Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
104     real             rswitch_scalar,d_scalar;
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_pd(fr->ic->k_rf);
124     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
133     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
134     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->rvdw_switch;
143     rswitch          = _mm256_set1_pd(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = _mm256_set1_pd(d_scalar);
147     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = jnrC = jnrD = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158     j_coord_offsetC = 0;
159     j_coord_offsetD = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     for(iidx=0;iidx<4*DIM;iidx++)
165     {
166         scratch[iidx] = 0.0;
167     }
168
169     /* Start outer loop over neighborlists */
170     for(iidx=0; iidx<nri; iidx++)
171     {
172         /* Load shift vector for this list */
173         i_shift_offset   = DIM*shiftidx[iidx];
174
175         /* Load limits for loop over neighbors */
176         j_index_start    = jindex[iidx];
177         j_index_end      = jindex[iidx+1];
178
179         /* Get outer coordinate index */
180         inr              = iinr[iidx];
181         i_coord_offset   = DIM*inr;
182
183         /* Load i particle coords and add shift vector */
184         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
185                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
186
187         fix0             = _mm256_setzero_pd();
188         fiy0             = _mm256_setzero_pd();
189         fiz0             = _mm256_setzero_pd();
190         fix1             = _mm256_setzero_pd();
191         fiy1             = _mm256_setzero_pd();
192         fiz1             = _mm256_setzero_pd();
193         fix2             = _mm256_setzero_pd();
194         fiy2             = _mm256_setzero_pd();
195         fiz2             = _mm256_setzero_pd();
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_pd();
199         vvdwsum          = _mm256_setzero_pd();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214
215             /* load j atom coordinates */
216             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
217                                                  x+j_coord_offsetC,x+j_coord_offsetD,
218                                                  &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm256_sub_pd(ix0,jx0);
222             dy00             = _mm256_sub_pd(iy0,jy0);
223             dz00             = _mm256_sub_pd(iz0,jz0);
224             dx10             = _mm256_sub_pd(ix1,jx0);
225             dy10             = _mm256_sub_pd(iy1,jy0);
226             dz10             = _mm256_sub_pd(iz1,jz0);
227             dx20             = _mm256_sub_pd(ix2,jx0);
228             dy20             = _mm256_sub_pd(iy2,jy0);
229             dz20             = _mm256_sub_pd(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
235
236             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
239
240             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
241             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251
252             fjx0             = _mm256_setzero_pd();
253             fjy0             = _mm256_setzero_pd();
254             fjz0             = _mm256_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm256_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm256_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm256_mul_pd(iq0,jq0);
267             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
268                                             vdwioffsetptr0+vdwjidx0B,
269                                             vdwioffsetptr0+vdwjidx0C,
270                                             vdwioffsetptr0+vdwjidx0D,
271                                             &c6_00,&c12_00);
272
273             /* REACTION-FIELD ELECTROSTATICS */
274             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
275             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
276
277             /* LENNARD-JONES DISPERSION/REPULSION */
278
279             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
280             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
281             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
282             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
283             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
284
285             d                = _mm256_sub_pd(r00,rswitch);
286             d                = _mm256_max_pd(d,_mm256_setzero_pd());
287             d2               = _mm256_mul_pd(d,d);
288             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
289
290             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
291
292             /* Evaluate switch function */
293             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
294             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
295             vvdw             = _mm256_mul_pd(vvdw,sw);
296             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm256_and_pd(velec,cutoff_mask);
300             velecsum         = _mm256_add_pd(velecsum,velec);
301             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
302             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
303
304             fscal            = _mm256_add_pd(felec,fvdw);
305
306             fscal            = _mm256_and_pd(fscal,cutoff_mask);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_pd(fscal,dx00);
310             ty               = _mm256_mul_pd(fscal,dy00);
311             tz               = _mm256_mul_pd(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm256_add_pd(fix0,tx);
315             fiy0             = _mm256_add_pd(fiy0,ty);
316             fiz0             = _mm256_add_pd(fiz0,tz);
317
318             fjx0             = _mm256_add_pd(fjx0,tx);
319             fjy0             = _mm256_add_pd(fjy0,ty);
320             fjz0             = _mm256_add_pd(fjz0,tz);
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm256_any_lt(rsq10,rcutoff2))
329             {
