Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     __m256d          dummy_mask,cutoff_mask;
105     __m128           tmpmask0,tmpmask1;
106     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
107     __m256d          one     = _mm256_set1_pd(1.0);
108     __m256d          two     = _mm256_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm256_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm256_set1_pd(fr->ic->k_rf);
123     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm256_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
132     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
133     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
134     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->ic->rcoulomb;
138     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
140
141     rswitch_scalar   = fr->ic->rvdw_switch;
142     rswitch          = _mm256_set1_pd(rswitch_scalar);
143     /* Setup switch parameters */
144     d_scalar         = rcutoff_scalar-rswitch_scalar;
145     d                = _mm256_set1_pd(d_scalar);
146     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
147     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
150     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
185
186         fix0             = _mm256_setzero_pd();
187         fiy0             = _mm256_setzero_pd();
188         fiz0             = _mm256_setzero_pd();
189         fix1             = _mm256_setzero_pd();
190         fiy1             = _mm256_setzero_pd();
191         fiz1             = _mm256_setzero_pd();
192         fix2             = _mm256_setzero_pd();
193         fiy2             = _mm256_setzero_pd();
194         fiz2             = _mm256_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_pd();
198         vvdwsum          = _mm256_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_pd(ix0,jx0);
221             dy00             = _mm256_sub_pd(iy0,jy0);
222             dz00             = _mm256_sub_pd(iz0,jz0);
223             dx10             = _mm256_sub_pd(ix1,jx0);
224             dy10             = _mm256_sub_pd(iy1,jy0);
225             dz10             = _mm256_sub_pd(iz1,jz0);
226             dx20             = _mm256_sub_pd(ix2,jx0);
227             dy20             = _mm256_sub_pd(iy2,jy0);
228             dz20             = _mm256_sub_pd(iz2,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
232             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
233             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
234
235             rinv00           = avx256_invsqrt_d(rsq00);
236             rinv10           = avx256_invsqrt_d(rsq10);
237             rinv20           = avx256_invsqrt_d(rsq20);
238
239             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
245                                                                  charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm256_setzero_pd();
252             fjy0             = _mm256_setzero_pd();
253             fjz0             = _mm256_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm256_mul_pd(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm256_mul_pd(iq0,jq0);
266             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
267                                             vdwioffsetptr0+vdwjidx0B,
268                                             vdwioffsetptr0+vdwjidx0C,
269                                             vdwioffsetptr0+vdwjidx0D,
270                                             &c6_00,&c12_00);
271
272             /* REACTION-FIELD ELECTROSTATICS */
273             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
274             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
275
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
280             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
281             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
282             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
283
284             d                = _mm256_sub_pd(r00,rswitch);
285             d                = _mm256_max_pd(d,_mm256_setzero_pd());
286             d2               = _mm256_mul_pd(d,d);
287             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
288
289             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
290
291             /* Evaluate switch function */
292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
293             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
294             vvdw             = _mm256_mul_pd(vvdw,sw);
295             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm256_and_pd(velec,cutoff_mask);
299             velecsum         = _mm256_add_pd(velecsum,velec);
300             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
301             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
302
303             fscal            = _mm256_add_pd(felec,fvdw);
304
305             fscal            = _mm256_and_pd(fscal,cutoff_mask);
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm256_mul_pd(fscal,dx00);
309             ty               = _mm256_mul_pd(fscal,dy00);
310             tz               = _mm256_mul_pd(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm256_add_pd(fix0,tx);
314             fiy0             = _mm256_add_pd(fiy0,ty);
315             fiz0             = _mm256_add_pd(fiz0,tz);
316
317             fjx0             = _mm256_add_pd(fjx0,tx);
318             fjy0             = _mm256_add_pd(fjy0,ty);
319             fjz0             = _mm256_add_pd(fjz0,tz);
320
321             }
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             if (gmx_mm256_any_lt(rsq10,rcutoff2))
328             {
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm256_mul_pd(iq1,jq0);
332
333             /* REACTION-FIELD ELECTROSTATICS */
334             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
335             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
336
337             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _mm256_and_pd(velec,cutoff_mask);
341             velecsum         = _mm256_add_pd(velecsum,velec);
342
343             fscal            = felec;
344
345             fscal            = _mm256_and_pd(fscal,cutoff_mask);
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm256_mul_pd(fscal,dx10);
349             ty               = _mm256_mul_pd(fscal,dy10);
