Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m256d          dummy_mask,cutoff_mask;
99     __m128           tmpmask0,tmpmask1;
100     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
101     __m256d          one     = _mm256_set1_pd(1.0);
102     __m256d          two     = _mm256_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_pd(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm256_set1_pd(fr->ic->k_rf);
117     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm256_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->ic->rcoulomb;
125     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
127
128     rswitch_scalar   = fr->ic->rvdw_switch;
129     rswitch          = _mm256_set1_pd(rswitch_scalar);
130     /* Setup switch parameters */
131     d_scalar         = rcutoff_scalar-rswitch_scalar;
132     d                = _mm256_set1_pd(d_scalar);
133     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
134     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
137     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175
176         /* Load parameters for i particles */
177         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
178         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_pd();
182         vvdwsum          = _mm256_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm256_sub_pd(ix0,jx0);
205             dy00             = _mm256_sub_pd(iy0,jy0);
206             dz00             = _mm256_sub_pd(iz0,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
210
211             rinv00           = avx256_invsqrt_d(rsq00);
212
213             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220             vdwjidx0C        = 2*vdwtype[jnrC+0];
221             vdwjidx0D        = 2*vdwtype[jnrD+0];
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             if (gmx_mm256_any_lt(rsq00,rcutoff2))
228             {
229
230             r00              = _mm256_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm256_mul_pd(iq0,jq0);
234             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
235                                             vdwioffsetptr0+vdwjidx0B,
236                                             vdwioffsetptr0+vdwjidx0C,
237                                             vdwioffsetptr0+vdwjidx0D,
238                                             &c6_00,&c12_00);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
242             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
248             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
249             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
250             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
251
252             d                = _mm256_sub_pd(r00,rswitch);
253             d                = _mm256_max_pd(d,_mm256_setzero_pd());
254             d2               = _mm256_mul_pd(d,d);
255             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
256
257             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
258
259             /* Evaluate switch function */
260             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
261             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
262             vvdw             = _mm256_mul_pd(vvdw,sw);
263             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velec            = _mm256_and_pd(velec,cutoff_mask);
267             velecsum         = _mm256_add_pd(velecsum,velec);
268             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
269             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
270
271             fscal            = _mm256_add_pd(felec,fvdw);
272
273             fscal            = _mm256_and_pd(fscal,cutoff_mask);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm256_mul_pd(fscal,dx00);
277             ty               = _mm256_mul_pd(fscal,dy00);
278             tz               = _mm256_mul_pd(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm256_add_pd(fix0,tx);
282             fiy0             = _mm256_add_pd(fiy0,ty);
283             fiz0             = _mm256_add_pd(fiz0,tz);
284
285             fjptrA             = f+j_coord_offsetA;
286             fjptrB             = f+j_coord_offsetB;
287             fjptrC             = f+j_coord_offsetC;
288             fjptrD             = f+j_coord_offsetD;
289             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
290
291             }
292
293             /* Inner loop uses 70 flops */
294         }
295
296         if(jidx<j_index_end)
297         {
298
299             /* Get j neighbor index, and coordinate index */
300             jnrlistA         = jjnr[jidx];
301             jnrlistB         = jjnr[jidx+1];
302             jnrlistC         = jjnr[jidx+2];
303             jnrlistD         = jjnr[jidx+3];
304             /* Sign of each element will be negative for non-real atoms.
