Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     real *           vdwioffsetptr3;
90     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->ic->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_pd(fr->ic->k_rf);
124     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
133     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
134     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->ic->rcoulomb;
139     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
143     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm256_setzero_pd();
179         fiy0             = _mm256_setzero_pd();
180         fiz0             = _mm256_setzero_pd();
181         fix1             = _mm256_setzero_pd();
182         fiy1             = _mm256_setzero_pd();
183         fiz1             = _mm256_setzero_pd();
184         fix2             = _mm256_setzero_pd();
185         fiy2             = _mm256_setzero_pd();
186         fiz2             = _mm256_setzero_pd();
187         fix3             = _mm256_setzero_pd();
188         fiy3             = _mm256_setzero_pd();
189         fiz3             = _mm256_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_pd();
193         vvdwsum          = _mm256_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm256_sub_pd(ix0,jx0);
216             dy00             = _mm256_sub_pd(iy0,jy0);
217             dz00             = _mm256_sub_pd(iz0,jz0);
218             dx10             = _mm256_sub_pd(ix1,jx0);
219             dy10             = _mm256_sub_pd(iy1,jy0);
220             dz10             = _mm256_sub_pd(iz1,jz0);
221             dx20             = _mm256_sub_pd(ix2,jx0);
222             dy20             = _mm256_sub_pd(iy2,jy0);
223             dz20             = _mm256_sub_pd(iz2,jz0);
224             dx30             = _mm256_sub_pd(ix3,jx0);
225             dy30             = _mm256_sub_pd(iy3,jy0);
226             dz30             = _mm256_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv10           = avx256_invsqrt_d(rsq10);
235             rinv20           = avx256_invsqrt_d(rsq20);
236             rinv30           = avx256_invsqrt_d(rsq30);
237
238             rinvsq00         = avx256_inv_d(rsq00);
239             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
240             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
241             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
245                                                                  charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm256_setzero_pd();
252             fjy0             = _mm256_setzero_pd();
253             fjz0             = _mm256_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
264                                             vdwioffsetptr0+vdwjidx0B,
265                                             vdwioffsetptr0+vdwjidx0C,
266                                             vdwioffsetptr0+vdwjidx0D,
267                                             &c6_00,&c12_00);
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
273             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
275                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
276             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
277
278             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
282             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
283
284             fscal            = fvdw;
285
286             fscal            = _mm256_and_pd(fscal,cutoff_mask);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm256_mul_pd(fscal,dx00);
290             ty               = _mm256_mul_pd(fscal,dy00);
291             tz               = _mm256_mul_pd(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm256_add_pd(fix0,tx);
295             fiy0             = _mm256_add_pd(fiy0,ty);
296             fiz0             = _mm256_add_pd(fiz0,tz);
297
298             fjx0             = _mm256_add_pd(fjx0,tx);
299             fjy0             = _mm256_add_pd(fjy0,ty);
300             fjz0             = _mm256_add_pd(fjz0,tz);
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm256_any_lt(rsq10,rcutoff2))
309             {
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq10             = _mm256_mul_pd(iq1,jq0);
313
314             /* REACTION-FIELD ELECTROSTATICS */
315             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
316             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
317
318             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm256_and_pd(velec,cutoff_mask);
322             velecsum         = _mm256_add_pd(velecsum,velec);
323
324             fscal            = felec;
325
326             fscal            = _mm256_and_pd(fscal,cutoff_mask);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm256_mul_pd(fscal,dx10);
330             ty               = _mm256_mul_pd(fscal,dy10);
331             tz               = _mm256_mul_pd(fscal,dz10);
332
333             /* Update vectorial force */
334             fix1             = _mm256_add_pd(fix1,tx);
335             fiy1             = _mm256_add_pd(fiy1,ty);
336             fiz1             = _mm256_add_pd(fiz1,tz);
337
338             fjx0             = _mm256_add_pd(fjx0,tx);
339             fjy0             = _mm256_add_pd(fjy0,ty);
340             fjz0             = _mm256_add_pd(fjz0,tz);
341
342             }
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm256_any_lt(rsq20,rcutoff2))
349             {
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm256_mul_pd(iq2,jq0);
353
354             /* REACTION-FIELD ELECTROSTATICS */
355             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
356             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
357
358             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm256_and_pd(velec,cutoff_mask);
362             velecsum         = _mm256_add_pd(velecsum,velec);
363
364             fscal            = felec;
365
366             fscal            = _mm256_and_pd(fscal,cutoff_mask);
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm256_mul_pd(fscal,dx20);
370             ty               = _mm256_mul_pd(fscal,dy20);
371             tz               = _mm256_mul_pd(fscal,dz20);
372
373             /* Update vectorial force */
374             fix2             = _mm256_add_pd(fix2,tx);
375             fiy2             = _mm256_add_pd(fiy2,ty);
376             fiz2             = _mm256_add_pd(fiz2,tz);
377
378             fjx0             = _mm256_add_pd(fjx0,tx);
379             fjy0             = _mm256_add_pd(fjy0,ty);
380             fjz0             = _mm256_add_pd(fjz0,tz);
381
382             }
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             if (gmx_mm256_any_lt(rsq30,rcutoff2))
389             {
