Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm256_set1_pd(fr->ic->k_rf);
126     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm256_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->rvdw_switch;
145     rswitch          = _mm256_set1_pd(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = _mm256_set1_pd(d_scalar);
149     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
188
189         fix0             = _mm256_setzero_pd();
190         fiy0             = _mm256_setzero_pd();
191         fiz0             = _mm256_setzero_pd();
192         fix1             = _mm256_setzero_pd();
193         fiy1             = _mm256_setzero_pd();
194         fiz1             = _mm256_setzero_pd();
195         fix2             = _mm256_setzero_pd();
196         fiy2             = _mm256_setzero_pd();
197         fiz2             = _mm256_setzero_pd();
198
199         /* Reset potential sums */
200         velecsum         = _mm256_setzero_pd();
201         vvdwsum          = _mm256_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             j_coord_offsetA  = DIM*jnrA;
213             j_coord_offsetB  = DIM*jnrB;
214             j_coord_offsetC  = DIM*jnrC;
215             j_coord_offsetD  = DIM*jnrD;
216
217             /* load j atom coordinates */
218             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
219                                                  x+j_coord_offsetC,x+j_coord_offsetD,
220                                                  &jx0,&jy0,&jz0);
221
222             /* Calculate displacement vector */
223             dx00             = _mm256_sub_pd(ix0,jx0);
224             dy00             = _mm256_sub_pd(iy0,jy0);
225             dz00             = _mm256_sub_pd(iz0,jz0);
226             dx10             = _mm256_sub_pd(ix1,jx0);
227             dy10             = _mm256_sub_pd(iy1,jy0);
228             dz10             = _mm256_sub_pd(iz1,jz0);
229             dx20             = _mm256_sub_pd(ix2,jx0);
230             dy20             = _mm256_sub_pd(iy2,jy0);
231             dz20             = _mm256_sub_pd(iz2,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
235             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
237
238             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
239             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
240             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
241
242             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
243             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
244             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
248                                                                  charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm256_setzero_pd();
255             fjy0             = _mm256_setzero_pd();
256             fjz0             = _mm256_setzero_pd();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (gmx_mm256_any_lt(rsq00,rcutoff2))
263             {
264
265             r00              = _mm256_mul_pd(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm256_mul_pd(iq0,jq0);
269             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
270                                             vdwioffsetptr0+vdwjidx0B,
271                                             vdwioffsetptr0+vdwjidx0C,
272                                             vdwioffsetptr0+vdwjidx0D,
273                                             &c6_00,&c12_00);
274
275             /* REACTION-FIELD ELECTROSTATICS */
276             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
277             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
278
279             /* LENNARD-JONES DISPERSION/REPULSION */
280
281             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
282             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
283             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
284             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
285             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
286
287             d                = _mm256_sub_pd(r00,rswitch);
288             d                = _mm256_max_pd(d,_mm256_setzero_pd());
289             d2               = _mm256_mul_pd(d,d);
290             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
291
292             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
293
294             /* Evaluate switch function */
295             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
296             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
297             vvdw             = _mm256_mul_pd(vvdw,sw);
298             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm256_and_pd(velec,cutoff_mask);
302             velecsum         = _mm256_add_pd(velecsum,velec);
303             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
304             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm256_add_pd(felec,fvdw);
307
308             fscal            = _mm256_and_pd(fscal,cutoff_mask);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx00);
312             ty               = _mm256_mul_pd(fscal,dy00);
313             tz               = _mm256_mul_pd(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm256_add_pd(fix0,tx);
317             fiy0             = _mm256_add_pd(fiy0,ty);
318             fiz0             = _mm256_add_pd(fiz0,tz);
319
320             fjx0             = _mm256_add_pd(fjx0,tx);
321             fjy0             = _mm256_add_pd(fjy0,ty);
322             fjz0             = _mm256_add_pd(fjz0,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm256_any_lt(rsq10,rcutoff2))
331             {
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq10             = _mm256_mul_pd(iq1,jq0);
335
336             /* REACTION-FIELD ELECTROSTATICS */
337             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
338             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
339
340             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm256_and_pd(velec,cutoff_mask);
344             velecsum         = _mm256_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             fscal            = _mm256_and_pd(fscal,cutoff_mask);