305              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
306              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
307              */
308             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
309
310             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
311             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
312             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
313
314             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
315             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
316             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
317             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322
323             /* load j atom coordinates */
324             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
325                                                  x+j_coord_offsetC,x+j_coord_offsetD,
326                                                  &jx0,&jy0,&jz0);
327
328             /* Calculate displacement vector */
329             dx00             = _mm256_sub_pd(ix0,jx0);
330             dy00             = _mm256_sub_pd(iy0,jy0);
331             dz00             = _mm256_sub_pd(iz0,jz0);
332
333             /* Calculate squared distance and things based on it */
334             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
335
336             rinv00           = avx256_invsqrt_d(rsq00);
337
338             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
339
340             /* Load parameters for j particles */
341             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
342                                                                  charge+jnrC+0,charge+jnrD+0);
343             vdwjidx0A        = 2*vdwtype[jnrA+0];
344             vdwjidx0B        = 2*vdwtype[jnrB+0];
345             vdwjidx0C        = 2*vdwtype[jnrC+0];
346             vdwjidx0D        = 2*vdwtype[jnrD+0];
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm256_any_lt(rsq00,rcutoff2))
353             {
354
355             r00              = _mm256_mul_pd(rsq00,rinv00);
356             r00              = _mm256_andnot_pd(dummy_mask,r00);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq00             = _mm256_mul_pd(iq0,jq0);
360             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
361                                             vdwioffsetptr0+vdwjidx0B,
362                                             vdwioffsetptr0+vdwjidx0C,
363                                             vdwioffsetptr0+vdwjidx0D,
364                                             &c6_00,&c12_00);
365
366             /* REACTION-FIELD ELECTROSTATICS */
367             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
368             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
369
370             /* LENNARD-JONES DISPERSION/REPULSION */
371
372             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
373             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
374             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
375             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
376             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
377
378             d                = _mm256_sub_pd(r00,rswitch);
379             d                = _mm256_max_pd(d,_mm256_setzero_pd());
380             d2               = _mm256_mul_pd(d,d);
381             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
382
383             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
384
385             /* Evaluate switch function */
386             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
387             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
388             vvdw             = _mm256_mul_pd(vvdw,sw);
389             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm256_and_pd(velec,cutoff_mask);
393             velec            = _mm256_andnot_pd(dummy_mask,velec);
394             velecsum         = _mm256_add_pd(velecsum,velec);
395             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
396             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
397             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
398
399             fscal            = _mm256_add_pd(felec,fvdw);
400
401             fscal            = _mm256_and_pd(fscal,cutoff_mask);
402
403             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_pd(fscal,dx00);
407             ty               = _mm256_mul_pd(fscal,dy00);
408             tz               = _mm256_mul_pd(fscal,dz00);
409
410             /* Update vectorial force */
411             fix0             = _mm256_add_pd(fix0,tx);
412             fiy0             = _mm256_add_pd(fiy0,ty);
413             fiz0             = _mm256_add_pd(fiz0,tz);
414
415             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
416             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
417             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
418             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
419             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
420
421             }
422
423             /* Inner loop uses 71 flops */
424         }
425
426         /* End of innermost loop */
427
428         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
429                                                  f+i_coord_offset,fshift+i_shift_offset);
430
431         ggid                        = gid[iidx];
432         /* Update potential energies */
433         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
434         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
435
436         /* Increment number of inner iterations */
437         inneriter                  += j_index_end - j_index_start;
438
439         /* Outer loop uses 9 flops */
440     }
441
442     /* Increment number of outer iterations */
443     outeriter        += nri;
444
445     /* Update outer/inner flops */
446
447     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
448 }
449 /*
450  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
451  * Electrostatics interaction: ReactionField
452  * VdW interaction:            LennardJones
453  * Geometry:                   Particle-Particle
454  * Calculate force/pot:        Force
455  */
456 void
457 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
458                     (t_nblist                    * gmx_restrict       nlist,
459                      rvec                        * gmx_restrict          xx,
460                      rvec                        * gmx_restrict          ff,
461                      struct t_forcerec           * gmx_restrict          fr,
462                      t_mdatoms                   * gmx_restrict     mdatoms,
463                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
464                      t_nrnb                      * gmx_restrict        nrnb)
465 {
466     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
467      * just 0 for non-waters.
468      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
469      * jnr indices corresponding to data put in the four positions in the SIMD register.
470      */
471     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
472     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
473     int              jnrA,jnrB,jnrC,jnrD;
474     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
475     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
476     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
477     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
478     real             rcutoff_scalar;
479     real             *shiftvec,*fshift,*x,*f;
480     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
481     real             scratch[4*DIM];
482     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
483     real *           vdwioffsetptr0;
484     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
485     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
486     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
487     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
488     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
489     real             *charge;
490     int              nvdwtype;
491     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
