f71861d1b61324765e7fdb50dbc4d222c30cfd08
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100     real             rswitch_scalar,d_scalar;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm256_set1_pd(fr->ic->k_rf);
120     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm256_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rvdw_switch;
132     rswitch          = _mm256_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm256_set1_pd(d_scalar);
136     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178
179         /* Load parameters for i particles */
180         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
181         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185         vvdwsum          = _mm256_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm256_sub_pd(ix0,jx0);
208             dy00             = _mm256_sub_pd(iy0,jy0);
209             dz00             = _mm256_sub_pd(iz0,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
213
214             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
215
216             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
220                                                                  charge+jnrC+0,charge+jnrD+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             if (gmx_mm256_any_lt(rsq00,rcutoff2))
231             {
232
233             r00              = _mm256_mul_pd(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm256_mul_pd(iq0,jq0);
237             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
238                                             vdwioffsetptr0+vdwjidx0B,
239                                             vdwioffsetptr0+vdwjidx0C,
240                                             vdwioffsetptr0+vdwjidx0D,
241                                             &c6_00,&c12_00);
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
245             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
251             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
252             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
253             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
254
255             d                = _mm256_sub_pd(r00,rswitch);
256             d                = _mm256_max_pd(d,_mm256_setzero_pd());
257             d2               = _mm256_mul_pd(d,d);
258             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
259
260             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
261
262             /* Evaluate switch function */
263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
264             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
265             vvdw             = _mm256_mul_pd(vvdw,sw);
266             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm256_and_pd(velec,cutoff_mask);
270             velecsum         = _mm256_add_pd(velecsum,velec);
271             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
272             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
273
274             fscal            = _mm256_add_pd(felec,fvdw);
275
276             fscal            = _mm256_and_pd(fscal,cutoff_mask);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_pd(fscal,dx00);
280             ty               = _mm256_mul_pd(fscal,dy00);
281             tz               = _mm256_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_pd(fix0,tx);
285             fiy0             = _mm256_add_pd(fiy0,ty);
286             fiz0             = _mm256_add_pd(fiz0,tz);
287
288             fjptrA             = f+j_coord_offsetA;
289             fjptrB             = f+j_coord_offsetB;
290             fjptrC             = f+j_coord_offsetC;
291             fjptrD             = f+j_coord_offsetD;
292             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
293
294             }
295
296             /* Inner loop uses 70 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             /* Get j neighbor index, and coordinate index */
303             jnrlistA         = jjnr[jidx];
304             jnrlistB         = jjnr[jidx+1];
305             jnrlistC         = jjnr[jidx+2];
306             jnrlistD         = jjnr[jidx+3];
307             /* Sign of each element will be negative for non-real atoms.
308              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
309              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
310              */
311             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
312
313             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
314             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
315             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
316
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
328                                                  x+j_coord_offsetC,x+j_coord_offsetD,
329                                                  &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm256_sub_pd(ix0,jx0);
333             dy00             = _mm256_sub_pd(iy0,jy0);
334             dz00             = _mm256_sub_pd(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
338
339             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
340
341             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
345                                                                  charge+jnrC+0,charge+jnrD+0);
346             vdwjidx0A        = 2*vdwtype[jnrA+0];
347             vdwjidx0B        = 2*vdwtype[jnrB+0];
348             vdwjidx0C        = 2*vdwtype[jnrC+0];
349             vdwjidx0D        = 2*vdwtype[jnrD+0];
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm256_any_lt(rsq00,rcutoff2))
356             {
357
358             r00              = _mm256_mul_pd(rsq00,rinv00);
359             r00              = _mm256_andnot_pd(dummy_mask,r00);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq00             = _mm256_mul_pd(iq0,jq0);
363             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
364                                             vdwioffsetptr0+vdwjidx0B,
365                                             vdwioffsetptr0+vdwjidx0C,
366                                             vdwioffsetptr0+vdwjidx0D,
367                                             &c6_00,&c12_00);
368
369             /* REACTION-FIELD ELECTROSTATICS */
370             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
371             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
372
373             /* LENNARD-JONES DISPERSION/REPULSION */
374
375             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
376             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
377             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
378             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
