1191             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1192             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1193             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1194             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1195
1196             rinv00           = avx256_invsqrt_d(rsq00);
1197             rinv10           = avx256_invsqrt_d(rsq10);
1198             rinv20           = avx256_invsqrt_d(rsq20);
1199             rinv30           = avx256_invsqrt_d(rsq30);
1200
1201             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1202             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1203             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1204             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1205
1206             /* Load parameters for j particles */
1207             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1208                                                                  charge+jnrC+0,charge+jnrD+0);
1209             vdwjidx0A        = 2*vdwtype[jnrA+0];
1210             vdwjidx0B        = 2*vdwtype[jnrB+0];
1211             vdwjidx0C        = 2*vdwtype[jnrC+0];
1212             vdwjidx0D        = 2*vdwtype[jnrD+0];
1213
1214             fjx0             = _mm256_setzero_pd();
1215             fjy0             = _mm256_setzero_pd();
1216             fjz0             = _mm256_setzero_pd();
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1223             {
1224
1225             r00              = _mm256_mul_pd(rsq00,rinv00);
1226             r00              = _mm256_andnot_pd(dummy_mask,r00);
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1230                                             vdwioffsetptr0+vdwjidx0B,
1231                                             vdwioffsetptr0+vdwjidx0C,
1232                                             vdwioffsetptr0+vdwjidx0D,
1233                                             &c6_00,&c12_00);
1234
1235             /* LENNARD-JONES DISPERSION/REPULSION */
1236
1237             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1238             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1239             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1240             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1241             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1242
1243             d                = _mm256_sub_pd(r00,rswitch);
1244             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1245             d2               = _mm256_mul_pd(d,d);
1246             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1247
1248             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1249
1250             /* Evaluate switch function */
1251             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1252             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1253             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1254
1255             fscal            = fvdw;
1256
1257             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1258
1259             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1260
1261             /* Calculate temporary vectorial force */
1262             tx               = _mm256_mul_pd(fscal,dx00);
1263             ty               = _mm256_mul_pd(fscal,dy00);
1264             tz               = _mm256_mul_pd(fscal,dz00);
1265
1266             /* Update vectorial force */
1267             fix0             = _mm256_add_pd(fix0,tx);
1268             fiy0             = _mm256_add_pd(fiy0,ty);
1269             fiz0             = _mm256_add_pd(fiz0,tz);
1270
1271             fjx0             = _mm256_add_pd(fjx0,tx);
1272             fjy0             = _mm256_add_pd(fjy0,ty);
1273             fjz0             = _mm256_add_pd(fjz0,tz);
1274
1275             }
1276
1277             /**************************
1278              * CALCULATE INTERACTIONS *
1279              **************************/
1280
1281             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1282             {
1283
1284             /* Compute parameters for interactions between i and j atoms */
1285             qq10             = _mm256_mul_pd(iq1,jq0);
1286
1287             /* REACTION-FIELD ELECTROSTATICS */
1288             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1289
1290             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1295
1296             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1297
1298             /* Calculate temporary vectorial force */
1299             tx               = _mm256_mul_pd(fscal,dx10);
1300             ty               = _mm256_mul_pd(fscal,dy10);
1301             tz               = _mm256_mul_pd(fscal,dz10);
1302
1303             /* Update vectorial force */
1304             fix1             = _mm256_add_pd(fix1,tx);
1305             fiy1             = _mm256_add_pd(fiy1,ty);
1306             fiz1             = _mm256_add_pd(fiz1,tz);
1307
1308             fjx0             = _mm256_add_pd(fjx0,tx);
1309             fjy0             = _mm256_add_pd(fjy0,ty);
1310             fjz0             = _mm256_add_pd(fjz0,tz);
1311
1312             }
1313
1314             /**************************
1315              * CALCULATE INTERACTIONS *
1316              **************************/
1317
1318             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1319             {
1320
1321             /* Compute parameters for interactions between i and j atoms */
1322             qq20             = _mm256_mul_pd(iq2,jq0);
1323
1324             /* REACTION-FIELD ELECTROSTATICS */
1325             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1326
1327             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1328
1329             fscal            = felec;
1330
1331             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1332
1333             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1334
1335             /* Calculate temporary vectorial force */
1336             tx               = _mm256_mul_pd(fscal,dx20);
1337             ty               = _mm256_mul_pd(fscal,dy20);
1338             tz               = _mm256_mul_pd(fscal,dz20);
1339
1340             /* Update vectorial force */
1341             fix2             = _mm256_add_pd(fix2,tx);
1342             fiy2             = _mm256_add_pd(fiy2,ty);
1343             fiz2             = _mm256_add_pd(fiz2,tz);
1344
1345             fjx0             = _mm256_add_pd(fjx0,tx);
1346             fjy0             = _mm256_add_pd(fjy0,ty);
1347             fjz0             = _mm256_add_pd(fjz0,tz);
1348
1349             }
1350
1351             /**************************
1352              * CALCULATE INTERACTIONS *
1353              **************************/
1354
1355             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1356             {
1357
1358             /* Compute parameters for interactions between i and j atoms */
1359             qq30             = _mm256_mul_pd(iq3,jq0);
1360
1361             /* REACTION-FIELD ELECTROSTATICS */
1362             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1363
1364             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1365
1366             fscal            = felec;
1367
1368             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1369
1370             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1371
1372             /* Calculate temporary vectorial force */
1373             tx               = _mm256_mul_pd(fscal,dx30);
1374             ty               = _mm256_mul_pd(fscal,dy30);
1375             tz               = _mm256_mul_pd(fscal,dz30);
1376
1377             /* Update vectorial force */
1378             fix3             = _mm256_add_pd(fix3,tx);
1379             fiy3             = _mm256_add_pd(fiy3,ty);
1380             fiz3             = _mm256_add_pd(fiz3,tz);
1381
1382             fjx0             = _mm256_add_pd(fjx0,tx);
1383             fjy0             = _mm256_add_pd(fjy0,ty);
1384             fjz0             = _mm256_add_pd(fjz0,tz);
1385
1386             }
1387
1388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1392
1393             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1394
1395             /* Inner loop uses 150 flops */
1396         }
1397
1398         /* End of innermost loop */
1399
1400         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1401                                                  f+i_coord_offset,fshift+i_shift_offset);
1402
1403         /* Increment number of inner iterations */
1404         inneriter                  += j_index_end - j_index_start;
1405
1406         /* Outer loop uses 24 flops */
1407     }
1408
1409     /* Increment number of outer iterations */
1410     outeriter        += nri;
1411
1412     /* Update outer/inner flops */
1413
1414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1415 }