Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
98     real             rswitch_scalar,d_scalar;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm256_set1_pd(fr->ic->k_rf);
118     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm256_set1_pd(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rvdw_switch;
130     rswitch          = _mm256_set1_pd(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm256_set1_pd(d_scalar);
134     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173         fix0             = _mm256_setzero_pd();
174         fiy0             = _mm256_setzero_pd();
175         fiz0             = _mm256_setzero_pd();
176
177         /* Load parameters for i particles */
178         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
179         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
211
212             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
213
214             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             if (gmx_mm256_any_lt(rsq00,rcutoff2))
229             {
230
231             r00              = _mm256_mul_pd(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _mm256_mul_pd(iq0,jq0);
235             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
236                                             vdwioffsetptr0+vdwjidx0B,
237                                             vdwioffsetptr0+vdwjidx0C,
238                                             vdwioffsetptr0+vdwjidx0D,
239                                             &c6_00,&c12_00);
240
241             /* REACTION-FIELD ELECTROSTATICS */
242             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
243             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
249             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
251             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             d                = _mm256_sub_pd(r00,rswitch);
254             d                = _mm256_max_pd(d,_mm256_setzero_pd());
255             d2               = _mm256_mul_pd(d,d);
256             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
257
258             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
259
260             /* Evaluate switch function */
261             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
262             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
263             vvdw             = _mm256_mul_pd(vvdw,sw);
264             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velec            = _mm256_and_pd(velec,cutoff_mask);
268             velecsum         = _mm256_add_pd(velecsum,velec);
269             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
270             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
271
272             fscal            = _mm256_add_pd(felec,fvdw);
273
274             fscal            = _mm256_and_pd(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm256_mul_pd(fscal,dx00);
278             ty               = _mm256_mul_pd(fscal,dy00);
279             tz               = _mm256_mul_pd(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm256_add_pd(fix0,tx);
283             fiy0             = _mm256_add_pd(fiy0,ty);
284             fiz0             = _mm256_add_pd(fiz0,tz);
285
286             fjptrA             = f+j_coord_offsetA;
287             fjptrB             = f+j_coord_offsetB;
288             fjptrC             = f+j_coord_offsetC;
289             fjptrD             = f+j_coord_offsetD;
290             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
291
292             }
293
294             /* Inner loop uses 70 flops */
295         }
296
297         if(jidx<j_index_end)
298         {
299
300             /* Get j neighbor index, and coordinate index */
301             jnrlistA         = jjnr[jidx];
302             jnrlistB         = jjnr[jidx+1];
303             jnrlistC         = jjnr[jidx+2];
304             jnrlistD         = jjnr[jidx+3];
305             /* Sign of each element will be negative for non-real atoms.
306              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
307              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
308              */
309             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
310
311             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
312             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
313             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
314
315             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
316             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
317             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
318             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
319             j_coord_offsetA  = DIM*jnrA;
320             j_coord_offsetB  = DIM*jnrB;
321             j_coord_offsetC  = DIM*jnrC;
322             j_coord_offsetD  = DIM*jnrD;
323
324             /* load j atom coordinates */
325             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
326                                                  x+j_coord_offsetC,x+j_coord_offsetD,
327                                                  &jx0,&jy0,&jz0);
328
329             /* Calculate displacement vector */
330             dx00             = _mm256_sub_pd(ix0,jx0);
331             dy00             = _mm256_sub_pd(iy0,jy0);
332             dz00             = _mm256_sub_pd(iz0,jz0);
333
334             /* Calculate squared distance and things based on it */
335             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
336
337             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
338
339             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
340
341             /* Load parameters for j particles */
342             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
343                                                                  charge+jnrC+0,charge+jnrD+0);
344             vdwjidx0A        = 2*vdwtype[jnrA+0];
345             vdwjidx0B        = 2*vdwtype[jnrB+0];
346             vdwjidx0C        = 2*vdwtype[jnrC+0];
347             vdwjidx0D        = 2*vdwtype[jnrD+0];
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             if (gmx_mm256_any_lt(rsq00,rcutoff2))
354             {
355
356             r00              = _mm256_mul_pd(rsq00,rinv00);
357             r00              = _mm256_andnot_pd(dummy_mask,r00);
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq00             = _mm256_mul_pd(iq0,jq0);
361             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
362                                             vdwioffsetptr0+vdwjidx0B,
363                                             vdwioffsetptr0+vdwjidx0C,
364                                             vdwioffsetptr0+vdwjidx0D,
365                                             &c6_00,&c12_00);
366
367             /* REACTION-FIELD ELECTROSTATICS */
368             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