379             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
380
381             d                = _mm256_sub_pd(r00,rswitch);
382             d                = _mm256_max_pd(d,_mm256_setzero_pd());
383             d2               = _mm256_mul_pd(d,d);
384             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
385
386             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
387
388             /* Evaluate switch function */
389             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
390             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
391             vvdw             = _mm256_mul_pd(vvdw,sw);
392             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velec            = _mm256_and_pd(velec,cutoff_mask);
396             velec            = _mm256_andnot_pd(dummy_mask,velec);
397             velecsum         = _mm256_add_pd(velecsum,velec);
398             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
399             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
400             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
401
402             fscal            = _mm256_add_pd(felec,fvdw);
403
404             fscal            = _mm256_and_pd(fscal,cutoff_mask);
405
406             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_pd(fscal,dx00);
410             ty               = _mm256_mul_pd(fscal,dy00);
411             tz               = _mm256_mul_pd(fscal,dz00);
412
413             /* Update vectorial force */
414             fix0             = _mm256_add_pd(fix0,tx);
415             fiy0             = _mm256_add_pd(fiy0,ty);
416             fiz0             = _mm256_add_pd(fiz0,tz);
417
418             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
419             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
420             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
421             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
422             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
423
424             }
425
426             /* Inner loop uses 71 flops */
427         }
428
429         /* End of innermost loop */
430
431         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
432                                                  f+i_coord_offset,fshift+i_shift_offset);
433
434         ggid                        = gid[iidx];
435         /* Update potential energies */
436         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
437         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
438
439         /* Increment number of inner iterations */
440         inneriter                  += j_index_end - j_index_start;
441
442         /* Outer loop uses 9 flops */
443     }
444
445     /* Increment number of outer iterations */
446     outeriter        += nri;
447
448     /* Update outer/inner flops */
449
450     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
451 }
452 /*
453  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
454  * Electrostatics interaction: ReactionField
455  * VdW interaction:            LennardJones
456  * Geometry:                   Particle-Particle
457  * Calculate force/pot:        Force
458  */
459 void
460 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
461                     (t_nblist                    * gmx_restrict       nlist,
462                      rvec                        * gmx_restrict          xx,
463                      rvec                        * gmx_restrict          ff,
464                      t_forcerec                  * gmx_restrict          fr,
465                      t_mdatoms                   * gmx_restrict     mdatoms,
466                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
467                      t_nrnb                      * gmx_restrict        nrnb)
468 {
469     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
470      * just 0 for non-waters.
471      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
472      * jnr indices corresponding to data put in the four positions in the SIMD register.
473      */
474     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
475     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
476     int              jnrA,jnrB,jnrC,jnrD;
477     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
478     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
479     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
480     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
481     real             rcutoff_scalar;
482     real             *shiftvec,*fshift,*x,*f;
483     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
484     real             scratch[4*DIM];
485     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
486     real *           vdwioffsetptr0;
487     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
488     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
489     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
490     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
491     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
492     real             *charge;
493     int              nvdwtype;
494     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
495     int              *vdwtype;
496     real             *vdwparam;
497     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
498     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
499     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
500     real             rswitch_scalar,d_scalar;
501     __m256d          dummy_mask,cutoff_mask;
502     __m128           tmpmask0,tmpmask1;
503     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
504     __m256d          one     = _mm256_set1_pd(1.0);
505     __m256d          two     = _mm256_set1_pd(2.0);
506     x                = xx[0];
507     f                = ff[0];
508
509     nri              = nlist->nri;
510     iinr             = nlist->iinr;
511     jindex           = nlist->jindex;
512     jjnr             = nlist->jjnr;
513     shiftidx         = nlist->shift;
514     gid              = nlist->gid;
515     shiftvec         = fr->shift_vec[0];
516     fshift           = fr->fshift[0];
517     facel            = _mm256_set1_pd(fr->epsfac);
518     charge           = mdatoms->chargeA;
519     krf              = _mm256_set1_pd(fr->ic->k_rf);
520     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
521     crf              = _mm256_set1_pd(fr->ic->c_rf);
522     nvdwtype         = fr->ntype;
523     vdwparam         = fr->nbfp;
524     vdwtype          = mdatoms->typeA;
525
526     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
527     rcutoff_scalar   = fr->rcoulomb;
528     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
529     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