492     int              *vdwtype;
493     real             *vdwparam;
494     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
495     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
496     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
497     real             rswitch_scalar,d_scalar;
498     __m256d          dummy_mask,cutoff_mask;
499     __m128           tmpmask0,tmpmask1;
500     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
501     __m256d          one     = _mm256_set1_pd(1.0);
502     __m256d          two     = _mm256_set1_pd(2.0);
503     x                = xx[0];
504     f                = ff[0];
505
506     nri              = nlist->nri;
507     iinr             = nlist->iinr;
508     jindex           = nlist->jindex;
509     jjnr             = nlist->jjnr;
510     shiftidx         = nlist->shift;
511     gid              = nlist->gid;
512     shiftvec         = fr->shift_vec[0];
513     fshift           = fr->fshift[0];
514     facel            = _mm256_set1_pd(fr->ic->epsfac);
515     charge           = mdatoms->chargeA;
516     krf              = _mm256_set1_pd(fr->ic->k_rf);
517     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
518     crf              = _mm256_set1_pd(fr->ic->c_rf);
519     nvdwtype         = fr->ntype;
520     vdwparam         = fr->nbfp;
521     vdwtype          = mdatoms->typeA;
522
523     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
524     rcutoff_scalar   = fr->ic->rcoulomb;
525     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
526     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
527
528     rswitch_scalar   = fr->ic->rvdw_switch;
529     rswitch          = _mm256_set1_pd(rswitch_scalar);
530     /* Setup switch parameters */
531     d_scalar         = rcutoff_scalar-rswitch_scalar;
532     d                = _mm256_set1_pd(d_scalar);
533     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
534     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
535     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
536     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
537     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
538     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
539
540     /* Avoid stupid compiler warnings */
541     jnrA = jnrB = jnrC = jnrD = 0;
542     j_coord_offsetA = 0;
543     j_coord_offsetB = 0;
544     j_coord_offsetC = 0;
545     j_coord_offsetD = 0;
546
547     outeriter        = 0;
548     inneriter        = 0;
549
550     for(iidx=0;iidx<4*DIM;iidx++)
551     {
552         scratch[iidx] = 0.0;
553     }
554
555     /* Start outer loop over neighborlists */
556     for(iidx=0; iidx<nri; iidx++)
557     {
558         /* Load shift vector for this list */
559         i_shift_offset   = DIM*shiftidx[iidx];
560
561         /* Load limits for loop over neighbors */
562         j_index_start    = jindex[iidx];
563         j_index_end      = jindex[iidx+1];
564
565         /* Get outer coordinate index */
566         inr              = iinr[iidx];
567         i_coord_offset   = DIM*inr;
568
569         /* Load i particle coords and add shift vector */
570         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
571
572         fix0             = _mm256_setzero_pd();
573         fiy0             = _mm256_setzero_pd();
574         fiz0             = _mm256_setzero_pd();
575
576         /* Load parameters for i particles */
577         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
578         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
579
580         /* Start inner kernel loop */
581         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
582         {
583
584             /* Get j neighbor index, and coordinate index */
585             jnrA             = jjnr[jidx];
586             jnrB             = jjnr[jidx+1];
587             jnrC             = jjnr[jidx+2];
588             jnrD             = jjnr[jidx+3];
589             j_coord_offsetA  = DIM*jnrA;
590             j_coord_offsetB  = DIM*jnrB;
591             j_coord_offsetC  = DIM*jnrC;
592             j_coord_offsetD  = DIM*jnrD;
593
594             /* load j atom coordinates */
595             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
596                                                  x+j_coord_offsetC,x+j_coord_offsetD,
597                                                  &jx0,&jy0,&jz0);
598
599             /* Calculate displacement vector */
600             dx00             = _mm256_sub_pd(ix0,jx0);
601             dy00             = _mm256_sub_pd(iy0,jy0);
602             dz00             = _mm256_sub_pd(iz0,jz0);
603
604             /* Calculate squared distance and things based on it */
605             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
606
607             rinv00           = avx256_invsqrt_d(rsq00);
608
609             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
610
611             /* Load parameters for j particles */
612             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
613                                                                  charge+jnrC+0,charge+jnrD+0);
614             vdwjidx0A        = 2*vdwtype[jnrA+0];
615             vdwjidx0B        = 2*vdwtype[jnrB+0];
616             vdwjidx0C        = 2*vdwtype[jnrC+0];
617             vdwjidx0D        = 2*vdwtype[jnrD+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             if (gmx_mm256_any_lt(rsq00,rcutoff2))
624             {
625
626             r00              = _mm256_mul_pd(rsq00,rinv00);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq00             = _mm256_mul_pd(iq0,jq0);
630             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
631                                             vdwioffsetptr0+vdwjidx0B,
632                                             vdwioffsetptr0+vdwjidx0C,
633                                             vdwioffsetptr0+vdwjidx0D,
634                                             &c6_00,&c12_00);
635
636             /* REACTION-FIELD ELECTROSTATICS */
637             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
638
639             /* LENNARD-JONES DISPERSION/REPULSION */
640
641             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
642             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
643             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
644             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
645             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
646
647             d                = _mm256_sub_pd(r00,rswitch);
648             d                = _mm256_max_pd(d,_mm256_setzero_pd());
649             d2               = _mm256_mul_pd(d,d);
650             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
651
652             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
653
654             /* Evaluate switch function */
655             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
656             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
657             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
658
659             fscal            = _mm256_add_pd(felec,fvdw);
660
661             fscal            = _mm256_and_pd(fscal,cutoff_mask);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm256_mul_pd(fscal,dx00);
665             ty               = _mm256_mul_pd(fscal,dy00);
666             tz               = _mm256_mul_pd(fscal,dz00);
667
668             /* Update vectorial force */
669             fix0             = _mm256_add_pd(fix0,tx);
670             fiy0             = _mm256_add_pd(fiy0,ty);
671             fiz0             = _mm256_add_pd(fiz0,tz);
672
673             fjptrA             = f+j_coord_offsetA;
674             fjptrB             = f+j_coord_offsetB;
675             fjptrC             = f+j_coord_offsetC;
676             fjptrD             = f+j_coord_offsetD;
677             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
678
679             }
680
681             /* Inner loop uses 61 flops */
682         }
683
684         if(jidx<j_index_end)
685         {
686
687             /* Get j neighbor index, and coordinate index */
688             jnrlistA         = jjnr[jidx];
689             jnrlistB         = jjnr[jidx+1];
690             jnrlistC         = jjnr[jidx+2];
691             jnrlistD         = jjnr[jidx+3];
692             /* Sign of each element will be negative for non-real atoms.
