Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
109     real             rswitch_scalar,d_scalar;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm256_set1_pd(fr->ic->k_rf);
129     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
130     crf              = _mm256_set1_pd(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
140     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
146
147     rswitch_scalar   = fr->rvdw_switch;
148     rswitch          = _mm256_set1_pd(rswitch_scalar);
149     /* Setup switch parameters */
150     d_scalar         = rcutoff_scalar-rswitch_scalar;
151     d                = _mm256_set1_pd(d_scalar);
152     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
153     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
156     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
157     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = jnrC = jnrD = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163     j_coord_offsetC = 0;
164     j_coord_offsetD = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
191
192         fix0             = _mm256_setzero_pd();
193         fiy0             = _mm256_setzero_pd();
194         fiz0             = _mm256_setzero_pd();
195         fix1             = _mm256_setzero_pd();
196         fiy1             = _mm256_setzero_pd();
197         fiz1             = _mm256_setzero_pd();
198         fix2             = _mm256_setzero_pd();
199         fiy2             = _mm256_setzero_pd();
200         fiz2             = _mm256_setzero_pd();
201         fix3             = _mm256_setzero_pd();
202         fiy3             = _mm256_setzero_pd();
203         fiz3             = _mm256_setzero_pd();
204
205         /* Reset potential sums */
206         velecsum         = _mm256_setzero_pd();
207         vvdwsum          = _mm256_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             jnrC             = jjnr[jidx+2];
217             jnrD             = jjnr[jidx+3];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  &jx0,&jy0,&jz0);
227
228             /* Calculate displacement vector */
229             dx00             = _mm256_sub_pd(ix0,jx0);
230             dy00             = _mm256_sub_pd(iy0,jy0);
231             dz00             = _mm256_sub_pd(iz0,jz0);
232             dx10             = _mm256_sub_pd(ix1,jx0);
233             dy10             = _mm256_sub_pd(iy1,jy0);
234             dz10             = _mm256_sub_pd(iz1,jz0);
235             dx20             = _mm256_sub_pd(ix2,jx0);
236             dy20             = _mm256_sub_pd(iy2,jy0);
237             dz20             = _mm256_sub_pd(iz2,jz0);
238             dx30             = _mm256_sub_pd(ix3,jx0);
239             dy30             = _mm256_sub_pd(iy3,jy0);
240             dz30             = _mm256_sub_pd(iz3,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
244             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
245             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
246             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
247
248             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
249             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
250             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
251             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
252
253             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
254             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
255             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
256             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0);
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262             vdwjidx0B        = 2*vdwtype[jnrB+0];
263             vdwjidx0C        = 2*vdwtype[jnrC+0];
264             vdwjidx0D        = 2*vdwtype[jnrD+0];
265
266             fjx0             = _mm256_setzero_pd();
267             fjy0             = _mm256_setzero_pd();
268             fjz0             = _mm256_setzero_pd();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (gmx_mm256_any_lt(rsq00,rcutoff2))
275             {
276
277             r00              = _mm256_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
281                                             vdwioffsetptr0+vdwjidx0B,
282                                             vdwioffsetptr0+vdwjidx0C,
283                                             vdwioffsetptr0+vdwjidx0D,
284                                             &c6_00,&c12_00);
285
286             /* LENNARD-JONES DISPERSION/REPULSION */
287
288             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
289             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
290             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
291             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
292             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
293
294             d                = _mm256_sub_pd(r00,rswitch);
295             d                = _mm256_max_pd(d,_mm256_setzero_pd());
296             d2               = _mm256_mul_pd(d,d);
297             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