350             tz               = _mm256_mul_pd(fscal,dz10);
351
352             /* Update vectorial force */
353             fix1             = _mm256_add_pd(fix1,tx);
354             fiy1             = _mm256_add_pd(fiy1,ty);
355             fiz1             = _mm256_add_pd(fiz1,tz);
356
357             fjx0             = _mm256_add_pd(fjx0,tx);
358             fjy0             = _mm256_add_pd(fjy0,ty);
359             fjz0             = _mm256_add_pd(fjz0,tz);
360
361             }
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             if (gmx_mm256_any_lt(rsq20,rcutoff2))
368             {
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm256_mul_pd(iq2,jq0);
372
373             /* REACTION-FIELD ELECTROSTATICS */
374             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
375             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
376
377             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velec            = _mm256_and_pd(velec,cutoff_mask);
381             velecsum         = _mm256_add_pd(velecsum,velec);
382
383             fscal            = felec;
384
385             fscal            = _mm256_and_pd(fscal,cutoff_mask);
386
387             /* Calculate temporary vectorial force */
388             tx               = _mm256_mul_pd(fscal,dx20);
389             ty               = _mm256_mul_pd(fscal,dy20);
390             tz               = _mm256_mul_pd(fscal,dz20);
391
392             /* Update vectorial force */
393             fix2             = _mm256_add_pd(fix2,tx);
394             fiy2             = _mm256_add_pd(fiy2,ty);
395             fiz2             = _mm256_add_pd(fiz2,tz);
396
397             fjx0             = _mm256_add_pd(fjx0,tx);
398             fjy0             = _mm256_add_pd(fjy0,ty);
399             fjz0             = _mm256_add_pd(fjz0,tz);
400
401             }
402
403             fjptrA             = f+j_coord_offsetA;
404             fjptrB             = f+j_coord_offsetB;
405             fjptrC             = f+j_coord_offsetC;
406             fjptrD             = f+j_coord_offsetD;
407
408             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
409
410             /* Inner loop uses 145 flops */
411         }
412
413         if(jidx<j_index_end)
414         {
415
416             /* Get j neighbor index, and coordinate index */
417             jnrlistA         = jjnr[jidx];
418             jnrlistB         = jjnr[jidx+1];
419             jnrlistC         = jjnr[jidx+2];
420             jnrlistD         = jjnr[jidx+3];
421             /* Sign of each element will be negative for non-real atoms.
422              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
423              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
424              */
425             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
426
427             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
428             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
429             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
430
431             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
432             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
433             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
434             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
435             j_coord_offsetA  = DIM*jnrA;
436             j_coord_offsetB  = DIM*jnrB;
437             j_coord_offsetC  = DIM*jnrC;
438             j_coord_offsetD  = DIM*jnrD;
439
440             /* load j atom coordinates */
441             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
442                                                  x+j_coord_offsetC,x+j_coord_offsetD,
443                                                  &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm256_sub_pd(ix0,jx0);
447             dy00             = _mm256_sub_pd(iy0,jy0);
448             dz00             = _mm256_sub_pd(iz0,jz0);
449             dx10             = _mm256_sub_pd(ix1,jx0);
450             dy10             = _mm256_sub_pd(iy1,jy0);
451             dz10             = _mm256_sub_pd(iz1,jz0);
452             dx20             = _mm256_sub_pd(ix2,jx0);
453             dy20             = _mm256_sub_pd(iy2,jy0);
454             dz20             = _mm256_sub_pd(iz2,jz0);
455
456             /* Calculate squared distance and things based on it */
457             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
458             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
459             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
460
461             rinv00           = avx256_invsqrt_d(rsq00);
462             rinv10           = avx256_invsqrt_d(rsq10);
463             rinv20           = avx256_invsqrt_d(rsq20);
464
465             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
466             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
468
469             /* Load parameters for j particles */
470             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
471                                                                  charge+jnrC+0,charge+jnrD+0);
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473             vdwjidx0B        = 2*vdwtype[jnrB+0];
474             vdwjidx0C        = 2*vdwtype[jnrC+0];
475             vdwjidx0D        = 2*vdwtype[jnrD+0];
476
477             fjx0             = _mm256_setzero_pd();
478             fjy0             = _mm256_setzero_pd();
479             fjz0             = _mm256_setzero_pd();
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             if (gmx_mm256_any_lt(rsq00,rcutoff2))
486             {
487
488             r00              = _mm256_mul_pd(rsq00,rinv00);
489             r00              = _mm256_andnot_pd(dummy_mask,r00);
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq00             = _mm256_mul_pd(iq0,jq0);
493             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
494                                             vdwioffsetptr0+vdwjidx0B,
495                                             vdwioffsetptr0+vdwjidx0C,
496                                             vdwioffsetptr0+vdwjidx0D,
497                                             &c6_00,&c12_00);
498
499             /* REACTION-FIELD ELECTROSTATICS */
500             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
501             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