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq10             = _mm256_mul_pd(iq1,jq0);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
336             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
337
338             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm256_and_pd(velec,cutoff_mask);
342             velecsum         = _mm256_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm256_and_pd(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_pd(fscal,dx10);
350             ty               = _mm256_mul_pd(fscal,dy10);
351             tz               = _mm256_mul_pd(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm256_add_pd(fix1,tx);
355             fiy1             = _mm256_add_pd(fiy1,ty);
356             fiz1             = _mm256_add_pd(fiz1,tz);
357
358             fjx0             = _mm256_add_pd(fjx0,tx);
359             fjy0             = _mm256_add_pd(fjy0,ty);
360             fjz0             = _mm256_add_pd(fjz0,tz);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm256_any_lt(rsq20,rcutoff2))
369             {
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm256_mul_pd(iq2,jq0);
373
374             /* REACTION-FIELD ELECTROSTATICS */
375             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
376             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
377
378             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm256_and_pd(velec,cutoff_mask);
382             velecsum         = _mm256_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm256_and_pd(fscal,cutoff_mask);
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm256_mul_pd(fscal,dx20);
390             ty               = _mm256_mul_pd(fscal,dy20);
391             tz               = _mm256_mul_pd(fscal,dz20);
392
393             /* Update vectorial force */
394             fix2             = _mm256_add_pd(fix2,tx);
395             fiy2             = _mm256_add_pd(fiy2,ty);
396             fiz2             = _mm256_add_pd(fiz2,tz);
397
398             fjx0             = _mm256_add_pd(fjx0,tx);
399             fjy0             = _mm256_add_pd(fjy0,ty);
400             fjz0             = _mm256_add_pd(fjz0,tz);
401
402             }
403
404             fjptrA             = f+j_coord_offsetA;
405             fjptrB             = f+j_coord_offsetB;
406             fjptrC             = f+j_coord_offsetC;
407             fjptrD             = f+j_coord_offsetD;
408
409             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 145 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             /* Get j neighbor index, and coordinate index */
418             jnrlistA         = jjnr[jidx];
419             jnrlistB         = jjnr[jidx+1];
420             jnrlistC         = jjnr[jidx+2];
421             jnrlistD         = jjnr[jidx+3];
422             /* Sign of each element will be negative for non-real atoms.
423              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
424              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
425              */
426             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
427
428             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
429             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
430             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
431
432             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
433             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
434             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
435             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
443                                                  x+j_coord_offsetC,x+j_coord_offsetD,
444                                                  &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm256_sub_pd(ix0,jx0);
448             dy00             = _mm256_sub_pd(iy0,jy0);
449             dz00             = _mm256_sub_pd(iz0,jz0);
450             dx10             = _mm256_sub_pd(ix1,jx0);
451             dy10             = _mm256_sub_pd(iy1,jy0);
452             dz10             = _mm256_sub_pd(iz1,jz0);
453             dx20             = _mm256_sub_pd(ix2,jx0);
454             dy20             = _mm256_sub_pd(iy2,jy0);
455             dz20             = _mm256_sub_pd(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
463             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
464             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
465
466             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
467             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
468             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
472                                                                  charge+jnrC+0,charge+jnrD+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474             vdwjidx0B        = 2*vdwtype[jnrB+0];
475             vdwjidx0C        = 2*vdwtype[jnrC+0];
476             vdwjidx0D        = 2*vdwtype[jnrD+0];
477
478             fjx0             = _mm256_setzero_pd();
479             fjy0             = _mm256_setzero_pd();
480             fjz0             = _mm256_setzero_pd();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             if (gmx_mm256_any_lt(rsq00,rcutoff2))
487             {
488
489             r00              = _mm256_mul_pd(rsq00,rinv00);
490             r00              = _mm256_andnot_pd(dummy_mask,r00);
491
492             /* Compute parameters for interactions between i and j atoms */
493             qq00             = _mm256_mul_pd(iq0,jq0);
494             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
495                                             vdwioffsetptr0+vdwjidx0B,
496                                             vdwioffsetptr0+vdwjidx0C,
497                                             vdwioffsetptr0+vdwjidx0D,
498                                             &c6_00,&c12_00);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
502             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
503
504             /* LENNARD-JONES DISPERSION/REPULSION */
505
506             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