298
299             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
300
301             /* Evaluate switch function */
302             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
303             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
304             vvdw             = _mm256_mul_pd(vvdw,sw);
305             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
309             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
310
311             fscal            = fvdw;
312
313             fscal            = _mm256_and_pd(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx00);
317             ty               = _mm256_mul_pd(fscal,dy00);
318             tz               = _mm256_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm256_add_pd(fix0,tx);
322             fiy0             = _mm256_add_pd(fiy0,ty);
323             fiz0             = _mm256_add_pd(fiz0,tz);
324
325             fjx0             = _mm256_add_pd(fjx0,tx);
326             fjy0             = _mm256_add_pd(fjy0,ty);
327             fjz0             = _mm256_add_pd(fjz0,tz);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm256_any_lt(rsq10,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm256_mul_pd(iq1,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
343             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
344
345             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm256_and_pd(velec,cutoff_mask);
349             velecsum         = _mm256_add_pd(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm256_and_pd(fscal,cutoff_mask);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_pd(fscal,dx10);
357             ty               = _mm256_mul_pd(fscal,dy10);
358             tz               = _mm256_mul_pd(fscal,dz10);
359
360             /* Update vectorial force */
361             fix1             = _mm256_add_pd(fix1,tx);
362             fiy1             = _mm256_add_pd(fiy1,ty);
363             fiz1             = _mm256_add_pd(fiz1,tz);
364
365             fjx0             = _mm256_add_pd(fjx0,tx);
366             fjy0             = _mm256_add_pd(fjy0,ty);
367             fjz0             = _mm256_add_pd(fjz0,tz);
368
369             }
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm256_any_lt(rsq20,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _mm256_mul_pd(iq2,jq0);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
383             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
384
385             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm256_and_pd(velec,cutoff_mask);
389             velecsum         = _mm256_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm256_and_pd(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm256_mul_pd(fscal,dx20);
397             ty               = _mm256_mul_pd(fscal,dy20);
398             tz               = _mm256_mul_pd(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm256_add_pd(fix2,tx);
402             fiy2             = _mm256_add_pd(fiy2,ty);
403             fiz2             = _mm256_add_pd(fiz2,tz);
404
405             fjx0             = _mm256_add_pd(fjx0,tx);
406             fjy0             = _mm256_add_pd(fjy0,ty);
407             fjz0             = _mm256_add_pd(fjz0,tz);
408
409             }
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             if (gmx_mm256_any_lt(rsq30,rcutoff2))
416             {
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq30             = _mm256_mul_pd(iq3,jq0);
420
421             /* REACTION-FIELD ELECTROSTATICS */
422             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
423             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
424
425             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm256_and_pd(velec,cutoff_mask);
429             velecsum         = _mm256_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm256_and_pd(fscal,cutoff_mask);
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm256_mul_pd(fscal,dx30);
437             ty               = _mm256_mul_pd(fscal,dy30);
438             tz               = _mm256_mul_pd(fscal,dz30);
439
440             /* Update vectorial force */
441             fix3             = _mm256_add_pd(fix3,tx);
442             fiy3             = _mm256_add_pd(fiy3,ty);
443             fiz3             = _mm256_add_pd(fiz3,tz);
444
445             fjx0             = _mm256_add_pd(fjx0,tx);
446             fjy0             = _mm256_add_pd(fjy0,ty);
447             fjz0             = _mm256_add_pd(fjz0,tz);
448
449             }
450
451             fjptrA             = f+j_coord_offsetA;
452             fjptrB             = f+j_coord_offsetB;
453             fjptrC             = f+j_coord_offsetC;
454             fjptrD             = f+j_coord_offsetD;
455
456             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
457
458             /* Inner loop uses 170 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrlistA         = jjnr[jidx];
466             jnrlistB         = jjnr[jidx+1];
467             jnrlistC         = jjnr[jidx+2];
468             jnrlistD         = jjnr[jidx+3];
469             /* Sign of each element will be negative for non-real atoms.