369             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
370
371             /* LENNARD-JONES DISPERSION/REPULSION */
372
373             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
374             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
375             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
376             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
377             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
378
379             d                = _mm256_sub_pd(r00,rswitch);
380             d                = _mm256_max_pd(d,_mm256_setzero_pd());
381             d2               = _mm256_mul_pd(d,d);
382             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
383
384             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
385
386             /* Evaluate switch function */
387             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
388             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
389             vvdw             = _mm256_mul_pd(vvdw,sw);
390             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velec            = _mm256_and_pd(velec,cutoff_mask);
394             velec            = _mm256_andnot_pd(dummy_mask,velec);
395             velecsum         = _mm256_add_pd(velecsum,velec);
396             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
397             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
398             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
399
400             fscal            = _mm256_add_pd(felec,fvdw);
401
402             fscal            = _mm256_and_pd(fscal,cutoff_mask);
403
404             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm256_mul_pd(fscal,dx00);
408             ty               = _mm256_mul_pd(fscal,dy00);
409             tz               = _mm256_mul_pd(fscal,dz00);
410
411             /* Update vectorial force */
412             fix0             = _mm256_add_pd(fix0,tx);
413             fiy0             = _mm256_add_pd(fiy0,ty);
414             fiz0             = _mm256_add_pd(fiz0,tz);
415
416             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
417             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
418             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
419             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
420             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
421
422             }
423
424             /* Inner loop uses 71 flops */
425         }
426
427         /* End of innermost loop */
428
429         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
430                                                  f+i_coord_offset,fshift+i_shift_offset);
431
432         ggid                        = gid[iidx];
433         /* Update potential energies */
434         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
435         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
436
437         /* Increment number of inner iterations */
438         inneriter                  += j_index_end - j_index_start;
439
440         /* Outer loop uses 9 flops */
441     }
442
443     /* Increment number of outer iterations */
444     outeriter        += nri;
445
446     /* Update outer/inner flops */
447
448     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
449 }
450 /*
451  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
452  * Electrostatics interaction: ReactionField
453  * VdW interaction:            LennardJones
454  * Geometry:                   Particle-Particle
455  * Calculate force/pot:        Force
456  */
457 void
458 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
459                     (t_nblist                    * gmx_restrict       nlist,
460                      rvec                        * gmx_restrict          xx,
461                      rvec                        * gmx_restrict          ff,
462                      t_forcerec                  * gmx_restrict          fr,
463                      t_mdatoms                   * gmx_restrict     mdatoms,
464                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
465                      t_nrnb                      * gmx_restrict        nrnb)
466 {
467     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
468      * just 0 for non-waters.
469      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
470      * jnr indices corresponding to data put in the four positions in the SIMD register.
471      */
472     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
473     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
474     int              jnrA,jnrB,jnrC,jnrD;
475     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
476     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
477     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
478     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
479     real             rcutoff_scalar;
480     real             *shiftvec,*fshift,*x,*f;
481     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
482     real             scratch[4*DIM];
483     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
484     real *           vdwioffsetptr0;
485     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
486     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
487     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
488     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
489     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
490     real             *charge;
491     int              nvdwtype;
492     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
493     int              *vdwtype;
494     real             *vdwparam;
495     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
496     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
497     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
498     real             rswitch_scalar,d_scalar;
499     __m256d          dummy_mask,cutoff_mask;
500     __m128           tmpmask0,tmpmask1;
501     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
502     __m256d          one     = _mm256_set1_pd(1.0);
503     __m256d          two     = _mm256_set1_pd(2.0);
504     x                = xx[0];
505     f                = ff[0];
506
507     nri              = nlist->nri;
508     iinr             = nlist->iinr;
509     jindex           = nlist->jindex;
510     jjnr             = nlist->jjnr;
511     shiftidx         = nlist->shift;
512     gid              = nlist->gid;
513     shiftvec         = fr->shift_vec[0];
514     fshift           = fr->fshift[0];
515     facel            = _mm256_set1_pd(fr->epsfac);
516     charge           = mdatoms->chargeA;
517     krf              = _mm256_set1_pd(fr->ic->k_rf);
518     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
519     crf              = _mm256_set1_pd(fr->ic->c_rf);
520     nvdwtype         = fr->ntype;
521     vdwparam         = fr->nbfp;
522     vdwtype          = mdatoms->typeA;
523