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq30             = _mm256_mul_pd(iq3,jq0);
393
394             /* REACTION-FIELD ELECTROSTATICS */
395             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
396             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
397
398             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm256_and_pd(velec,cutoff_mask);
402             velecsum         = _mm256_add_pd(velecsum,velec);
403
404             fscal            = felec;
405
406             fscal            = _mm256_and_pd(fscal,cutoff_mask);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_pd(fscal,dx30);
410             ty               = _mm256_mul_pd(fscal,dy30);
411             tz               = _mm256_mul_pd(fscal,dz30);
412
413             /* Update vectorial force */
414             fix3             = _mm256_add_pd(fix3,tx);
415             fiy3             = _mm256_add_pd(fiy3,ty);
416             fiz3             = _mm256_add_pd(fiz3,tz);
417
418             fjx0             = _mm256_add_pd(fjx0,tx);
419             fjy0             = _mm256_add_pd(fjy0,ty);
420             fjz0             = _mm256_add_pd(fjz0,tz);
421
422             }
423
424             fjptrA             = f+j_coord_offsetA;
425             fjptrB             = f+j_coord_offsetB;
426             fjptrC             = f+j_coord_offsetC;
427             fjptrD             = f+j_coord_offsetD;
428
429             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 152 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             /* Get j neighbor index, and coordinate index */
438             jnrlistA         = jjnr[jidx];
439             jnrlistB         = jjnr[jidx+1];
440             jnrlistC         = jjnr[jidx+2];
441             jnrlistD         = jjnr[jidx+3];
442             /* Sign of each element will be negative for non-real atoms.
443              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
444              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
445              */
446             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
447
448             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
449             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
450             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
451
452             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
453             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
454             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
455             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458             j_coord_offsetC  = DIM*jnrC;
459             j_coord_offsetD  = DIM*jnrD;
460
461             /* load j atom coordinates */
462             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
463                                                  x+j_coord_offsetC,x+j_coord_offsetD,
464                                                  &jx0,&jy0,&jz0);
465
466             /* Calculate displacement vector */
467             dx00             = _mm256_sub_pd(ix0,jx0);
468             dy00             = _mm256_sub_pd(iy0,jy0);
469             dz00             = _mm256_sub_pd(iz0,jz0);
470             dx10             = _mm256_sub_pd(ix1,jx0);
471             dy10             = _mm256_sub_pd(iy1,jy0);
472             dz10             = _mm256_sub_pd(iz1,jz0);
473             dx20             = _mm256_sub_pd(ix2,jx0);
474             dy20             = _mm256_sub_pd(iy2,jy0);
475             dz20             = _mm256_sub_pd(iz2,jz0);
476             dx30             = _mm256_sub_pd(ix3,jx0);
477             dy30             = _mm256_sub_pd(iy3,jy0);
478             dz30             = _mm256_sub_pd(iz3,jz0);
479
480             /* Calculate squared distance and things based on it */
481             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
482             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
483             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
484             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
485
486             rinv10           = avx256_invsqrt_d(rsq10);
487             rinv20           = avx256_invsqrt_d(rsq20);
488             rinv30           = avx256_invsqrt_d(rsq30);
489
490             rinvsq00         = avx256_inv_d(rsq00);
491             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
492             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
493             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
494
495             /* Load parameters for j particles */
496             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
497                                                                  charge+jnrC+0,charge+jnrD+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499             vdwjidx0B        = 2*vdwtype[jnrB+0];
500             vdwjidx0C        = 2*vdwtype[jnrC+0];
501             vdwjidx0D        = 2*vdwtype[jnrD+0];
502
503             fjx0             = _mm256_setzero_pd();
504             fjy0             = _mm256_setzero_pd();
505             fjz0             = _mm256_setzero_pd();
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             if (gmx_mm256_any_lt(rsq00,rcutoff2))
512             {
513
514             /* Compute parameters for interactions between i and j atoms */
515             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
516                                             vdwioffsetptr0+vdwjidx0B,
517                                             vdwioffsetptr0+vdwjidx0C,
518                                             vdwioffsetptr0+vdwjidx0D,
519                                             &c6_00,&c12_00);
520
521             /* LENNARD-JONES DISPERSION/REPULSION */
522
523             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
524             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
525             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
526             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
527                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
528             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
529
530             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
534             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
535             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
536
537             fscal            = fvdw;
538
539             fscal            = _mm256_and_pd(fscal,cutoff_mask);
540
541             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm256_mul_pd(fscal,dx00);
545             ty               = _mm256_mul_pd(fscal,dy00);
546             tz               = _mm256_mul_pd(fscal,dz00);
547
548             /* Update vectorial force */
549             fix0             = _mm256_add_pd(fix0,tx);