470              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
471              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
472              */
473             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
474
475             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
476             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
477             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
478
479             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
480             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
481             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
482             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
483             j_coord_offsetA  = DIM*jnrA;
484             j_coord_offsetB  = DIM*jnrB;
485             j_coord_offsetC  = DIM*jnrC;
486             j_coord_offsetD  = DIM*jnrD;
487
488             /* load j atom coordinates */
489             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
490                                                  x+j_coord_offsetC,x+j_coord_offsetD,
491                                                  &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm256_sub_pd(ix0,jx0);
495             dy00             = _mm256_sub_pd(iy0,jy0);
496             dz00             = _mm256_sub_pd(iz0,jz0);
497             dx10             = _mm256_sub_pd(ix1,jx0);
498             dy10             = _mm256_sub_pd(iy1,jy0);
499             dz10             = _mm256_sub_pd(iz1,jz0);
500             dx20             = _mm256_sub_pd(ix2,jx0);
501             dy20             = _mm256_sub_pd(iy2,jy0);
502             dz20             = _mm256_sub_pd(iz2,jz0);
503             dx30             = _mm256_sub_pd(ix3,jx0);
504             dy30             = _mm256_sub_pd(iy3,jy0);
505             dz30             = _mm256_sub_pd(iz3,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
509             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
510             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
511             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
512
513             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
514             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
515             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
516             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
517
518             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
519             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
520             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
521             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
525                                                                  charge+jnrC+0,charge+jnrD+0);
526             vdwjidx0A        = 2*vdwtype[jnrA+0];
527             vdwjidx0B        = 2*vdwtype[jnrB+0];
528             vdwjidx0C        = 2*vdwtype[jnrC+0];
529             vdwjidx0D        = 2*vdwtype[jnrD+0];
530
531             fjx0             = _mm256_setzero_pd();
532             fjy0             = _mm256_setzero_pd();
533             fjz0             = _mm256_setzero_pd();
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             if (gmx_mm256_any_lt(rsq00,rcutoff2))
540             {
541
542             r00              = _mm256_mul_pd(rsq00,rinv00);
543             r00              = _mm256_andnot_pd(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
547                                             vdwioffsetptr0+vdwjidx0B,
548                                             vdwioffsetptr0+vdwjidx0C,
549                                             vdwioffsetptr0+vdwjidx0D,
550                                             &c6_00,&c12_00);
551
552             /* LENNARD-JONES DISPERSION/REPULSION */
553
554             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
555             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
556             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
557             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
558             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
559
560             d                = _mm256_sub_pd(r00,rswitch);
561             d                = _mm256_max_pd(d,_mm256_setzero_pd());
562             d2               = _mm256_mul_pd(d,d);
563             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
564
565             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
566
567             /* Evaluate switch function */
568             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
569             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
570             vvdw             = _mm256_mul_pd(vvdw,sw);
571             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
575             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
576             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
577
578             fscal            = fvdw;
579
580             fscal            = _mm256_and_pd(fscal,cutoff_mask);
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx00);
586             ty               = _mm256_mul_pd(fscal,dy00);
587             tz               = _mm256_mul_pd(fscal,dz00);
588
589             /* Update vectorial force */
590             fix0             = _mm256_add_pd(fix0,tx);
591             fiy0             = _mm256_add_pd(fiy0,ty);
592             fiz0             = _mm256_add_pd(fiz0,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             }
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm256_any_lt(rsq10,rcutoff2))
605             {
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq10             = _mm256_mul_pd(iq1,jq0);
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
612             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
613
614             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm256_and_pd(velec,cutoff_mask);
618             velec            = _mm256_andnot_pd(dummy_mask,velec);
619             velecsum         = _mm256_add_pd(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm256_and_pd(fscal,cutoff_mask);
624
625             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm256_mul_pd(fscal,dx10);
629             ty               = _mm256_mul_pd(fscal,dy10);