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm256_mul_pd(fscal,dx10);
352             ty               = _mm256_mul_pd(fscal,dy10);
353             tz               = _mm256_mul_pd(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm256_add_pd(fix1,tx);
357             fiy1             = _mm256_add_pd(fiy1,ty);
358             fiz1             = _mm256_add_pd(fiz1,tz);
359
360             fjx0             = _mm256_add_pd(fjx0,tx);
361             fjy0             = _mm256_add_pd(fjy0,ty);
362             fjz0             = _mm256_add_pd(fjz0,tz);
363
364             }
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (gmx_mm256_any_lt(rsq20,rcutoff2))
371             {
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm256_mul_pd(iq2,jq0);
375
376             /* REACTION-FIELD ELECTROSTATICS */
377             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
378             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
379
380             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm256_and_pd(velec,cutoff_mask);
384             velecsum         = _mm256_add_pd(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm256_and_pd(fscal,cutoff_mask);
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm256_mul_pd(fscal,dx20);
392             ty               = _mm256_mul_pd(fscal,dy20);
393             tz               = _mm256_mul_pd(fscal,dz20);
394
395             /* Update vectorial force */
396             fix2             = _mm256_add_pd(fix2,tx);
397             fiy2             = _mm256_add_pd(fiy2,ty);
398             fiz2             = _mm256_add_pd(fiz2,tz);
399
400             fjx0             = _mm256_add_pd(fjx0,tx);
401             fjy0             = _mm256_add_pd(fjy0,ty);
402             fjz0             = _mm256_add_pd(fjz0,tz);
403
404             }
405
406             fjptrA             = f+j_coord_offsetA;
407             fjptrB             = f+j_coord_offsetB;
408             fjptrC             = f+j_coord_offsetC;
409             fjptrD             = f+j_coord_offsetD;
410
411             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
412
413             /* Inner loop uses 145 flops */
414         }
415
416         if(jidx<j_index_end)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrlistA         = jjnr[jidx];
421             jnrlistB         = jjnr[jidx+1];
422             jnrlistC         = jjnr[jidx+2];
423             jnrlistD         = jjnr[jidx+3];
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
427              */
428             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
429
430             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
431             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
432             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
433
434             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
435             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
436             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
437             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442
443             /* load j atom coordinates */
444             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
445                                                  x+j_coord_offsetC,x+j_coord_offsetD,
446                                                  &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm256_sub_pd(ix0,jx0);
450             dy00             = _mm256_sub_pd(iy0,jy0);
451             dz00             = _mm256_sub_pd(iz0,jz0);
452             dx10             = _mm256_sub_pd(ix1,jx0);
453             dy10             = _mm256_sub_pd(iy1,jy0);
454             dz10             = _mm256_sub_pd(iz1,jz0);
455             dx20             = _mm256_sub_pd(ix2,jx0);
456             dy20             = _mm256_sub_pd(iy2,jy0);
457             dz20             = _mm256_sub_pd(iz2,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
461             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
462             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
463
464             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
465             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
466             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
467
468             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
469             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
470             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
474                                                                  charge+jnrC+0,charge+jnrD+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479
480             fjx0             = _mm256_setzero_pd();
481             fjy0             = _mm256_setzero_pd();
482             fjz0             = _mm256_setzero_pd();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             if (gmx_mm256_any_lt(rsq00,rcutoff2))
489             {
490
491             r00              = _mm256_mul_pd(rsq00,rinv00);
492             r00              = _mm256_andnot_pd(dummy_mask,r00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _mm256_mul_pd(iq0,jq0);
496             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
497                                             vdwioffsetptr0+vdwjidx0B,
498                                             vdwioffsetptr0+vdwjidx0C,
499                                             vdwioffsetptr0+vdwjidx0D,
500                                             &c6_00,&c12_00);
501
502             /* REACTION-FIELD ELECTROSTATICS */
503             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
504             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
505
506             /* LENNARD-JONES DISPERSION/REPULSION */
507
508             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
509             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
510             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
511             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
512             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
513
514             d                = _mm256_sub_pd(r00,rswitch);
515             d                = _mm256_max_pd(d,_mm256_setzero_pd());