507             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
508             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
509             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
510             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
511
512             d                = _mm256_sub_pd(r00,rswitch);
513             d                = _mm256_max_pd(d,_mm256_setzero_pd());
514             d2               = _mm256_mul_pd(d,d);
515             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
516
517             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
518
519             /* Evaluate switch function */
520             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
521             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
522             vvdw             = _mm256_mul_pd(vvdw,sw);
523             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm256_and_pd(velec,cutoff_mask);
527             velec            = _mm256_andnot_pd(dummy_mask,velec);
528             velecsum         = _mm256_add_pd(velecsum,velec);
529             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
530             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
531             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
532
533             fscal            = _mm256_add_pd(felec,fvdw);
534
535             fscal            = _mm256_and_pd(fscal,cutoff_mask);
536
537             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm256_mul_pd(fscal,dx00);
541             ty               = _mm256_mul_pd(fscal,dy00);
542             tz               = _mm256_mul_pd(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm256_add_pd(fix0,tx);
546             fiy0             = _mm256_add_pd(fiy0,ty);
547             fiz0             = _mm256_add_pd(fiz0,tz);
548
549             fjx0             = _mm256_add_pd(fjx0,tx);
550             fjy0             = _mm256_add_pd(fjy0,ty);
551             fjz0             = _mm256_add_pd(fjz0,tz);
552
553             }
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm256_any_lt(rsq10,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm256_mul_pd(iq1,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
567             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
568
569             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm256_and_pd(velec,cutoff_mask);
573             velec            = _mm256_andnot_pd(dummy_mask,velec);
574             velecsum         = _mm256_add_pd(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm256_and_pd(fscal,cutoff_mask);
579
580             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx10);
584             ty               = _mm256_mul_pd(fscal,dy10);
585             tz               = _mm256_mul_pd(fscal,dz10);
586
587             /* Update vectorial force */
588             fix1             = _mm256_add_pd(fix1,tx);
589             fiy1             = _mm256_add_pd(fiy1,ty);
590             fiz1             = _mm256_add_pd(fiz1,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             }
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm256_any_lt(rsq20,rcutoff2))
603             {
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm256_mul_pd(iq2,jq0);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
610             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
611
612             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm256_and_pd(velec,cutoff_mask);
616             velec            = _mm256_andnot_pd(dummy_mask,velec);
617             velecsum         = _mm256_add_pd(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm256_and_pd(fscal,cutoff_mask);
622
623             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_pd(fscal,dx20);
627             ty               = _mm256_mul_pd(fscal,dy20);
628             tz               = _mm256_mul_pd(fscal,dz20);
629
630             /* Update vectorial force */
631             fix2             = _mm256_add_pd(fix2,tx);
632             fiy2             = _mm256_add_pd(fiy2,ty);
633             fiz2             = _mm256_add_pd(fiz2,tz);
634
635             fjx0             = _mm256_add_pd(fjx0,tx);
636             fjy0             = _mm256_add_pd(fjy0,ty);
637             fjz0             = _mm256_add_pd(fjz0,tz);
638
639             }
640
641             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
642             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
643             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
644             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
645
646             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
647
648             /* Inner loop uses 146 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
654                                                  f+i_coord_offset,fshift+i_shift_offset);
655
656         ggid                        = gid[iidx];
657         /* Update potential energies */
658         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
659         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 20 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
673 }
674 /*
675  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
676  * Electrostatics interaction: ReactionField
677  * VdW interaction:            LennardJones
678  * Geometry:                   Water3-Particle
679  * Calculate force/pot:        Force
680  */
681 void
682 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
683                     (t_nblist                    * gmx_restrict       nlist,
684                      rvec                        * gmx_restrict          xx,
685                      rvec                        * gmx_restrict          ff,
686                      t_forcerec                  * gmx_restrict          fr,
687                      t_mdatoms                   * gmx_restrict     mdatoms,
688                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
689                      t_nrnb                      * gmx_restrict        nrnb)
690 {
691     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
692      * just 0 for non-waters.