507             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
508             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
509             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
510
511             d                = _mm256_sub_pd(r00,rswitch);
512             d                = _mm256_max_pd(d,_mm256_setzero_pd());
513             d2               = _mm256_mul_pd(d,d);
514             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
515
516             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
517
518             /* Evaluate switch function */
519             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
520             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
521             vvdw             = _mm256_mul_pd(vvdw,sw);
522             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm256_and_pd(velec,cutoff_mask);
526             velec            = _mm256_andnot_pd(dummy_mask,velec);
527             velecsum         = _mm256_add_pd(velecsum,velec);
528             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
529             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
530             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
531
532             fscal            = _mm256_add_pd(felec,fvdw);
533
534             fscal            = _mm256_and_pd(fscal,cutoff_mask);
535
536             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm256_mul_pd(fscal,dx00);
540             ty               = _mm256_mul_pd(fscal,dy00);
541             tz               = _mm256_mul_pd(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm256_add_pd(fix0,tx);
545             fiy0             = _mm256_add_pd(fiy0,ty);
546             fiz0             = _mm256_add_pd(fiz0,tz);
547
548             fjx0             = _mm256_add_pd(fjx0,tx);
549             fjy0             = _mm256_add_pd(fjy0,ty);
550             fjz0             = _mm256_add_pd(fjz0,tz);
551
552             }
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm256_any_lt(rsq10,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq10             = _mm256_mul_pd(iq1,jq0);
563
564             /* REACTION-FIELD ELECTROSTATICS */
565             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
566             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
567
568             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm256_and_pd(velec,cutoff_mask);
572             velec            = _mm256_andnot_pd(dummy_mask,velec);
573             velecsum         = _mm256_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm256_and_pd(fscal,cutoff_mask);
578
579             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm256_mul_pd(fscal,dx10);
583             ty               = _mm256_mul_pd(fscal,dy10);
584             tz               = _mm256_mul_pd(fscal,dz10);
585
586             /* Update vectorial force */
587             fix1             = _mm256_add_pd(fix1,tx);
588             fiy1             = _mm256_add_pd(fiy1,ty);
589             fiz1             = _mm256_add_pd(fiz1,tz);
590
591             fjx0             = _mm256_add_pd(fjx0,tx);
592             fjy0             = _mm256_add_pd(fjy0,ty);
593             fjz0             = _mm256_add_pd(fjz0,tz);
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm256_any_lt(rsq20,rcutoff2))
602             {
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _mm256_mul_pd(iq2,jq0);
606
607             /* REACTION-FIELD ELECTROSTATICS */
608             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
609             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
610
611             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm256_and_pd(velec,cutoff_mask);
615             velec            = _mm256_andnot_pd(dummy_mask,velec);
616             velecsum         = _mm256_add_pd(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm256_and_pd(fscal,cutoff_mask);
621
622             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_pd(fscal,dx20);
626             ty               = _mm256_mul_pd(fscal,dy20);
627             tz               = _mm256_mul_pd(fscal,dz20);
628
629             /* Update vectorial force */
630             fix2             = _mm256_add_pd(fix2,tx);
631             fiy2             = _mm256_add_pd(fiy2,ty);
632             fiz2             = _mm256_add_pd(fiz2,tz);
633
634             fjx0             = _mm256_add_pd(fjx0,tx);
635             fjy0             = _mm256_add_pd(fjy0,ty);
636             fjz0             = _mm256_add_pd(fjz0,tz);
637
638             }
639
640             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
641             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
642             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
643             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
644
645             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
646
647             /* Inner loop uses 146 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
653                                                  f+i_coord_offset,fshift+i_shift_offset);
654
655         ggid                        = gid[iidx];
656         /* Update potential energies */
657         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
658         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 20 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
672 }
673 /*
674  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
675  * Electrostatics interaction: ReactionField
676  * VdW interaction:            LennardJones
677  * Geometry:                   Water3-Particle
678  * Calculate force/pot:        Force
679  */
680 void
681 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
682                     (t_nblist                    * gmx_restrict       nlist,
683                      rvec                        * gmx_restrict          xx,
684                      rvec                        * gmx_restrict          ff,
685                      struct t_forcerec           * gmx_restrict          fr,
686                      t_mdatoms                   * gmx_restrict     mdatoms,
687                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
688                      t_nrnb                      * gmx_restrict        nrnb)
689 {
690     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
691      * just 0 for non-waters.