530
531     rswitch_scalar   = fr->rvdw_switch;
532     rswitch          = _mm256_set1_pd(rswitch_scalar);
533     /* Setup switch parameters */
534     d_scalar         = rcutoff_scalar-rswitch_scalar;
535     d                = _mm256_set1_pd(d_scalar);
536     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
537     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
538     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
539     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
540     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
541     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
542
543     /* Avoid stupid compiler warnings */
544     jnrA = jnrB = jnrC = jnrD = 0;
545     j_coord_offsetA = 0;
546     j_coord_offsetB = 0;
547     j_coord_offsetC = 0;
548     j_coord_offsetD = 0;
549
550     outeriter        = 0;
551     inneriter        = 0;
552
553     for(iidx=0;iidx<4*DIM;iidx++)
554     {
555         scratch[iidx] = 0.0;
556     }
557
558     /* Start outer loop over neighborlists */
559     for(iidx=0; iidx<nri; iidx++)
560     {
561         /* Load shift vector for this list */
562         i_shift_offset   = DIM*shiftidx[iidx];
563
564         /* Load limits for loop over neighbors */
565         j_index_start    = jindex[iidx];
566         j_index_end      = jindex[iidx+1];
567
568         /* Get outer coordinate index */
569         inr              = iinr[iidx];
570         i_coord_offset   = DIM*inr;
571
572         /* Load i particle coords and add shift vector */
573         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
574
575         fix0             = _mm256_setzero_pd();
576         fiy0             = _mm256_setzero_pd();
577         fiz0             = _mm256_setzero_pd();
578
579         /* Load parameters for i particles */
580         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
581         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
582
583         /* Start inner kernel loop */
584         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
585         {
586
587             /* Get j neighbor index, and coordinate index */
588             jnrA             = jjnr[jidx];
589             jnrB             = jjnr[jidx+1];
590             jnrC             = jjnr[jidx+2];
591             jnrD             = jjnr[jidx+3];
592             j_coord_offsetA  = DIM*jnrA;
593             j_coord_offsetB  = DIM*jnrB;
594             j_coord_offsetC  = DIM*jnrC;
595             j_coord_offsetD  = DIM*jnrD;
596
597             /* load j atom coordinates */
598             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
599                                                  x+j_coord_offsetC,x+j_coord_offsetD,
600                                                  &jx0,&jy0,&jz0);
601
602             /* Calculate displacement vector */
603             dx00             = _mm256_sub_pd(ix0,jx0);
604             dy00             = _mm256_sub_pd(iy0,jy0);
605             dz00             = _mm256_sub_pd(iz0,jz0);
606
607             /* Calculate squared distance and things based on it */
608             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
609
610             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
611
612             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
613
614             /* Load parameters for j particles */
615             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
616                                                                  charge+jnrC+0,charge+jnrD+0);
617             vdwjidx0A        = 2*vdwtype[jnrA+0];
618             vdwjidx0B        = 2*vdwtype[jnrB+0];
619             vdwjidx0C        = 2*vdwtype[jnrC+0];
620             vdwjidx0D        = 2*vdwtype[jnrD+0];
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm256_any_lt(rsq00,rcutoff2))
627             {
628
629             r00              = _mm256_mul_pd(rsq00,rinv00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq00             = _mm256_mul_pd(iq0,jq0);
633             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
634                                             vdwioffsetptr0+vdwjidx0B,
635                                             vdwioffsetptr0+vdwjidx0C,
636                                             vdwioffsetptr0+vdwjidx0D,
637                                             &c6_00,&c12_00);
638
639             /* REACTION-FIELD ELECTROSTATICS */
640             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
641
642             /* LENNARD-JONES DISPERSION/REPULSION */
643
644             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
645             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
646             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
647             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
648             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
649
650             d                = _mm256_sub_pd(r00,rswitch);
651             d                = _mm256_max_pd(d,_mm256_setzero_pd());
652             d2               = _mm256_mul_pd(d,d);
653             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
654
655             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
656
657             /* Evaluate switch function */
658             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
659             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
660             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
661
662             fscal            = _mm256_add_pd(felec,fvdw);
663
664             fscal            = _mm256_and_pd(fscal,cutoff_mask);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_pd(fscal,dx00);
668             ty               = _mm256_mul_pd(fscal,dy00);
669             tz               = _mm256_mul_pd(fscal,dz00);
670
671             /* Update vectorial force */
672             fix0             = _mm256_add_pd(fix0,tx);
673             fiy0             = _mm256_add_pd(fiy0,ty);
674             fiz0             = _mm256_add_pd(fiz0,tz);
675
676             fjptrA             = f+j_coord_offsetA;
677             fjptrB             = f+j_coord_offsetB;
678             fjptrC             = f+j_coord_offsetC;
679             fjptrD             = f+j_coord_offsetD;
680             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
681
682             }
683
684             /* Inner loop uses 61 flops */
685         }
686
687         if(jidx<j_index_end)
688         {
689
690             /* Get j neighbor index, and coordinate index */
691             jnrlistA         = jjnr[jidx];
692             jnrlistB         = jjnr[jidx+1];
693             jnrlistC         = jjnr[jidx+2];
694             jnrlistD         = jjnr[jidx+3];
695             /* Sign of each element will be negative for non-real atoms.