524     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
525     rcutoff_scalar   = fr->rcoulomb;
526     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
527     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
528
529     rswitch_scalar   = fr->rvdw_switch;
530     rswitch          = _mm256_set1_pd(rswitch_scalar);
531     /* Setup switch parameters */
532     d_scalar         = rcutoff_scalar-rswitch_scalar;
533     d                = _mm256_set1_pd(d_scalar);
534     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
535     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
536     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
537     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
538     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
539     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
540
541     /* Avoid stupid compiler warnings */
542     jnrA = jnrB = jnrC = jnrD = 0;
543     j_coord_offsetA = 0;
544     j_coord_offsetB = 0;
545     j_coord_offsetC = 0;
546     j_coord_offsetD = 0;
547
548     outeriter        = 0;
549     inneriter        = 0;
550
551     for(iidx=0;iidx<4*DIM;iidx++)
552     {
553         scratch[iidx] = 0.0;
554     }
555
556     /* Start outer loop over neighborlists */
557     for(iidx=0; iidx<nri; iidx++)
558     {
559         /* Load shift vector for this list */
560         i_shift_offset   = DIM*shiftidx[iidx];
561
562         /* Load limits for loop over neighbors */
563         j_index_start    = jindex[iidx];
564         j_index_end      = jindex[iidx+1];
565
566         /* Get outer coordinate index */
567         inr              = iinr[iidx];
568         i_coord_offset   = DIM*inr;
569
570         /* Load i particle coords and add shift vector */
571         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
572
573         fix0             = _mm256_setzero_pd();
574         fiy0             = _mm256_setzero_pd();
575         fiz0             = _mm256_setzero_pd();
576
577         /* Load parameters for i particles */
578         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
579         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
580
581         /* Start inner kernel loop */
582         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
583         {
584
585             /* Get j neighbor index, and coordinate index */
586             jnrA             = jjnr[jidx];
587             jnrB             = jjnr[jidx+1];
588             jnrC             = jjnr[jidx+2];
589             jnrD             = jjnr[jidx+3];
590             j_coord_offsetA  = DIM*jnrA;
591             j_coord_offsetB  = DIM*jnrB;
592             j_coord_offsetC  = DIM*jnrC;
593             j_coord_offsetD  = DIM*jnrD;
594
595             /* load j atom coordinates */
596             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
597                                                  x+j_coord_offsetC,x+j_coord_offsetD,
598                                                  &jx0,&jy0,&jz0);
599
600             /* Calculate displacement vector */
601             dx00             = _mm256_sub_pd(ix0,jx0);
602             dy00             = _mm256_sub_pd(iy0,jy0);
603             dz00             = _mm256_sub_pd(iz0,jz0);
604
605             /* Calculate squared distance and things based on it */
606             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
607
608             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
609
610             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
611
612             /* Load parameters for j particles */
613             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
614                                                                  charge+jnrC+0,charge+jnrD+0);
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616             vdwjidx0B        = 2*vdwtype[jnrB+0];
617             vdwjidx0C        = 2*vdwtype[jnrC+0];
618             vdwjidx0D        = 2*vdwtype[jnrD+0];
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             if (gmx_mm256_any_lt(rsq00,rcutoff2))
625             {
626
627             r00              = _mm256_mul_pd(rsq00,rinv00);
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq00             = _mm256_mul_pd(iq0,jq0);
631             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
632                                             vdwioffsetptr0+vdwjidx0B,
633                                             vdwioffsetptr0+vdwjidx0C,
634                                             vdwioffsetptr0+vdwjidx0D,
635                                             &c6_00,&c12_00);
636
637             /* REACTION-FIELD ELECTROSTATICS */
638             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
639
640             /* LENNARD-JONES DISPERSION/REPULSION */
641
642             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
643             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
644             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
645             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
646             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
647
648             d                = _mm256_sub_pd(r00,rswitch);
649             d                = _mm256_max_pd(d,_mm256_setzero_pd());
650             d2               = _mm256_mul_pd(d,d);
651             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
652
653             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
654
655             /* Evaluate switch function */
656             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
657             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
658             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
659
660             fscal            = _mm256_add_pd(felec,fvdw);
661
662             fscal            = _mm256_and_pd(fscal,cutoff_mask);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_pd(fscal,dx00);
666             ty               = _mm256_mul_pd(fscal,dy00);
667             tz               = _mm256_mul_pd(fscal,dz00);
668
669             /* Update vectorial force */
670             fix0             = _mm256_add_pd(fix0,tx);
671             fiy0             = _mm256_add_pd(fiy0,ty);
672             fiz0             = _mm256_add_pd(fiz0,tz);
673
674             fjptrA             = f+j_coord_offsetA;
675             fjptrB             = f+j_coord_offsetB;
676             fjptrC             = f+j_coord_offsetC;
677             fjptrD             = f+j_coord_offsetD;
678             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
679
680             }
681
682             /* Inner loop uses 61 flops */
683         }
684
685         if(jidx<j_index_end)
686         {
687
688             /* Get j neighbor index, and coordinate index */
689             jnrlistA         = jjnr[jidx];
690             jnrlistB         = jjnr[jidx+1];
691             jnrlistC         = jjnr[jidx+2];
692             jnrlistD         = jjnr[jidx+3];
693             /* Sign of each element will be negative for non-real atoms.