516             d2               = _mm256_mul_pd(d,d);
517             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
518
519             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
520
521             /* Evaluate switch function */
522             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
523             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
524             vvdw             = _mm256_mul_pd(vvdw,sw);
525             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm256_and_pd(velec,cutoff_mask);
529             velec            = _mm256_andnot_pd(dummy_mask,velec);
530             velecsum         = _mm256_add_pd(velecsum,velec);
531             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
532             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
533             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
534
535             fscal            = _mm256_add_pd(felec,fvdw);
536
537             fscal            = _mm256_and_pd(fscal,cutoff_mask);
538
539             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm256_mul_pd(fscal,dx00);
543             ty               = _mm256_mul_pd(fscal,dy00);
544             tz               = _mm256_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm256_add_pd(fix0,tx);
548             fiy0             = _mm256_add_pd(fiy0,ty);
549             fiz0             = _mm256_add_pd(fiz0,tz);
550
551             fjx0             = _mm256_add_pd(fjx0,tx);
552             fjy0             = _mm256_add_pd(fjy0,ty);
553             fjz0             = _mm256_add_pd(fjz0,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm256_any_lt(rsq10,rcutoff2))
562             {
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm256_mul_pd(iq1,jq0);
566
567             /* REACTION-FIELD ELECTROSTATICS */
568             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
569             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
570
571             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm256_and_pd(velec,cutoff_mask);
575             velec            = _mm256_andnot_pd(dummy_mask,velec);
576             velecsum         = _mm256_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm256_and_pd(fscal,cutoff_mask);
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx10);
586             ty               = _mm256_mul_pd(fscal,dy10);
587             tz               = _mm256_mul_pd(fscal,dz10);
588
589             /* Update vectorial force */
590             fix1             = _mm256_add_pd(fix1,tx);
591             fiy1             = _mm256_add_pd(fiy1,ty);
592             fiz1             = _mm256_add_pd(fiz1,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             }
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm256_any_lt(rsq20,rcutoff2))
605             {
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq20             = _mm256_mul_pd(iq2,jq0);
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
612             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
613
614             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm256_and_pd(velec,cutoff_mask);
618             velec            = _mm256_andnot_pd(dummy_mask,velec);
619             velecsum         = _mm256_add_pd(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm256_and_pd(fscal,cutoff_mask);
624
625             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm256_mul_pd(fscal,dx20);
629             ty               = _mm256_mul_pd(fscal,dy20);
630             tz               = _mm256_mul_pd(fscal,dz20);
631
632             /* Update vectorial force */
633             fix2             = _mm256_add_pd(fix2,tx);
634             fiy2             = _mm256_add_pd(fiy2,ty);
635             fiz2             = _mm256_add_pd(fiz2,tz);
636
637             fjx0             = _mm256_add_pd(fjx0,tx);
638             fjy0             = _mm256_add_pd(fjy0,ty);
639             fjz0             = _mm256_add_pd(fjz0,tz);
640
641             }
642
643             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
644             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
645             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
646             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
647
648             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
649
650             /* Inner loop uses 146 flops */
651         }
652
653         /* End of innermost loop */
654
655         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
656                                                  f+i_coord_offset,fshift+i_shift_offset);
657
658         ggid                        = gid[iidx];
659         /* Update potential energies */
660         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
661         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
662
663         /* Increment number of inner iterations */
664         inneriter                  += j_index_end - j_index_start;
665
666         /* Outer loop uses 20 flops */
667     }
668
669     /* Increment number of outer iterations */
670     outeriter        += nri;
671
672     /* Update outer/inner flops */
673
674     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
675 }
676 /*
677  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
678  * Electrostatics interaction: ReactionField
679  * VdW interaction:            LennardJones
680  * Geometry:                   Water3-Particle
681  * Calculate force/pot:        Force
682  */
683 void
684 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
685                     (t_nblist                    * gmx_restrict       nlist,
686                      rvec                        * gmx_restrict          xx,
687                      rvec                        * gmx_restrict          ff,
688                      t_forcerec                  * gmx_restrict          fr,
689                      t_mdatoms                   * gmx_restrict     mdatoms,
690                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
691                      t_nrnb                      * gmx_restrict        nrnb)
692 {
693     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
694      * just 0 for non-waters.