693      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
694      * jnr indices corresponding to data put in the four positions in the SIMD register.
695      */
696     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
697     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
698     int              jnrA,jnrB,jnrC,jnrD;
699     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
700     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
701     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
702     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
703     real             rcutoff_scalar;
704     real             *shiftvec,*fshift,*x,*f;
705     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
706     real             scratch[4*DIM];
707     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
708     real *           vdwioffsetptr0;
709     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
710     real *           vdwioffsetptr1;
711     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
712     real *           vdwioffsetptr2;
713     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
714     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
715     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
716     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
717     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
718     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
719     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
726     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
727     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
728     real             rswitch_scalar,d_scalar;
729     __m256d          dummy_mask,cutoff_mask;
730     __m128           tmpmask0,tmpmask1;
731     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
732     __m256d          one     = _mm256_set1_pd(1.0);
733     __m256d          two     = _mm256_set1_pd(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm256_set1_pd(fr->epsfac);
746     charge           = mdatoms->chargeA;
747     krf              = _mm256_set1_pd(fr->ic->k_rf);
748     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
749     crf              = _mm256_set1_pd(fr->ic->c_rf);
750     nvdwtype         = fr->ntype;
751     vdwparam         = fr->nbfp;
752     vdwtype          = mdatoms->typeA;
753
754     /* Setup water-specific parameters */
755     inr              = nlist->iinr[0];
756     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
757     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
758     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
759     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
760
761     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
762     rcutoff_scalar   = fr->rcoulomb;
763     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
764     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
765
766     rswitch_scalar   = fr->rvdw_switch;
767     rswitch          = _mm256_set1_pd(rswitch_scalar);
768     /* Setup switch parameters */
769     d_scalar         = rcutoff_scalar-rswitch_scalar;
770     d                = _mm256_set1_pd(d_scalar);
771     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
772     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
773     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
774     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
775     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
776     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
777
778     /* Avoid stupid compiler warnings */
779     jnrA = jnrB = jnrC = jnrD = 0;
780     j_coord_offsetA = 0;
781     j_coord_offsetB = 0;
782     j_coord_offsetC = 0;
783     j_coord_offsetD = 0;
784
785     outeriter        = 0;
786     inneriter        = 0;
787
788     for(iidx=0;iidx<4*DIM;iidx++)
789     {
790         scratch[iidx] = 0.0;
791     }
792
793     /* Start outer loop over neighborlists */
794     for(iidx=0; iidx<nri; iidx++)
795     {
796         /* Load shift vector for this list */
797         i_shift_offset   = DIM*shiftidx[iidx];
798
799         /* Load limits for loop over neighbors */
800         j_index_start    = jindex[iidx];
801         j_index_end      = jindex[iidx+1];
802
803         /* Get outer coordinate index */
804         inr              = iinr[iidx];
805         i_coord_offset   = DIM*inr;
806
807         /* Load i particle coords and add shift vector */
808         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
809                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
810
811         fix0             = _mm256_setzero_pd();
812         fiy0             = _mm256_setzero_pd();
813         fiz0             = _mm256_setzero_pd();
814         fix1             = _mm256_setzero_pd();
815         fiy1             = _mm256_setzero_pd();
816         fiz1             = _mm256_setzero_pd();
817         fix2             = _mm256_setzero_pd();
818         fiy2             = _mm256_setzero_pd();
819         fiz2             = _mm256_setzero_pd();
820
821         /* Start inner kernel loop */
822         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
823         {
824
825             /* Get j neighbor index, and coordinate index */
826             jnrA             = jjnr[jidx];
827             jnrB             = jjnr[jidx+1];
828             jnrC             = jjnr[jidx+2];
829             jnrD             = jjnr[jidx+3];
830             j_coord_offsetA  = DIM*jnrA;
831             j_coord_offsetB  = DIM*jnrB;
832             j_coord_offsetC  = DIM*jnrC;
833             j_coord_offsetD  = DIM*jnrD;
834
835             /* load j atom coordinates */