692      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
693      * jnr indices corresponding to data put in the four positions in the SIMD register.
694      */
695     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
696     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
697     int              jnrA,jnrB,jnrC,jnrD;
698     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
699     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
700     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
705     real             scratch[4*DIM];
706     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
707     real *           vdwioffsetptr0;
708     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709     real *           vdwioffsetptr1;
710     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711     real *           vdwioffsetptr2;
712     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
714     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
719     real             *charge;
720     int              nvdwtype;
721     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
722     int              *vdwtype;
723     real             *vdwparam;
724     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
725     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
726     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
727     real             rswitch_scalar,d_scalar;
728     __m256d          dummy_mask,cutoff_mask;
729     __m128           tmpmask0,tmpmask1;
730     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
731     __m256d          one     = _mm256_set1_pd(1.0);
732     __m256d          two     = _mm256_set1_pd(2.0);
733     x                = xx[0];
734     f                = ff[0];
735
736     nri              = nlist->nri;
737     iinr             = nlist->iinr;
738     jindex           = nlist->jindex;
739     jjnr             = nlist->jjnr;
740     shiftidx         = nlist->shift;
741     gid              = nlist->gid;
742     shiftvec         = fr->shift_vec[0];
743     fshift           = fr->fshift[0];
744     facel            = _mm256_set1_pd(fr->ic->epsfac);
745     charge           = mdatoms->chargeA;
746     krf              = _mm256_set1_pd(fr->ic->k_rf);
747     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
748     crf              = _mm256_set1_pd(fr->ic->c_rf);
749     nvdwtype         = fr->ntype;
750     vdwparam         = fr->nbfp;
751     vdwtype          = mdatoms->typeA;
752
753     /* Setup water-specific parameters */
754     inr              = nlist->iinr[0];
755     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
756     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
757     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
758     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
759
760     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
761     rcutoff_scalar   = fr->ic->rcoulomb;
762     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
763     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
764
765     rswitch_scalar   = fr->ic->rvdw_switch;
766     rswitch          = _mm256_set1_pd(rswitch_scalar);
767     /* Setup switch parameters */
768     d_scalar         = rcutoff_scalar-rswitch_scalar;
769     d                = _mm256_set1_pd(d_scalar);
770     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
771     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
772     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
773     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
774     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
775     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
776
777     /* Avoid stupid compiler warnings */
778     jnrA = jnrB = jnrC = jnrD = 0;
779     j_coord_offsetA = 0;
780     j_coord_offsetB = 0;
781     j_coord_offsetC = 0;
782     j_coord_offsetD = 0;
783
784     outeriter        = 0;
785     inneriter        = 0;
786
787     for(iidx=0;iidx<4*DIM;iidx++)
788     {
789         scratch[iidx] = 0.0;
790     }
791
792     /* Start outer loop over neighborlists */
793     for(iidx=0; iidx<nri; iidx++)
794     {
795         /* Load shift vector for this list */
796         i_shift_offset   = DIM*shiftidx[iidx];
797
798         /* Load limits for loop over neighbors */
799         j_index_start    = jindex[iidx];
800         j_index_end      = jindex[iidx+1];
801
802         /* Get outer coordinate index */
803         inr              = iinr[iidx];
804         i_coord_offset   = DIM*inr;
805
806         /* Load i particle coords and add shift vector */
807         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
808                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
809
810         fix0             = _mm256_setzero_pd();
811         fiy0             = _mm256_setzero_pd();
812         fiz0             = _mm256_setzero_pd();
813         fix1             = _mm256_setzero_pd();
814         fiy1             = _mm256_setzero_pd();
815         fiz1             = _mm256_setzero_pd();
816         fix2             = _mm256_setzero_pd();
817         fiy2             = _mm256_setzero_pd();
818         fiz2             = _mm256_setzero_pd();
819
820         /* Start inner kernel loop */
821         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
822         {
823
824             /* Get j neighbor index, and coordinate index */
825             jnrA             = jjnr[jidx];
826             jnrB             = jjnr[jidx+1];
827             jnrC             = jjnr[jidx+2];
828             jnrD             = jjnr[jidx+3];
829             j_coord_offsetA  = DIM*jnrA;