550             fiy0             = _mm256_add_pd(fiy0,ty);
551             fiz0             = _mm256_add_pd(fiz0,tz);
552
553             fjx0             = _mm256_add_pd(fjx0,tx);
554             fjy0             = _mm256_add_pd(fjy0,ty);
555             fjz0             = _mm256_add_pd(fjz0,tz);
556
557             }
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm256_any_lt(rsq10,rcutoff2))
564             {
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm256_mul_pd(iq1,jq0);
568
569             /* REACTION-FIELD ELECTROSTATICS */
570             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
571             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
572
573             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velec            = _mm256_and_pd(velec,cutoff_mask);
577             velec            = _mm256_andnot_pd(dummy_mask,velec);
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_and_pd(fscal,cutoff_mask);
583
584             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
585
586             /* Calculate temporary vectorial force */
587             tx               = _mm256_mul_pd(fscal,dx10);
588             ty               = _mm256_mul_pd(fscal,dy10);
589             tz               = _mm256_mul_pd(fscal,dz10);
590
591             /* Update vectorial force */
592             fix1             = _mm256_add_pd(fix1,tx);
593             fiy1             = _mm256_add_pd(fiy1,ty);
594             fiz1             = _mm256_add_pd(fiz1,tz);
595
596             fjx0             = _mm256_add_pd(fjx0,tx);
597             fjy0             = _mm256_add_pd(fjy0,ty);
598             fjz0             = _mm256_add_pd(fjz0,tz);
599
600             }
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (gmx_mm256_any_lt(rsq20,rcutoff2))
607             {
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq20             = _mm256_mul_pd(iq2,jq0);
611
612             /* REACTION-FIELD ELECTROSTATICS */
613             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
614             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
615
616             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm256_and_pd(velec,cutoff_mask);
620             velec            = _mm256_andnot_pd(dummy_mask,velec);
621             velecsum         = _mm256_add_pd(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm256_and_pd(fscal,cutoff_mask);
626
627             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm256_mul_pd(fscal,dx20);
631             ty               = _mm256_mul_pd(fscal,dy20);
632             tz               = _mm256_mul_pd(fscal,dz20);
633
634             /* Update vectorial force */
635             fix2             = _mm256_add_pd(fix2,tx);
636             fiy2             = _mm256_add_pd(fiy2,ty);
637             fiz2             = _mm256_add_pd(fiz2,tz);
638
639             fjx0             = _mm256_add_pd(fjx0,tx);
640             fjy0             = _mm256_add_pd(fjy0,ty);
641             fjz0             = _mm256_add_pd(fjz0,tz);
642
643             }
644
645             /**************************
646              * CALCULATE INTERACTIONS *
647              **************************/
648
649             if (gmx_mm256_any_lt(rsq30,rcutoff2))
650             {
651
652             /* Compute parameters for interactions between i and j atoms */
653             qq30             = _mm256_mul_pd(iq3,jq0);
654
655             /* REACTION-FIELD ELECTROSTATICS */
656             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
657             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
658
659             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velec            = _mm256_and_pd(velec,cutoff_mask);
663             velec            = _mm256_andnot_pd(dummy_mask,velec);
664             velecsum         = _mm256_add_pd(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm256_and_pd(fscal,cutoff_mask);
669
670             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm256_mul_pd(fscal,dx30);
674             ty               = _mm256_mul_pd(fscal,dy30);
675             tz               = _mm256_mul_pd(fscal,dz30);
676
677             /* Update vectorial force */
678             fix3             = _mm256_add_pd(fix3,tx);
679             fiy3             = _mm256_add_pd(fiy3,ty);
680             fiz3             = _mm256_add_pd(fiz3,tz);
681
682             fjx0             = _mm256_add_pd(fjx0,tx);
683             fjy0             = _mm256_add_pd(fjy0,ty);
684             fjz0             = _mm256_add_pd(fjz0,tz);
685
686             }
687
688             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
689             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
690             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
691             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
692
693             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
694
695             /* Inner loop uses 152 flops */
696         }
697
698         /* End of innermost loop */
699
700         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
701                                                  f+i_coord_offset,fshift+i_shift_offset);
702
703         ggid                        = gid[iidx];
704         /* Update potential energies */
705         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
706         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
707
708         /* Increment number of inner iterations */
709         inneriter                  += j_index_end - j_index_start;
710
711         /* Outer loop uses 26 flops */
712     }
713
714     /* Increment number of outer iterations */
715     outeriter        += nri;
716
717     /* Update outer/inner flops */
718
719     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
720 }
721 /*
722  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
723  * Electrostatics interaction: ReactionField
724  * VdW interaction:            LennardJones
725  * Geometry:                   Water4-Particle
726  * Calculate force/pot:        Force
727  */
728 void
729 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
730                     (t_nblist                    * gmx_restrict       nlist,
731                      rvec                        * gmx_restrict          xx,
732                      rvec                        * gmx_restrict          ff,
733                      struct t_forcerec           * gmx_restrict          fr,
734                      t_mdatoms                   * gmx_restrict     mdatoms,
735                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
736                      t_nrnb                      * gmx_restrict        nrnb)
737 {
738     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
739      * just 0 for non-waters.