836             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
837                                                  x+j_coord_offsetC,x+j_coord_offsetD,
838                                                  &jx0,&jy0,&jz0);
839
840             /* Calculate displacement vector */
841             dx00             = _mm256_sub_pd(ix0,jx0);
842             dy00             = _mm256_sub_pd(iy0,jy0);
843             dz00             = _mm256_sub_pd(iz0,jz0);
844             dx10             = _mm256_sub_pd(ix1,jx0);
845             dy10             = _mm256_sub_pd(iy1,jy0);
846             dz10             = _mm256_sub_pd(iz1,jz0);
847             dx20             = _mm256_sub_pd(ix2,jx0);
848             dy20             = _mm256_sub_pd(iy2,jy0);
849             dz20             = _mm256_sub_pd(iz2,jz0);
850
851             /* Calculate squared distance and things based on it */
852             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
853             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
854             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
855
856             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
857             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
858             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
859
860             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
861             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
862             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
863
864             /* Load parameters for j particles */
865             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
866                                                                  charge+jnrC+0,charge+jnrD+0);
867             vdwjidx0A        = 2*vdwtype[jnrA+0];
868             vdwjidx0B        = 2*vdwtype[jnrB+0];
869             vdwjidx0C        = 2*vdwtype[jnrC+0];
870             vdwjidx0D        = 2*vdwtype[jnrD+0];
871
872             fjx0             = _mm256_setzero_pd();
873             fjy0             = _mm256_setzero_pd();
874             fjz0             = _mm256_setzero_pd();
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             if (gmx_mm256_any_lt(rsq00,rcutoff2))
881             {
882
883             r00              = _mm256_mul_pd(rsq00,rinv00);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq00             = _mm256_mul_pd(iq0,jq0);
887             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
888                                             vdwioffsetptr0+vdwjidx0B,
889                                             vdwioffsetptr0+vdwjidx0C,
890                                             vdwioffsetptr0+vdwjidx0D,
891                                             &c6_00,&c12_00);
892
893             /* REACTION-FIELD ELECTROSTATICS */
894             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
895
896             /* LENNARD-JONES DISPERSION/REPULSION */
897
898             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
899             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
900             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
901             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
902             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
903
904             d                = _mm256_sub_pd(r00,rswitch);
905             d                = _mm256_max_pd(d,_mm256_setzero_pd());
906             d2               = _mm256_mul_pd(d,d);
907             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
908
909             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
910
911             /* Evaluate switch function */
912             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
913             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
914             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
915
916             fscal            = _mm256_add_pd(felec,fvdw);
917
918             fscal            = _mm256_and_pd(fscal,cutoff_mask);
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm256_mul_pd(fscal,dx00);
922             ty               = _mm256_mul_pd(fscal,dy00);
923             tz               = _mm256_mul_pd(fscal,dz00);
924
925             /* Update vectorial force */
926             fix0             = _mm256_add_pd(fix0,tx);
927             fiy0             = _mm256_add_pd(fiy0,ty);
928             fiz0             = _mm256_add_pd(fiz0,tz);
929
930             fjx0             = _mm256_add_pd(fjx0,tx);
931             fjy0             = _mm256_add_pd(fjy0,ty);
932             fjz0             = _mm256_add_pd(fjz0,tz);
933
934             }
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             if (gmx_mm256_any_lt(rsq10,rcutoff2))
941             {
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq10             = _mm256_mul_pd(iq1,jq0);
945
946             /* REACTION-FIELD ELECTROSTATICS */
947             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
948
949             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
950
951             fscal            = felec;
952
953             fscal            = _mm256_and_pd(fscal,cutoff_mask);
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm256_mul_pd(fscal,dx10);
957             ty               = _mm256_mul_pd(fscal,dy10);
958             tz               = _mm256_mul_pd(fscal,dz10);
959
960             /* Update vectorial force */
961             fix1             = _mm256_add_pd(fix1,tx);
962             fiy1             = _mm256_add_pd(fiy1,ty);
963             fiz1             = _mm256_add_pd(fiz1,tz);
964
965             fjx0             = _mm256_add_pd(fjx0,tx);
966             fjy0             = _mm256_add_pd(fjy0,ty);