830             j_coord_offsetB  = DIM*jnrB;
831             j_coord_offsetC  = DIM*jnrC;
832             j_coord_offsetD  = DIM*jnrD;
833
834             /* load j atom coordinates */
835             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
836                                                  x+j_coord_offsetC,x+j_coord_offsetD,
837                                                  &jx0,&jy0,&jz0);
838
839             /* Calculate displacement vector */
840             dx00             = _mm256_sub_pd(ix0,jx0);
841             dy00             = _mm256_sub_pd(iy0,jy0);
842             dz00             = _mm256_sub_pd(iz0,jz0);
843             dx10             = _mm256_sub_pd(ix1,jx0);
844             dy10             = _mm256_sub_pd(iy1,jy0);
845             dz10             = _mm256_sub_pd(iz1,jz0);
846             dx20             = _mm256_sub_pd(ix2,jx0);
847             dy20             = _mm256_sub_pd(iy2,jy0);
848             dz20             = _mm256_sub_pd(iz2,jz0);
849
850             /* Calculate squared distance and things based on it */
851             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
852             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
853             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
854
855             rinv00           = avx256_invsqrt_d(rsq00);
856             rinv10           = avx256_invsqrt_d(rsq10);
857             rinv20           = avx256_invsqrt_d(rsq20);
858
859             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
860             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
861             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
862
863             /* Load parameters for j particles */
864             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
865                                                                  charge+jnrC+0,charge+jnrD+0);
866             vdwjidx0A        = 2*vdwtype[jnrA+0];
867             vdwjidx0B        = 2*vdwtype[jnrB+0];
868             vdwjidx0C        = 2*vdwtype[jnrC+0];
869             vdwjidx0D        = 2*vdwtype[jnrD+0];
870
871             fjx0             = _mm256_setzero_pd();
872             fjy0             = _mm256_setzero_pd();
873             fjz0             = _mm256_setzero_pd();
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             if (gmx_mm256_any_lt(rsq00,rcutoff2))
880             {
881
882             r00              = _mm256_mul_pd(rsq00,rinv00);
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq00             = _mm256_mul_pd(iq0,jq0);
886             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
887                                             vdwioffsetptr0+vdwjidx0B,
888                                             vdwioffsetptr0+vdwjidx0C,
889                                             vdwioffsetptr0+vdwjidx0D,
890                                             &c6_00,&c12_00);
891
892             /* REACTION-FIELD ELECTROSTATICS */
893             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
894
895             /* LENNARD-JONES DISPERSION/REPULSION */
896
897             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
898             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
899             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
900             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
901             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
902
903             d                = _mm256_sub_pd(r00,rswitch);
904             d                = _mm256_max_pd(d,_mm256_setzero_pd());
905             d2               = _mm256_mul_pd(d,d);
906             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
907
908             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
909
910             /* Evaluate switch function */
911             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
912             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
913             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
914
915             fscal            = _mm256_add_pd(felec,fvdw);
916
917             fscal            = _mm256_and_pd(fscal,cutoff_mask);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm256_mul_pd(fscal,dx00);
921             ty               = _mm256_mul_pd(fscal,dy00);
922             tz               = _mm256_mul_pd(fscal,dz00);
923
924             /* Update vectorial force */
925             fix0             = _mm256_add_pd(fix0,tx);
926             fiy0             = _mm256_add_pd(fiy0,ty);
927             fiz0             = _mm256_add_pd(fiz0,tz);
928
929             fjx0             = _mm256_add_pd(fjx0,tx);
930             fjy0             = _mm256_add_pd(fjy0,ty);
931             fjz0             = _mm256_add_pd(fjz0,tz);
932
933             }
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             if (gmx_mm256_any_lt(rsq10,rcutoff2))
940             {
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq10             = _mm256_mul_pd(iq1,jq0);
944
945             /* REACTION-FIELD ELECTROSTATICS */
946             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
947
948             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
949
950             fscal            = felec;
951
952             fscal            = _mm256_and_pd(fscal,cutoff_mask);
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm256_mul_pd(fscal,dx10);
956             ty               = _mm256_mul_pd(fscal,dy10);
957             tz               = _mm256_mul_pd(fscal,dz10);
958
959             /* Update vectorial force */
960             fix1             = _mm256_add_pd(fix1,tx);