695      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
696      * jnr indices corresponding to data put in the four positions in the SIMD register.
697      */
698     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
699     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
700     int              jnrA,jnrB,jnrC,jnrD;
701     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
702     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
703     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
704     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
705     real             rcutoff_scalar;
706     real             *shiftvec,*fshift,*x,*f;
707     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
708     real             scratch[4*DIM];
709     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
710     real *           vdwioffsetptr0;
711     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
712     real *           vdwioffsetptr1;
713     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
714     real *           vdwioffsetptr2;
715     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
716     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
717     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
718     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
719     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
720     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
721     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
722     real             *charge;
723     int              nvdwtype;
724     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
725     int              *vdwtype;
726     real             *vdwparam;
727     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
728     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
729     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
730     real             rswitch_scalar,d_scalar;
731     __m256d          dummy_mask,cutoff_mask;
732     __m128           tmpmask0,tmpmask1;
733     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
734     __m256d          one     = _mm256_set1_pd(1.0);
735     __m256d          two     = _mm256_set1_pd(2.0);
736     x                = xx[0];
737     f                = ff[0];
738
739     nri              = nlist->nri;
740     iinr             = nlist->iinr;
741     jindex           = nlist->jindex;
742     jjnr             = nlist->jjnr;
743     shiftidx         = nlist->shift;
744     gid              = nlist->gid;
745     shiftvec         = fr->shift_vec[0];
746     fshift           = fr->fshift[0];
747     facel            = _mm256_set1_pd(fr->epsfac);
748     charge           = mdatoms->chargeA;
749     krf              = _mm256_set1_pd(fr->ic->k_rf);
750     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
751     crf              = _mm256_set1_pd(fr->ic->c_rf);
752     nvdwtype         = fr->ntype;
753     vdwparam         = fr->nbfp;
754     vdwtype          = mdatoms->typeA;
755
756     /* Setup water-specific parameters */
757     inr              = nlist->iinr[0];
758     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
759     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
760     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
761     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
762
763     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
764     rcutoff_scalar   = fr->rcoulomb;
765     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
766     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
767
768     rswitch_scalar   = fr->rvdw_switch;
769     rswitch          = _mm256_set1_pd(rswitch_scalar);
770     /* Setup switch parameters */
771     d_scalar         = rcutoff_scalar-rswitch_scalar;
772     d                = _mm256_set1_pd(d_scalar);
773     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
774     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
775     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
776     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
777     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
778     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
779
780     /* Avoid stupid compiler warnings */
781     jnrA = jnrB = jnrC = jnrD = 0;
782     j_coord_offsetA = 0;
783     j_coord_offsetB = 0;
784     j_coord_offsetC = 0;
785     j_coord_offsetD = 0;
786
787     outeriter        = 0;
788     inneriter        = 0;
789
790     for(iidx=0;iidx<4*DIM;iidx++)
791     {
792         scratch[iidx] = 0.0;
793     }
794
795     /* Start outer loop over neighborlists */
796     for(iidx=0; iidx<nri; iidx++)
797     {
798         /* Load shift vector for this list */
799         i_shift_offset   = DIM*shiftidx[iidx];
800
801         /* Load limits for loop over neighbors */
802         j_index_start    = jindex[iidx];
803         j_index_end      = jindex[iidx+1];
804
805         /* Get outer coordinate index */
806         inr              = iinr[iidx];
807         i_coord_offset   = DIM*inr;
808
809         /* Load i particle coords and add shift vector */
810         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
811                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
812
813         fix0             = _mm256_setzero_pd();
814         fiy0             = _mm256_setzero_pd();
815         fiz0             = _mm256_setzero_pd();
816         fix1             = _mm256_setzero_pd();
817         fiy1             = _mm256_setzero_pd();
818         fiz1             = _mm256_setzero_pd();
819         fix2             = _mm256_setzero_pd();
820         fiy2             = _mm256_setzero_pd();
821         fiz2             = _mm256_setzero_pd();
822
823         /* Start inner kernel loop */
824         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