630             tz               = _mm256_mul_pd(fscal,dz10);
631
632             /* Update vectorial force */
633             fix1             = _mm256_add_pd(fix1,tx);
634             fiy1             = _mm256_add_pd(fiy1,ty);
635             fiz1             = _mm256_add_pd(fiz1,tz);
636
637             fjx0             = _mm256_add_pd(fjx0,tx);
638             fjy0             = _mm256_add_pd(fjy0,ty);
639             fjz0             = _mm256_add_pd(fjz0,tz);
640
641             }
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             if (gmx_mm256_any_lt(rsq20,rcutoff2))
648             {
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq20             = _mm256_mul_pd(iq2,jq0);
652
653             /* REACTION-FIELD ELECTROSTATICS */
654             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
655             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
656
657             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             velec            = _mm256_and_pd(velec,cutoff_mask);
661             velec            = _mm256_andnot_pd(dummy_mask,velec);
662             velecsum         = _mm256_add_pd(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm256_and_pd(fscal,cutoff_mask);
667
668             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm256_mul_pd(fscal,dx20);
672             ty               = _mm256_mul_pd(fscal,dy20);
673             tz               = _mm256_mul_pd(fscal,dz20);
674
675             /* Update vectorial force */
676             fix2             = _mm256_add_pd(fix2,tx);
677             fiy2             = _mm256_add_pd(fiy2,ty);
678             fiz2             = _mm256_add_pd(fiz2,tz);
679
680             fjx0             = _mm256_add_pd(fjx0,tx);
681             fjy0             = _mm256_add_pd(fjy0,ty);
682             fjz0             = _mm256_add_pd(fjz0,tz);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm256_any_lt(rsq30,rcutoff2))
691             {
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq30             = _mm256_mul_pd(iq3,jq0);
695
696             /* REACTION-FIELD ELECTROSTATICS */
697             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
698             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
699
700             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
701
702             /* Update potential sum for this i atom from the interaction with this j atom. */
703             velec            = _mm256_and_pd(velec,cutoff_mask);
704             velec            = _mm256_andnot_pd(dummy_mask,velec);
705             velecsum         = _mm256_add_pd(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm256_and_pd(fscal,cutoff_mask);
710
711             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
712
713             /* Calculate temporary vectorial force */
714             tx               = _mm256_mul_pd(fscal,dx30);
715             ty               = _mm256_mul_pd(fscal,dy30);
716             tz               = _mm256_mul_pd(fscal,dz30);
717
718             /* Update vectorial force */
719             fix3             = _mm256_add_pd(fix3,tx);
720             fiy3             = _mm256_add_pd(fiy3,ty);
721             fiz3             = _mm256_add_pd(fiz3,tz);
722
723             fjx0             = _mm256_add_pd(fjx0,tx);
724             fjy0             = _mm256_add_pd(fjy0,ty);
725             fjz0             = _mm256_add_pd(fjz0,tz);
726
727             }
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733
734             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 171 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
742                                                  f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 26 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*171);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
764  * Electrostatics interaction: ReactionField
765  * VdW interaction:            LennardJones
766  * Geometry:                   Water4-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_avx_256_double
771                     (t_nblist                    * gmx_restrict       nlist,
772                      rvec                        * gmx_restrict          xx,
773                      rvec                        * gmx_restrict          ff,
774                      t_forcerec                  * gmx_restrict          fr,
775                      t_mdatoms                   * gmx_restrict     mdatoms,
776                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
777                      t_nrnb                      * gmx_restrict        nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
780      * just 0 for non-waters.
781      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB,jnrC,jnrD;
787     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
788     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
789     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
790     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
791     real             rcutoff_scalar;
792     real             *shiftvec,*fshift,*x,*f;
793     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
794     real             scratch[4*DIM];
795     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
796     real *           vdwioffsetptr0;
797     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
798     real *           vdwioffsetptr1;
799     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
800     real *           vdwioffsetptr2;
801     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
802     real *           vdwioffsetptr3;
803     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
804     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
805     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
806     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
807     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
808     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
809     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
810     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
811     real             *charge;
812     int              nvdwtype;
813     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
814     int              *vdwtype;
815     real             *vdwparam;