694              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
695              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
696              */
697             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
698
699             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
700             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
701             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
702
703             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
704             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
705             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
706             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
707             j_coord_offsetA  = DIM*jnrA;
708             j_coord_offsetB  = DIM*jnrB;
709             j_coord_offsetC  = DIM*jnrC;
710             j_coord_offsetD  = DIM*jnrD;
711
712             /* load j atom coordinates */
713             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
714                                                  x+j_coord_offsetC,x+j_coord_offsetD,
715                                                  &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx00             = _mm256_sub_pd(ix0,jx0);
719             dy00             = _mm256_sub_pd(iy0,jy0);
720             dz00             = _mm256_sub_pd(iz0,jz0);
721
722             /* Calculate squared distance and things based on it */
723             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
724
725             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
726
727             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
728
729             /* Load parameters for j particles */
730             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
731                                                                  charge+jnrC+0,charge+jnrD+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734             vdwjidx0C        = 2*vdwtype[jnrC+0];
735             vdwjidx0D        = 2*vdwtype[jnrD+0];
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             if (gmx_mm256_any_lt(rsq00,rcutoff2))
742             {
743
744             r00              = _mm256_mul_pd(rsq00,rinv00);
745             r00              = _mm256_andnot_pd(dummy_mask,r00);
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq00             = _mm256_mul_pd(iq0,jq0);
749             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
750                                             vdwioffsetptr0+vdwjidx0B,
751                                             vdwioffsetptr0+vdwjidx0C,
752                                             vdwioffsetptr0+vdwjidx0D,
753                                             &c6_00,&c12_00);
754
755             /* REACTION-FIELD ELECTROSTATICS */
756             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
757
758             /* LENNARD-JONES DISPERSION/REPULSION */
759
760             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
761             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
762             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
763             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
764             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
765
766             d                = _mm256_sub_pd(r00,rswitch);
767             d                = _mm256_max_pd(d,_mm256_setzero_pd());
768             d2               = _mm256_mul_pd(d,d);
769             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
770
771             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
772
773             /* Evaluate switch function */
774             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
775             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
776             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
777
778             fscal            = _mm256_add_pd(felec,fvdw);
779
780             fscal            = _mm256_and_pd(fscal,cutoff_mask);
781
782             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm256_mul_pd(fscal,dx00);
786             ty               = _mm256_mul_pd(fscal,dy00);
787             tz               = _mm256_mul_pd(fscal,dz00);
788
789             /* Update vectorial force */
790             fix0             = _mm256_add_pd(fix0,tx);
791             fiy0             = _mm256_add_pd(fiy0,ty);
792             fiz0             = _mm256_add_pd(fiz0,tz);
793
794             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
795             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
796             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
797             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
798             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
799
800             }
801
802             /* Inner loop uses 62 flops */
803         }
804
805         /* End of innermost loop */
806
807         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
808                                                  f+i_coord_offset,fshift+i_shift_offset);
809
810         /* Increment number of inner iterations */
811         inneriter                  += j_index_end - j_index_start;
812
813         /* Outer loop uses 7 flops */
814     }
815
816     /* Increment number of outer iterations */
817     outeriter        += nri;
818
819     /* Update outer/inner flops */
820
821     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
822 }