825         {
826
827             /* Get j neighbor index, and coordinate index */
828             jnrA             = jjnr[jidx];
829             jnrB             = jjnr[jidx+1];
830             jnrC             = jjnr[jidx+2];
831             jnrD             = jjnr[jidx+3];
832             j_coord_offsetA  = DIM*jnrA;
833             j_coord_offsetB  = DIM*jnrB;
834             j_coord_offsetC  = DIM*jnrC;
835             j_coord_offsetD  = DIM*jnrD;
836
837             /* load j atom coordinates */
838             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
839                                                  x+j_coord_offsetC,x+j_coord_offsetD,
840                                                  &jx0,&jy0,&jz0);
841
842             /* Calculate displacement vector */
843             dx00             = _mm256_sub_pd(ix0,jx0);
844             dy00             = _mm256_sub_pd(iy0,jy0);
845             dz00             = _mm256_sub_pd(iz0,jz0);
846             dx10             = _mm256_sub_pd(ix1,jx0);
847             dy10             = _mm256_sub_pd(iy1,jy0);
848             dz10             = _mm256_sub_pd(iz1,jz0);
849             dx20             = _mm256_sub_pd(ix2,jx0);
850             dy20             = _mm256_sub_pd(iy2,jy0);
851             dz20             = _mm256_sub_pd(iz2,jz0);
852
853             /* Calculate squared distance and things based on it */
854             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
855             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
856             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
857
858             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
859             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
860             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
861
862             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
863             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
864             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
865
866             /* Load parameters for j particles */
867             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
868                                                                  charge+jnrC+0,charge+jnrD+0);
869             vdwjidx0A        = 2*vdwtype[jnrA+0];
870             vdwjidx0B        = 2*vdwtype[jnrB+0];
871             vdwjidx0C        = 2*vdwtype[jnrC+0];
872             vdwjidx0D        = 2*vdwtype[jnrD+0];
873
874             fjx0             = _mm256_setzero_pd();
875             fjy0             = _mm256_setzero_pd();
876             fjz0             = _mm256_setzero_pd();
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             if (gmx_mm256_any_lt(rsq00,rcutoff2))
883             {
884
885             r00              = _mm256_mul_pd(rsq00,rinv00);
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq00             = _mm256_mul_pd(iq0,jq0);
889             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
890                                             vdwioffsetptr0+vdwjidx0B,
891                                             vdwioffsetptr0+vdwjidx0C,
892                                             vdwioffsetptr0+vdwjidx0D,
893                                             &c6_00,&c12_00);
894
895             /* REACTION-FIELD ELECTROSTATICS */
896             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
897
898             /* LENNARD-JONES DISPERSION/REPULSION */
899
900             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
901             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
902             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
903             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
904             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
905
906             d                = _mm256_sub_pd(r00,rswitch);
907             d                = _mm256_max_pd(d,_mm256_setzero_pd());
908             d2               = _mm256_mul_pd(d,d);
909             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
910
911             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
912
913             /* Evaluate switch function */
914             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
915             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
916             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
917
918             fscal            = _mm256_add_pd(felec,fvdw);
919
920             fscal            = _mm256_and_pd(fscal,cutoff_mask);
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_pd(fscal,dx00);
924             ty               = _mm256_mul_pd(fscal,dy00);
925             tz               = _mm256_mul_pd(fscal,dz00);
926
927             /* Update vectorial force */
928             fix0             = _mm256_add_pd(fix0,tx);
929             fiy0             = _mm256_add_pd(fiy0,ty);
930             fiz0             = _mm256_add_pd(fiz0,tz);
931
932             fjx0             = _mm256_add_pd(fjx0,tx);
933             fjy0             = _mm256_add_pd(fjy0,ty);
934             fjz0             = _mm256_add_pd(fjz0,tz);
935
936             }
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             if (gmx_mm256_any_lt(rsq10,rcutoff2))
943             {
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq10             = _mm256_mul_pd(iq1,jq0);
947
948             /* REACTION-FIELD ELECTROSTATICS */
949             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
950
951             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
952
953             fscal            = felec;
954
955             fscal            = _mm256_and_pd(fscal,cutoff_mask);
956
957             /* Calculate temporary vectorial force */
958             tx               = _mm256_mul_pd(fscal,dx10);