816     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
817     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
818     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
819     real             rswitch_scalar,d_scalar;
820     __m256d          dummy_mask,cutoff_mask;
821     __m128           tmpmask0,tmpmask1;
822     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
823     __m256d          one     = _mm256_set1_pd(1.0);
824     __m256d          two     = _mm256_set1_pd(2.0);
825     x                = xx[0];
826     f                = ff[0];
827
828     nri              = nlist->nri;
829     iinr             = nlist->iinr;
830     jindex           = nlist->jindex;
831     jjnr             = nlist->jjnr;
832     shiftidx         = nlist->shift;
833     gid              = nlist->gid;
834     shiftvec         = fr->shift_vec[0];
835     fshift           = fr->fshift[0];
836     facel            = _mm256_set1_pd(fr->epsfac);
837     charge           = mdatoms->chargeA;
838     krf              = _mm256_set1_pd(fr->ic->k_rf);
839     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
840     crf              = _mm256_set1_pd(fr->ic->c_rf);
841     nvdwtype         = fr->ntype;
842     vdwparam         = fr->nbfp;
843     vdwtype          = mdatoms->typeA;
844
845     /* Setup water-specific parameters */
846     inr              = nlist->iinr[0];
847     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
848     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
849     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
850     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
851
852     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
853     rcutoff_scalar   = fr->rcoulomb;
854     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
855     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
856
857     rswitch_scalar   = fr->rvdw_switch;
858     rswitch          = _mm256_set1_pd(rswitch_scalar);
859     /* Setup switch parameters */
860     d_scalar         = rcutoff_scalar-rswitch_scalar;
861     d                = _mm256_set1_pd(d_scalar);
862     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
863     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
864     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
865     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
866     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
867     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
901
902         fix0             = _mm256_setzero_pd();
903         fiy0             = _mm256_setzero_pd();
904         fiz0             = _mm256_setzero_pd();
905         fix1             = _mm256_setzero_pd();
906         fiy1             = _mm256_setzero_pd();
907         fiz1             = _mm256_setzero_pd();
908         fix2             = _mm256_setzero_pd();
909         fiy2             = _mm256_setzero_pd();
910         fiz2             = _mm256_setzero_pd();
911         fix3             = _mm256_setzero_pd();
912         fiy3             = _mm256_setzero_pd();
913         fiz3             = _mm256_setzero_pd();
914
915         /* Start inner kernel loop */
916         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
917         {
918
919             /* Get j neighbor index, and coordinate index */
920             jnrA             = jjnr[jidx];
921             jnrB             = jjnr[jidx+1];
922             jnrC             = jjnr[jidx+2];
923             jnrD             = jjnr[jidx+3];
924             j_coord_offsetA  = DIM*jnrA;
925             j_coord_offsetB  = DIM*jnrB;
926             j_coord_offsetC  = DIM*jnrC;
927             j_coord_offsetD  = DIM*jnrD;
928
929             /* load j atom coordinates */
930             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
931                                                  x+j_coord_offsetC,x+j_coord_offsetD,
932                                                  &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx00             = _mm256_sub_pd(ix0,jx0);
936             dy00             = _mm256_sub_pd(iy0,jy0);
937             dz00             = _mm256_sub_pd(iz0,jz0);
938             dx10             = _mm256_sub_pd(ix1,jx0);
939             dy10             = _mm256_sub_pd(iy1,jy0);
940             dz10             = _mm256_sub_pd(iz1,jz0);
941             dx20             = _mm256_sub_pd(ix2,jx0);
942             dy20             = _mm256_sub_pd(iy2,jy0);
943             dz20             = _mm256_sub_pd(iz2,jz0);
944             dx30             = _mm256_sub_pd(ix3,jx0);
945             dy30             = _mm256_sub_pd(iy3,jy0);
946             dz30             = _mm256_sub_pd(iz3,jz0);
947
948             /* Calculate squared distance and things based on it */
949             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
950             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
951             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
952             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
953
954             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
955             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
956             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
957             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
958
959             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
960             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
961             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
962             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
963
964             /* Load parameters for j particles */
965             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
966                                                                  charge+jnrC+0,charge+jnrD+0);
967             vdwjidx0A        = 2*vdwtype[jnrA+0];
968             vdwjidx0B        = 2*vdwtype[jnrB+0];
969             vdwjidx0C        = 2*vdwtype[jnrC+0];
970             vdwjidx0D        = 2*vdwtype[jnrD+0];
971
972             fjx0             = _mm256_setzero_pd();
973             fjy0             = _mm256_setzero_pd();
974             fjz0             = _mm256_setzero_pd();
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             if (gmx_mm256_any_lt(rsq00,rcutoff2))
981             {
982
983             r00              = _mm256_mul_pd(rsq00,rinv00);