693              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
694              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
695              */
696             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
697
698             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
699             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
700             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
701
702             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
703             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
704             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
705             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
706             j_coord_offsetA  = DIM*jnrA;
707             j_coord_offsetB  = DIM*jnrB;
708             j_coord_offsetC  = DIM*jnrC;
709             j_coord_offsetD  = DIM*jnrD;
710
711             /* load j atom coordinates */
712             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
713                                                  x+j_coord_offsetC,x+j_coord_offsetD,
714                                                  &jx0,&jy0,&jz0);
715
716             /* Calculate displacement vector */
717             dx00             = _mm256_sub_pd(ix0,jx0);
718             dy00             = _mm256_sub_pd(iy0,jy0);
719             dz00             = _mm256_sub_pd(iz0,jz0);
720
721             /* Calculate squared distance and things based on it */
722             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
723
724             rinv00           = avx256_invsqrt_d(rsq00);
725
726             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
727
728             /* Load parameters for j particles */
729             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
730                                                                  charge+jnrC+0,charge+jnrD+0);
731             vdwjidx0A        = 2*vdwtype[jnrA+0];
732             vdwjidx0B        = 2*vdwtype[jnrB+0];
733             vdwjidx0C        = 2*vdwtype[jnrC+0];
734             vdwjidx0D        = 2*vdwtype[jnrD+0];
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             if (gmx_mm256_any_lt(rsq00,rcutoff2))
741             {
742
743             r00              = _mm256_mul_pd(rsq00,rinv00);
744             r00              = _mm256_andnot_pd(dummy_mask,r00);
745
746             /* Compute parameters for interactions between i and j atoms */
747             qq00             = _mm256_mul_pd(iq0,jq0);
748             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
749                                             vdwioffsetptr0+vdwjidx0B,
750                                             vdwioffsetptr0+vdwjidx0C,
751                                             vdwioffsetptr0+vdwjidx0D,
752                                             &c6_00,&c12_00);
753
754             /* REACTION-FIELD ELECTROSTATICS */
755             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
756
757             /* LENNARD-JONES DISPERSION/REPULSION */
758
759             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
760             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
761             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
762             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
763             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
764
765             d                = _mm256_sub_pd(r00,rswitch);
766             d                = _mm256_max_pd(d,_mm256_setzero_pd());
767             d2               = _mm256_mul_pd(d,d);
768             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
769
770             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
771
772             /* Evaluate switch function */
773             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
774             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
775             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
776
777             fscal            = _mm256_add_pd(felec,fvdw);
778
779             fscal            = _mm256_and_pd(fscal,cutoff_mask);
780
781             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
782
783             /* Calculate temporary vectorial force */
784             tx               = _mm256_mul_pd(fscal,dx00);
785             ty               = _mm256_mul_pd(fscal,dy00);
786             tz               = _mm256_mul_pd(fscal,dz00);
787
788             /* Update vectorial force */
789             fix0             = _mm256_add_pd(fix0,tx);
790             fiy0             = _mm256_add_pd(fiy0,ty);
791             fiz0             = _mm256_add_pd(fiz0,tz);
792
793             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
794             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
795             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
796             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
797             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
798
799             }
800
801             /* Inner loop uses 62 flops */
802         }
803
804         /* End of innermost loop */
805
806         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
807                                                  f+i_coord_offset,fshift+i_shift_offset);
808
809         /* Increment number of inner iterations */
810         inneriter                  += j_index_end - j_index_start;
811
812         /* Outer loop uses 7 flops */
813     }
814
815     /* Increment number of outer iterations */
816     outeriter        += nri;
817
818     /* Update outer/inner flops */
819
820     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
821 }