959             ty               = _mm256_mul_pd(fscal,dy10);
960             tz               = _mm256_mul_pd(fscal,dz10);
961
962             /* Update vectorial force */
963             fix1             = _mm256_add_pd(fix1,tx);
964             fiy1             = _mm256_add_pd(fiy1,ty);
965             fiz1             = _mm256_add_pd(fiz1,tz);
966
967             fjx0             = _mm256_add_pd(fjx0,tx);
968             fjy0             = _mm256_add_pd(fjy0,ty);
969             fjz0             = _mm256_add_pd(fjz0,tz);
970
971             }
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             if (gmx_mm256_any_lt(rsq20,rcutoff2))
978             {
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq20             = _mm256_mul_pd(iq2,jq0);
982
983             /* REACTION-FIELD ELECTROSTATICS */
984             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
985
986             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
987
988             fscal            = felec;
989
990             fscal            = _mm256_and_pd(fscal,cutoff_mask);
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm256_mul_pd(fscal,dx20);
994             ty               = _mm256_mul_pd(fscal,dy20);
995             tz               = _mm256_mul_pd(fscal,dz20);
996
997             /* Update vectorial force */
998             fix2             = _mm256_add_pd(fix2,tx);
999             fiy2             = _mm256_add_pd(fiy2,ty);
1000             fiz2             = _mm256_add_pd(fiz2,tz);
1001
1002             fjx0             = _mm256_add_pd(fjx0,tx);
1003             fjy0             = _mm256_add_pd(fjy0,ty);
1004             fjz0             = _mm256_add_pd(fjz0,tz);
1005
1006             }
1007
1008             fjptrA             = f+j_coord_offsetA;
1009             fjptrB             = f+j_coord_offsetB;
1010             fjptrC             = f+j_coord_offsetC;
1011             fjptrD             = f+j_coord_offsetD;
1012
1013             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1014
1015             /* Inner loop uses 124 flops */
1016         }
1017
1018         if(jidx<j_index_end)
1019         {
1020
1021             /* Get j neighbor index, and coordinate index */
1022             jnrlistA         = jjnr[jidx];
1023             jnrlistB         = jjnr[jidx+1];
1024             jnrlistC         = jjnr[jidx+2];
1025             jnrlistD         = jjnr[jidx+3];
1026             /* Sign of each element will be negative for non-real atoms.
1027              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1028              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1029              */
1030             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1031
1032             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1033             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1034             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1035
1036             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1037             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1038             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1039             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1040             j_coord_offsetA  = DIM*jnrA;
1041             j_coord_offsetB  = DIM*jnrB;
1042             j_coord_offsetC  = DIM*jnrC;
1043             j_coord_offsetD  = DIM*jnrD;
1044
1045             /* load j atom coordinates */
1046             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1047                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1048                                                  &jx0,&jy0,&jz0);
1049
1050             /* Calculate displacement vector */
1051             dx00             = _mm256_sub_pd(ix0,jx0);
1052             dy00             = _mm256_sub_pd(iy0,jy0);
1053             dz00             = _mm256_sub_pd(iz0,jz0);
1054             dx10             = _mm256_sub_pd(ix1,jx0);
1055             dy10             = _mm256_sub_pd(iy1,jy0);
1056             dz10             = _mm256_sub_pd(iz1,jz0);
1057             dx20             = _mm256_sub_pd(ix2,jx0);
1058             dy20             = _mm256_sub_pd(iy2,jy0);
1059             dz20             = _mm256_sub_pd(iz2,jz0);
1060
1061             /* Calculate squared distance and things based on it */
1062             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1063             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1064             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1065
1066             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1067             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1068             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1069
1070             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1071             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1072             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1073
1074             /* Load parameters for j particles */
1075             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1076                                                                  charge+jnrC+0,charge+jnrD+0);
1077             vdwjidx0A        = 2*vdwtype[jnrA+0];
1078             vdwjidx0B        = 2*vdwtype[jnrB+0];
1079             vdwjidx0C        = 2*vdwtype[jnrC+0];
1080             vdwjidx0D        = 2*vdwtype[jnrD+0];
1081
1082             fjx0             = _mm256_setzero_pd();
1083             fjy0             = _mm256_setzero_pd();
1084             fjz0             = _mm256_setzero_pd();
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1091             {
1092
1093             r00              = _mm256_mul_pd(rsq00,rinv00);
1094             r00              = _mm256_andnot_pd(dummy_mask,r00);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq00             = _mm256_mul_pd(iq0,jq0);