984
985             /* Compute parameters for interactions between i and j atoms */
986             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
987                                             vdwioffsetptr0+vdwjidx0B,
988                                             vdwioffsetptr0+vdwjidx0C,
989                                             vdwioffsetptr0+vdwjidx0D,
990                                             &c6_00,&c12_00);
991
992             /* LENNARD-JONES DISPERSION/REPULSION */
993
994             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
995             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
996             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
997             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
998             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
999
1000             d                = _mm256_sub_pd(r00,rswitch);
1001             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1002             d2               = _mm256_mul_pd(d,d);
1003             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1004
1005             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1006
1007             /* Evaluate switch function */
1008             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1009             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1010             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1011
1012             fscal            = fvdw;
1013
1014             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm256_mul_pd(fscal,dx00);
1018             ty               = _mm256_mul_pd(fscal,dy00);
1019             tz               = _mm256_mul_pd(fscal,dz00);
1020
1021             /* Update vectorial force */
1022             fix0             = _mm256_add_pd(fix0,tx);
1023             fiy0             = _mm256_add_pd(fiy0,ty);
1024             fiz0             = _mm256_add_pd(fiz0,tz);
1025
1026             fjx0             = _mm256_add_pd(fjx0,tx);
1027             fjy0             = _mm256_add_pd(fjy0,ty);
1028             fjz0             = _mm256_add_pd(fjz0,tz);
1029
1030             }
1031
1032             /**************************
1033              * CALCULATE INTERACTIONS *
1034              **************************/
1035
1036             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1037             {
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq10             = _mm256_mul_pd(iq1,jq0);
1041
1042             /* REACTION-FIELD ELECTROSTATICS */
1043             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1044
1045             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1046
1047             fscal            = felec;
1048
1049             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm256_mul_pd(fscal,dx10);
1053             ty               = _mm256_mul_pd(fscal,dy10);
1054             tz               = _mm256_mul_pd(fscal,dz10);
1055
1056             /* Update vectorial force */
1057             fix1             = _mm256_add_pd(fix1,tx);
1058             fiy1             = _mm256_add_pd(fiy1,ty);
1059             fiz1             = _mm256_add_pd(fiz1,tz);
1060
1061             fjx0             = _mm256_add_pd(fjx0,tx);
1062             fjy0             = _mm256_add_pd(fjy0,ty);
1063             fjz0             = _mm256_add_pd(fjz0,tz);
1064
1065             }
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1072             {
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq20             = _mm256_mul_pd(iq2,jq0);
1076
1077             /* REACTION-FIELD ELECTROSTATICS */
1078             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1079
1080             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1081
1082             fscal            = felec;
1083
1084             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = _mm256_mul_pd(fscal,dx20);
1088             ty               = _mm256_mul_pd(fscal,dy20);
1089             tz               = _mm256_mul_pd(fscal,dz20);
1090
1091             /* Update vectorial force */
1092             fix2             = _mm256_add_pd(fix2,tx);
1093             fiy2             = _mm256_add_pd(fiy2,ty);
1094             fiz2             = _mm256_add_pd(fiz2,tz);
1095
1096             fjx0             = _mm256_add_pd(fjx0,tx);
1097             fjy0             = _mm256_add_pd(fjy0,ty);
1098             fjz0             = _mm256_add_pd(fjz0,tz);
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1107             {
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             qq30             = _mm256_mul_pd(iq3,jq0);
1111
1112             /* REACTION-FIELD ELECTROSTATICS */
1113             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1114
1115             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1116
1117             fscal            = felec;
1118
1119             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm256_mul_pd(fscal,dx30);
1123             ty               = _mm256_mul_pd(fscal,dy30);
1124             tz               = _mm256_mul_pd(fscal,dz30);
1125
1126             /* Update vectorial force */
1127             fix3             = _mm256_add_pd(fix3,tx);
1128             fiy3             = _mm256_add_pd(fiy3,ty);
1129             fiz3             = _mm256_add_pd(fiz3,tz);
1130
1131             fjx0             = _mm256_add_pd(fjx0,tx);
1132             fjy0             = _mm256_add_pd(fjy0,ty);
1133             fjz0             = _mm256_add_pd(fjz0,tz);
1134
1135             }
1136
1137             fjptrA             = f+j_coord_offsetA;
1138             fjptrB             = f+j_coord_offsetB;
1139             fjptrC             = f+j_coord_offsetC;
1140             fjptrD             = f+j_coord_offsetD;
1141
1142             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1143
1144             /* Inner loop uses 149 flops */
1145         }
1146
1147         if(jidx<j_index_end)
1148         {
1149
1150             /* Get j neighbor index, and coordinate index */
1151             jnrlistA         = jjnr[jidx];
1152             jnrlistB         = jjnr[jidx+1];
1153             jnrlistC         = jjnr[jidx+2];
1154             jnrlistD         = jjnr[jidx+3];
1155             /* Sign of each element will be negative for non-real atoms.