961             fiy1             = _mm256_add_pd(fiy1,ty);
962             fiz1             = _mm256_add_pd(fiz1,tz);
963
964             fjx0             = _mm256_add_pd(fjx0,tx);
965             fjy0             = _mm256_add_pd(fjy0,ty);
966             fjz0             = _mm256_add_pd(fjz0,tz);
967
968             }
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             if (gmx_mm256_any_lt(rsq20,rcutoff2))
975             {
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq20             = _mm256_mul_pd(iq2,jq0);
979
980             /* REACTION-FIELD ELECTROSTATICS */
981             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
982
983             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
984
985             fscal            = felec;
986
987             fscal            = _mm256_and_pd(fscal,cutoff_mask);
988
989             /* Calculate temporary vectorial force */
990             tx               = _mm256_mul_pd(fscal,dx20);
991             ty               = _mm256_mul_pd(fscal,dy20);
992             tz               = _mm256_mul_pd(fscal,dz20);
993
994             /* Update vectorial force */
995             fix2             = _mm256_add_pd(fix2,tx);
996             fiy2             = _mm256_add_pd(fiy2,ty);
997             fiz2             = _mm256_add_pd(fiz2,tz);
998
999             fjx0             = _mm256_add_pd(fjx0,tx);
1000             fjy0             = _mm256_add_pd(fjy0,ty);
1001             fjz0             = _mm256_add_pd(fjz0,tz);
1002
1003             }
1004
1005             fjptrA             = f+j_coord_offsetA;
1006             fjptrB             = f+j_coord_offsetB;
1007             fjptrC             = f+j_coord_offsetC;
1008             fjptrD             = f+j_coord_offsetD;
1009
1010             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1011
1012             /* Inner loop uses 124 flops */
1013         }
1014
1015         if(jidx<j_index_end)
1016         {
1017
1018             /* Get j neighbor index, and coordinate index */
1019             jnrlistA         = jjnr[jidx];
1020             jnrlistB         = jjnr[jidx+1];
1021             jnrlistC         = jjnr[jidx+2];
1022             jnrlistD         = jjnr[jidx+3];
1023             /* Sign of each element will be negative for non-real atoms.
1024              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1025              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1026              */
1027             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1028
1029             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1030             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1031             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1032
1033             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1034             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1035             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1036             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1037             j_coord_offsetA  = DIM*jnrA;
1038             j_coord_offsetB  = DIM*jnrB;
1039             j_coord_offsetC  = DIM*jnrC;
1040             j_coord_offsetD  = DIM*jnrD;
1041
1042             /* load j atom coordinates */
1043             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1044                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1045                                                  &jx0,&jy0,&jz0);
1046
1047             /* Calculate displacement vector */
1048             dx00             = _mm256_sub_pd(ix0,jx0);
1049             dy00             = _mm256_sub_pd(iy0,jy0);
1050             dz00             = _mm256_sub_pd(iz0,jz0);
1051             dx10             = _mm256_sub_pd(ix1,jx0);
1052             dy10             = _mm256_sub_pd(iy1,jy0);
1053             dz10             = _mm256_sub_pd(iz1,jz0);
1054             dx20             = _mm256_sub_pd(ix2,jx0);
1055             dy20             = _mm256_sub_pd(iy2,jy0);
1056             dz20             = _mm256_sub_pd(iz2,jz0);
1057
1058             /* Calculate squared distance and things based on it */
1059             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1060             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1061             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1062
1063             rinv00           = avx256_invsqrt_d(rsq00);
1064             rinv10           = avx256_invsqrt_d(rsq10);
1065             rinv20           = avx256_invsqrt_d(rsq20);
1066
1067             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1068             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1069             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1070
1071             /* Load parameters for j particles */
1072             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1073                                                                  charge+jnrC+0,charge+jnrD+0);
1074             vdwjidx0A        = 2*vdwtype[jnrA+0];
1075             vdwjidx0B        = 2*vdwtype[jnrB+0];
1076             vdwjidx0C        = 2*vdwtype[jnrC+0];
1077             vdwjidx0D        = 2*vdwtype[jnrD+0];
1078
1079             fjx0             = _mm256_setzero_pd();
1080             fjy0             = _mm256_setzero_pd();
1081             fjz0             = _mm256_setzero_pd();
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1088             {
1089
1090             r00              = _mm256_mul_pd(rsq00,rinv00);
1091             r00              = _mm256_andnot_pd(dummy_mask,r00);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq00             = _mm256_mul_pd(iq0,jq0);