1098             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1099                                             vdwioffsetptr0+vdwjidx0B,
1100                                             vdwioffsetptr0+vdwjidx0C,
1101                                             vdwioffsetptr0+vdwjidx0D,
1102                                             &c6_00,&c12_00);
1103
1104             /* REACTION-FIELD ELECTROSTATICS */
1105             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1106
1107             /* LENNARD-JONES DISPERSION/REPULSION */
1108
1109             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1110             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1111             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1112             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1113             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1114
1115             d                = _mm256_sub_pd(r00,rswitch);
1116             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1117             d2               = _mm256_mul_pd(d,d);
1118             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1119
1120             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1121
1122             /* Evaluate switch function */
1123             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1124             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1125             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1126
1127             fscal            = _mm256_add_pd(felec,fvdw);
1128
1129             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1130
1131             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm256_mul_pd(fscal,dx00);
1135             ty               = _mm256_mul_pd(fscal,dy00);
1136             tz               = _mm256_mul_pd(fscal,dz00);
1137
1138             /* Update vectorial force */
1139             fix0             = _mm256_add_pd(fix0,tx);
1140             fiy0             = _mm256_add_pd(fiy0,ty);
1141             fiz0             = _mm256_add_pd(fiz0,tz);
1142
1143             fjx0             = _mm256_add_pd(fjx0,tx);
1144             fjy0             = _mm256_add_pd(fjy0,ty);
1145             fjz0             = _mm256_add_pd(fjz0,tz);
1146
1147             }
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1154             {
1155
1156             /* Compute parameters for interactions between i and j atoms */
1157             qq10             = _mm256_mul_pd(iq1,jq0);
1158
1159             /* REACTION-FIELD ELECTROSTATICS */
1160             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1161
1162             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1167
1168             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm256_mul_pd(fscal,dx10);
1172             ty               = _mm256_mul_pd(fscal,dy10);
1173             tz               = _mm256_mul_pd(fscal,dz10);
1174
1175             /* Update vectorial force */
1176             fix1             = _mm256_add_pd(fix1,tx);
1177             fiy1             = _mm256_add_pd(fiy1,ty);
1178             fiz1             = _mm256_add_pd(fiz1,tz);
1179
1180             fjx0             = _mm256_add_pd(fjx0,tx);
1181             fjy0             = _mm256_add_pd(fjy0,ty);
1182             fjz0             = _mm256_add_pd(fjz0,tz);
1183
1184             }
1185
1186             /**************************
1187              * CALCULATE INTERACTIONS *
1188              **************************/
1189
1190             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1191             {
1192
1193             /* Compute parameters for interactions between i and j atoms */
1194             qq20             = _mm256_mul_pd(iq2,jq0);
1195
1196             /* REACTION-FIELD ELECTROSTATICS */
1197             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1198
1199             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1200
1201             fscal            = felec;
1202
1203             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1204
1205             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = _mm256_mul_pd(fscal,dx20);
1209             ty               = _mm256_mul_pd(fscal,dy20);
1210             tz               = _mm256_mul_pd(fscal,dz20);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm256_add_pd(fix2,tx);
1214             fiy2             = _mm256_add_pd(fiy2,ty);
1215             fiz2             = _mm256_add_pd(fiz2,tz);
1216
1217             fjx0             = _mm256_add_pd(fjx0,tx);
1218             fjy0             = _mm256_add_pd(fjy0,ty);
1219             fjz0             = _mm256_add_pd(fjz0,tz);
1220
1221             }
1222
1223             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1224             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1225             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1226             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1227
1228             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1229
1230             /* Inner loop uses 125 flops */
1231         }
1232
1233         /* End of innermost loop */
1234
1235         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1236                                                  f+i_coord_offset,fshift+i_shift_offset);
1237
1238         /* Increment number of inner iterations */
1239         inneriter                  += j_index_end - j_index_start;
1240
1241         /* Outer loop uses 18 flops */
1242     }
1243
1244     /* Increment number of outer iterations */
1245     outeriter        += nri;
1246
1247     /* Update outer/inner flops */
1248
1249     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1250 }