1156              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1157              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1158              */
1159             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1160
1161             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1162             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1163             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1164
1165             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1166             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1167             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1168             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1169             j_coord_offsetA  = DIM*jnrA;
1170             j_coord_offsetB  = DIM*jnrB;
1171             j_coord_offsetC  = DIM*jnrC;
1172             j_coord_offsetD  = DIM*jnrD;
1173
1174             /* load j atom coordinates */
1175             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1176                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1177                                                  &jx0,&jy0,&jz0);
1178
1179             /* Calculate displacement vector */
1180             dx00             = _mm256_sub_pd(ix0,jx0);
1181             dy00             = _mm256_sub_pd(iy0,jy0);
1182             dz00             = _mm256_sub_pd(iz0,jz0);
1183             dx10             = _mm256_sub_pd(ix1,jx0);
1184             dy10             = _mm256_sub_pd(iy1,jy0);
1185             dz10             = _mm256_sub_pd(iz1,jz0);
1186             dx20             = _mm256_sub_pd(ix2,jx0);
1187             dy20             = _mm256_sub_pd(iy2,jy0);
1188             dz20             = _mm256_sub_pd(iz2,jz0);
1189             dx30             = _mm256_sub_pd(ix3,jx0);
1190             dy30             = _mm256_sub_pd(iy3,jy0);
1191             dz30             = _mm256_sub_pd(iz3,jz0);
1192
1193             /* Calculate squared distance and things based on it */
1194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1195             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1196             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1197             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1198
1199             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1200             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1201             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1202             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1203
1204             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1205             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1206             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1207             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1208
1209             /* Load parameters for j particles */
1210             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1211                                                                  charge+jnrC+0,charge+jnrD+0);
1212             vdwjidx0A        = 2*vdwtype[jnrA+0];
1213             vdwjidx0B        = 2*vdwtype[jnrB+0];
1214             vdwjidx0C        = 2*vdwtype[jnrC+0];
1215             vdwjidx0D        = 2*vdwtype[jnrD+0];
1216
1217             fjx0             = _mm256_setzero_pd();
1218             fjy0             = _mm256_setzero_pd();
1219             fjz0             = _mm256_setzero_pd();
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1226             {
1227
1228             r00              = _mm256_mul_pd(rsq00,rinv00);
1229             r00              = _mm256_andnot_pd(dummy_mask,r00);
1230
1231             /* Compute parameters for interactions between i and j atoms */
1232             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1233                                             vdwioffsetptr0+vdwjidx0B,
1234                                             vdwioffsetptr0+vdwjidx0C,
1235                                             vdwioffsetptr0+vdwjidx0D,
1236                                             &c6_00,&c12_00);
1237
1238             /* LENNARD-JONES DISPERSION/REPULSION */
1239
1240             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1241             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1242             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1243             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1244             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1245
1246             d                = _mm256_sub_pd(r00,rswitch);
1247             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1248             d2               = _mm256_mul_pd(d,d);
1249             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1250
1251             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1252
1253             /* Evaluate switch function */
1254             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1255             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1256             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1257
1258             fscal            = fvdw;
1259
1260             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1261
1262             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1263
1264             /* Calculate temporary vectorial force */
1265             tx               = _mm256_mul_pd(fscal,dx00);
1266             ty               = _mm256_mul_pd(fscal,dy00);
1267             tz               = _mm256_mul_pd(fscal,dz00);
1268
1269             /* Update vectorial force */
1270             fix0             = _mm256_add_pd(fix0,tx);