1095             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1096                                             vdwioffsetptr0+vdwjidx0B,
1097                                             vdwioffsetptr0+vdwjidx0C,
1098                                             vdwioffsetptr0+vdwjidx0D,
1099                                             &c6_00,&c12_00);
1100
1101             /* REACTION-FIELD ELECTROSTATICS */
1102             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1103
1104             /* LENNARD-JONES DISPERSION/REPULSION */
1105
1106             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1107             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1108             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1109             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1110             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1111
1112             d                = _mm256_sub_pd(r00,rswitch);
1113             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1114             d2               = _mm256_mul_pd(d,d);
1115             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1116
1117             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1118
1119             /* Evaluate switch function */
1120             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1121             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1122             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1123
1124             fscal            = _mm256_add_pd(felec,fvdw);
1125
1126             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1127
1128             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1129
1130             /* Calculate temporary vectorial force */
1131             tx               = _mm256_mul_pd(fscal,dx00);
1132             ty               = _mm256_mul_pd(fscal,dy00);
1133             tz               = _mm256_mul_pd(fscal,dz00);
1134
1135             /* Update vectorial force */
1136             fix0             = _mm256_add_pd(fix0,tx);
1137             fiy0             = _mm256_add_pd(fiy0,ty);
1138             fiz0             = _mm256_add_pd(fiz0,tz);
1139
1140             fjx0             = _mm256_add_pd(fjx0,tx);
1141             fjy0             = _mm256_add_pd(fjy0,ty);
1142             fjz0             = _mm256_add_pd(fjz0,tz);
1143
1144             }
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1151             {
1152
1153             /* Compute parameters for interactions between i and j atoms */
1154             qq10             = _mm256_mul_pd(iq1,jq0);
1155
1156             /* REACTION-FIELD ELECTROSTATICS */
1157             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1158
1159             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1164
1165             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm256_mul_pd(fscal,dx10);
1169             ty               = _mm256_mul_pd(fscal,dy10);
1170             tz               = _mm256_mul_pd(fscal,dz10);
1171
1172             /* Update vectorial force */
1173             fix1             = _mm256_add_pd(fix1,tx);
1174             fiy1             = _mm256_add_pd(fiy1,ty);
1175             fiz1             = _mm256_add_pd(fiz1,tz);
1176
1177             fjx0             = _mm256_add_pd(fjx0,tx);
1178             fjy0             = _mm256_add_pd(fjy0,ty);
1179             fjz0             = _mm256_add_pd(fjz0,tz);
1180
1181             }
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1188             {
1189
1190             /* Compute parameters for interactions between i and j atoms */
1191             qq20             = _mm256_mul_pd(iq2,jq0);
1192
1193             /* REACTION-FIELD ELECTROSTATICS */
1194             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1195
1196             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1201
1202             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm256_mul_pd(fscal,dx20);
1206             ty               = _mm256_mul_pd(fscal,dy20);
1207             tz               = _mm256_mul_pd(fscal,dz20);
1208
1209             /* Update vectorial force */
1210             fix2             = _mm256_add_pd(fix2,tx);
1211             fiy2             = _mm256_add_pd(fiy2,ty);
1212             fiz2             = _mm256_add_pd(fiz2,tz);
1213
1214             fjx0             = _mm256_add_pd(fjx0,tx);
1215             fjy0             = _mm256_add_pd(fjy0,ty);
1216             fjz0             = _mm256_add_pd(fjz0,tz);
1217
1218             }
1219
1220             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1221             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1222             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1223             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1224
1225             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1226
1227             /* Inner loop uses 125 flops */
1228         }
1229
1230         /* End of innermost loop */
1231
1232         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1233                                                  f+i_coord_offset,fshift+i_shift_offset);
1234
1235         /* Increment number of inner iterations */
1236         inneriter                  += j_index_end - j_index_start;
1237
1238         /* Outer loop uses 18 flops */
1239     }
1240
1241     /* Increment number of outer iterations */
1242     outeriter        += nri;
1243
1244     /* Update outer/inner flops */
1245
1246     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1247 }