696              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
697              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
698              */
699             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
700
701             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
702             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
703             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
704
705             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
706             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
707             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
708             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
709             j_coord_offsetA  = DIM*jnrA;
710             j_coord_offsetB  = DIM*jnrB;
711             j_coord_offsetC  = DIM*jnrC;
712             j_coord_offsetD  = DIM*jnrD;
713
714             /* load j atom coordinates */
715             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
716                                                  x+j_coord_offsetC,x+j_coord_offsetD,
717                                                  &jx0,&jy0,&jz0);
718
719             /* Calculate displacement vector */
720             dx00             = _mm256_sub_pd(ix0,jx0);
721             dy00             = _mm256_sub_pd(iy0,jy0);
722             dz00             = _mm256_sub_pd(iz0,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
726
727             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
728
729             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
733                                                                  charge+jnrC+0,charge+jnrD+0);
734             vdwjidx0A        = 2*vdwtype[jnrA+0];
735             vdwjidx0B        = 2*vdwtype[jnrB+0];
736             vdwjidx0C        = 2*vdwtype[jnrC+0];
737             vdwjidx0D        = 2*vdwtype[jnrD+0];
738
739             /**************************
740              * CALCULATE INTERACTIONS *
741              **************************/
742
743             if (gmx_mm256_any_lt(rsq00,rcutoff2))
744             {
745
746             r00              = _mm256_mul_pd(rsq00,rinv00);
747             r00              = _mm256_andnot_pd(dummy_mask,r00);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm256_mul_pd(iq0,jq0);
751             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
752                                             vdwioffsetptr0+vdwjidx0B,
753                                             vdwioffsetptr0+vdwjidx0C,
754                                             vdwioffsetptr0+vdwjidx0D,
755                                             &c6_00,&c12_00);
756
757             /* REACTION-FIELD ELECTROSTATICS */
758             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
759
760             /* LENNARD-JONES DISPERSION/REPULSION */
761
762             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
763             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
764             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
765             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
766             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
767
768             d                = _mm256_sub_pd(r00,rswitch);
769             d                = _mm256_max_pd(d,_mm256_setzero_pd());
770             d2               = _mm256_mul_pd(d,d);
771             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
772
773             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
774
775             /* Evaluate switch function */
776             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
777             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
778             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
779
780             fscal            = _mm256_add_pd(felec,fvdw);
781
782             fscal            = _mm256_and_pd(fscal,cutoff_mask);
783
784             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
785
786             /* Calculate temporary vectorial force */
787             tx               = _mm256_mul_pd(fscal,dx00);
788             ty               = _mm256_mul_pd(fscal,dy00);
789             tz               = _mm256_mul_pd(fscal,dz00);
790
791             /* Update vectorial force */
792             fix0             = _mm256_add_pd(fix0,tx);
793             fiy0             = _mm256_add_pd(fiy0,ty);
794             fiz0             = _mm256_add_pd(fiz0,tz);
795
796             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
797             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
798             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
799             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
800             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
801
802             }
803
804             /* Inner loop uses 62 flops */
805         }
806
807         /* End of innermost loop */
808
809         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
810                                                  f+i_coord_offset,fshift+i_shift_offset);
811
812         /* Increment number of inner iterations */
813         inneriter                  += j_index_end - j_index_start;
814
815         /* Outer loop uses 7 flops */
816     }
817
818     /* Increment number of outer iterations */
819     outeriter        += nri;
820
821     /* Update outer/inner flops */
822
823     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
824 }