1271             fiy0             = _mm256_add_pd(fiy0,ty);
1272             fiz0             = _mm256_add_pd(fiz0,tz);
1273
1274             fjx0             = _mm256_add_pd(fjx0,tx);
1275             fjy0             = _mm256_add_pd(fjy0,ty);
1276             fjz0             = _mm256_add_pd(fjz0,tz);
1277
1278             }
1279
1280             /**************************
1281              * CALCULATE INTERACTIONS *
1282              **************************/
1283
1284             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1285             {
1286
1287             /* Compute parameters for interactions between i and j atoms */
1288             qq10             = _mm256_mul_pd(iq1,jq0);
1289
1290             /* REACTION-FIELD ELECTROSTATICS */
1291             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1292
1293             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1294
1295             fscal            = felec;
1296
1297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1298
1299             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1300
1301             /* Calculate temporary vectorial force */
1302             tx               = _mm256_mul_pd(fscal,dx10);
1303             ty               = _mm256_mul_pd(fscal,dy10);
1304             tz               = _mm256_mul_pd(fscal,dz10);
1305
1306             /* Update vectorial force */
1307             fix1             = _mm256_add_pd(fix1,tx);
1308             fiy1             = _mm256_add_pd(fiy1,ty);
1309             fiz1             = _mm256_add_pd(fiz1,tz);
1310
1311             fjx0             = _mm256_add_pd(fjx0,tx);
1312             fjy0             = _mm256_add_pd(fjy0,ty);
1313             fjz0             = _mm256_add_pd(fjz0,tz);
1314
1315             }
1316
1317             /**************************
1318              * CALCULATE INTERACTIONS *
1319              **************************/
1320
1321             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1322             {
1323
1324             /* Compute parameters for interactions between i and j atoms */
1325             qq20             = _mm256_mul_pd(iq2,jq0);
1326
1327             /* REACTION-FIELD ELECTROSTATICS */
1328             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1329
1330             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1331
1332             fscal            = felec;
1333
1334             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1335
1336             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1337
1338             /* Calculate temporary vectorial force */
1339             tx               = _mm256_mul_pd(fscal,dx20);
1340             ty               = _mm256_mul_pd(fscal,dy20);
1341             tz               = _mm256_mul_pd(fscal,dz20);
1342
1343             /* Update vectorial force */
1344             fix2             = _mm256_add_pd(fix2,tx);
1345             fiy2             = _mm256_add_pd(fiy2,ty);
1346             fiz2             = _mm256_add_pd(fiz2,tz);
1347
1348             fjx0             = _mm256_add_pd(fjx0,tx);
1349             fjy0             = _mm256_add_pd(fjy0,ty);
1350             fjz0             = _mm256_add_pd(fjz0,tz);
1351
1352             }
1353
1354             /**************************
1355              * CALCULATE INTERACTIONS *
1356              **************************/
1357
1358             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1359             {
1360
1361             /* Compute parameters for interactions between i and j atoms */
1362             qq30             = _mm256_mul_pd(iq3,jq0);
1363
1364             /* REACTION-FIELD ELECTROSTATICS */
1365             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1366
1367             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1368
1369             fscal            = felec;
1370
1371             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1372
1373             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1374
1375             /* Calculate temporary vectorial force */
1376             tx               = _mm256_mul_pd(fscal,dx30);
1377             ty               = _mm256_mul_pd(fscal,dy30);
1378             tz               = _mm256_mul_pd(fscal,dz30);
1379
1380             /* Update vectorial force */
1381             fix3             = _mm256_add_pd(fix3,tx);
1382             fiy3             = _mm256_add_pd(fiy3,ty);
1383             fiz3             = _mm256_add_pd(fiz3,tz);
1384
1385             fjx0             = _mm256_add_pd(fjx0,tx);
1386             fjy0             = _mm256_add_pd(fjy0,ty);
1387             fjz0             = _mm256_add_pd(fjz0,tz);
1388
1389             }
1390
1391             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1392             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1393             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1394             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1395
1396             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1397
1398             /* Inner loop uses 150 flops */
1399         }
1400
1401         /* End of innermost loop */
1402
1403         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1404                                                  f+i_coord_offset,fshift+i_shift_offset);
1405
1406         /* Increment number of inner iterations */
1407         inneriter                  += j_index_end - j_index_start;
1408
1409         /* Outer loop uses 24 flops */
1410     }
1411
1412     /* Increment number of outer iterations */
1413     outeriter        += nri;
1414
1415     /* Update outer/inner flops */
1416
1417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1418 }