967             fjz0             = _mm256_add_pd(fjz0,tz);
968
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_mm256_any_lt(rsq20,rcutoff2))
976             {
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq20             = _mm256_mul_pd(iq2,jq0);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
983
984             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
985
986             fscal            = felec;
987
988             fscal            = _mm256_and_pd(fscal,cutoff_mask);
989
990             /* Calculate temporary vectorial force */
991             tx               = _mm256_mul_pd(fscal,dx20);
992             ty               = _mm256_mul_pd(fscal,dy20);
993             tz               = _mm256_mul_pd(fscal,dz20);
994
995             /* Update vectorial force */
996             fix2             = _mm256_add_pd(fix2,tx);
997             fiy2             = _mm256_add_pd(fiy2,ty);
998             fiz2             = _mm256_add_pd(fiz2,tz);
999
1000             fjx0             = _mm256_add_pd(fjx0,tx);
1001             fjy0             = _mm256_add_pd(fjy0,ty);
1002             fjz0             = _mm256_add_pd(fjz0,tz);
1003
1004             }
1005
1006             fjptrA             = f+j_coord_offsetA;
1007             fjptrB             = f+j_coord_offsetB;
1008             fjptrC             = f+j_coord_offsetC;
1009             fjptrD             = f+j_coord_offsetD;
1010
1011             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1012
1013             /* Inner loop uses 124 flops */
1014         }
1015
1016         if(jidx<j_index_end)
1017         {
1018
1019             /* Get j neighbor index, and coordinate index */
1020             jnrlistA         = jjnr[jidx];
1021             jnrlistB         = jjnr[jidx+1];
1022             jnrlistC         = jjnr[jidx+2];
1023             jnrlistD         = jjnr[jidx+3];
1024             /* Sign of each element will be negative for non-real atoms.
1025              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1026              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1027              */
1028             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1029
1030             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1031             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1032             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1033
1034             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1035             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1036             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1037             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1038             j_coord_offsetA  = DIM*jnrA;
1039             j_coord_offsetB  = DIM*jnrB;
1040             j_coord_offsetC  = DIM*jnrC;
1041             j_coord_offsetD  = DIM*jnrD;
1042
1043             /* load j atom coordinates */
1044             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1045                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1046                                                  &jx0,&jy0,&jz0);
1047
1048             /* Calculate displacement vector */
1049             dx00             = _mm256_sub_pd(ix0,jx0);
1050             dy00             = _mm256_sub_pd(iy0,jy0);
1051             dz00             = _mm256_sub_pd(iz0,jz0);
1052             dx10             = _mm256_sub_pd(ix1,jx0);
1053             dy10             = _mm256_sub_pd(iy1,jy0);
1054             dz10             = _mm256_sub_pd(iz1,jz0);
1055             dx20             = _mm256_sub_pd(ix2,jx0);
1056             dy20             = _mm256_sub_pd(iy2,jy0);
1057             dz20             = _mm256_sub_pd(iz2,jz0);
1058
1059             /* Calculate squared distance and things based on it */
1060             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1061             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1062             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1063
1064             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1065             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1066             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1067
1068             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1069             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1070             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1071
1072             /* Load parameters for j particles */
1073             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1074                                                                  charge+jnrC+0,charge+jnrD+0);
1075             vdwjidx0A        = 2*vdwtype[jnrA+0];
1076             vdwjidx0B        = 2*vdwtype[jnrB+0];
1077             vdwjidx0C        = 2*vdwtype[jnrC+0];
1078             vdwjidx0D        = 2*vdwtype[jnrD+0];
1079
1080             fjx0             = _mm256_setzero_pd();
1081             fjy0             = _mm256_setzero_pd();
1082             fjz0             = _mm256_setzero_pd();
1083
1084             /**************************
1085              * CALCULATE INTERACTIONS *
1086              **************************/
1087
1088             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1089             {
1090
1091             r00              = _mm256_mul_pd(rsq00,rinv00);
1092             r00              = _mm256_andnot_pd(dummy_mask,r00);
1093
1094             /* Compute parameters for interactions between i and j atoms */
1095             qq00             = _mm256_mul_pd(iq0,jq0);
1096             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1097                                             vdwioffsetptr0+vdwjidx0B,
1098                                             vdwioffsetptr0+vdwjidx0C,
1099                                             vdwioffsetptr0+vdwjidx0D,
1100                                             &c6_00,&c12_00);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1104
1105             /* LENNARD-JONES DISPERSION/REPULSION */
1106
1107             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1108             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1109             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1110             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1111             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1112
1113             d                = _mm256_sub_pd(r00,rswitch);
1114             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1115             d2               = _mm256_mul_pd(d,d);
1116             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1117
1118             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1119
1120             /* Evaluate switch function */
1121             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1122             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1123             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1124
1125             fscal            = _mm256_add_pd(felec,fvdw);
1126
1127             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1128
1129             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1130
1131             /* Calculate temporary vectorial force */
1132             tx               = _mm256_mul_pd(fscal,dx00);
1133             ty               = _mm256_mul_pd(fscal,dy00);
1134             tz               = _mm256_mul_pd(fscal,dz00);
1135
1136             /* Update vectorial force */
1137             fix0             = _mm256_add_pd(fix0,tx);
1138             fiy0             = _mm256_add_pd(fiy0,ty);
1139             fiz0             = _mm256_add_pd(fiz0,tz);
1140
1141             fjx0             = _mm256_add_pd(fjx0,tx);
1142             fjy0             = _mm256_add_pd(fjy0,ty);
1143             fjz0             = _mm256_add_pd(fjz0,tz);
1144
1145             }
1146
1147             /**************************
1148              * CALCULATE INTERACTIONS *
1149              **************************/
1150
1151             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1152             {
1153
1154             /* Compute parameters for interactions between i and j atoms */
1155             qq10             = _mm256_mul_pd(iq1,jq0);
1156
1157             /* REACTION-FIELD ELECTROSTATICS */
1158             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1159
1160             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1165
1166             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm256_mul_pd(fscal,dx10);
1170             ty               = _mm256_mul_pd(fscal,dy10);
1171             tz               = _mm256_mul_pd(fscal,dz10);
1172
1173             /* Update vectorial force */
1174             fix1             = _mm256_add_pd(fix1,tx);
1175             fiy1             = _mm256_add_pd(fiy1,ty);
1176             fiz1             = _mm256_add_pd(fiz1,tz);
1177
1178             fjx0             = _mm256_add_pd(fjx0,tx);
1179             fjy0             = _mm256_add_pd(fjy0,ty);
1180             fjz0             = _mm256_add_pd(fjz0,tz);
1181
1182             }
1183
1184             /**************************
1185              * CALCULATE INTERACTIONS *
1186              **************************/
1187
1188             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1189             {
1190
1191             /* Compute parameters for interactions between i and j atoms */
1192             qq20             = _mm256_mul_pd(iq2,jq0);
1193
1194             /* REACTION-FIELD ELECTROSTATICS */
1195             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1196
1197             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1202
1203             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = _mm256_mul_pd(fscal,dx20);
1207             ty               = _mm256_mul_pd(fscal,dy20);
1208             tz               = _mm256_mul_pd(fscal,dz20);
1209
1210             /* Update vectorial force */
1211             fix2             = _mm256_add_pd(fix2,tx);
1212             fiy2             = _mm256_add_pd(fiy2,ty);
1213             fiz2             = _mm256_add_pd(fiz2,tz);
1214
1215             fjx0             = _mm256_add_pd(fjx0,tx);
1216             fjy0             = _mm256_add_pd(fjy0,ty);
1217             fjz0             = _mm256_add_pd(fjz0,tz);
1218
1219             }
1220
1221             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1222             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1223             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1224             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1225
1226             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1227
1228             /* Inner loop uses 125 flops */
1229         }
1230
1231         /* End of innermost loop */
1232
1233         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1234                                                  f+i_coord_offset,fshift+i_shift_offset);
1235
1236         /* Increment number of inner iterations */
1237         inneriter                  += j_index_end - j_index_start;
1238
1239         /* Outer loop uses 18 flops */
1240     }
1241
1242     /* Increment number of outer iterations */
1243     outeriter        += nri;
1244
1245     /* Update outer/inner flops */
1246
1247     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1248 }