740      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
741      * jnr indices corresponding to data put in the four positions in the SIMD register.
742      */
743     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
744     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
745     int              jnrA,jnrB,jnrC,jnrD;
746     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
747     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
748     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
749     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
750     real             rcutoff_scalar;
751     real             *shiftvec,*fshift,*x,*f;
752     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
753     real             scratch[4*DIM];
754     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
755     real *           vdwioffsetptr0;
756     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     real *           vdwioffsetptr1;
758     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     real *           vdwioffsetptr2;
760     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     real *           vdwioffsetptr3;
762     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
764     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
776     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
777     __m256d          dummy_mask,cutoff_mask;
778     __m128           tmpmask0,tmpmask1;
779     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
780     __m256d          one     = _mm256_set1_pd(1.0);
781     __m256d          two     = _mm256_set1_pd(2.0);
782     x                = xx[0];
783     f                = ff[0];
784
785     nri              = nlist->nri;
786     iinr             = nlist->iinr;
787     jindex           = nlist->jindex;
788     jjnr             = nlist->jjnr;
789     shiftidx         = nlist->shift;
790     gid              = nlist->gid;
791     shiftvec         = fr->shift_vec[0];
792     fshift           = fr->fshift[0];
793     facel            = _mm256_set1_pd(fr->ic->epsfac);
794     charge           = mdatoms->chargeA;
795     krf              = _mm256_set1_pd(fr->ic->k_rf);
796     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
797     crf              = _mm256_set1_pd(fr->ic->c_rf);
798     nvdwtype         = fr->ntype;
799     vdwparam         = fr->nbfp;
800     vdwtype          = mdatoms->typeA;
801
802     /* Setup water-specific parameters */
803     inr              = nlist->iinr[0];
804     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
805     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
806     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
807     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
808
809     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
810     rcutoff_scalar   = fr->ic->rcoulomb;
811     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
812     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
813
814     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
815     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
816
817     /* Avoid stupid compiler warnings */
818     jnrA = jnrB = jnrC = jnrD = 0;
819     j_coord_offsetA = 0;
820     j_coord_offsetB = 0;
821     j_coord_offsetC = 0;
822     j_coord_offsetD = 0;
823
824     outeriter        = 0;
825     inneriter        = 0;
826
827     for(iidx=0;iidx<4*DIM;iidx++)
828     {
829         scratch[iidx] = 0.0;
830     }
831
832     /* Start outer loop over neighborlists */
833     for(iidx=0; iidx<nri; iidx++)
834     {
835         /* Load shift vector for this list */
836         i_shift_offset   = DIM*shiftidx[iidx];
837
838         /* Load limits for loop over neighbors */
839         j_index_start    = jindex[iidx];
840         j_index_end      = jindex[iidx+1];
841
842         /* Get outer coordinate index */
843         inr              = iinr[iidx];
844         i_coord_offset   = DIM*inr;
845
846         /* Load i particle coords and add shift vector */
847         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
848                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
849
850         fix0             = _mm256_setzero_pd();
851         fiy0             = _mm256_setzero_pd();
852         fiz0             = _mm256_setzero_pd();
853         fix1             = _mm256_setzero_pd();
854         fiy1             = _mm256_setzero_pd();
855         fiz1             = _mm256_setzero_pd();
856         fix2             = _mm256_setzero_pd();
857         fiy2             = _mm256_setzero_pd();
858         fiz2             = _mm256_setzero_pd();
859         fix3             = _mm256_setzero_pd();
860         fiy3             = _mm256_setzero_pd();
861         fiz3             = _mm256_setzero_pd();
862
863         /* Start inner kernel loop */
864         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
865         {
866
867             /* Get j neighbor index, and coordinate index */
868             jnrA             = jjnr[jidx];
869             jnrB             = jjnr[jidx+1];
870             jnrC             = jjnr[jidx+2];
871             jnrD             = jjnr[jidx+3];
872             j_coord_offsetA  = DIM*jnrA;
873             j_coord_offsetB  = DIM*jnrB;
874             j_coord_offsetC  = DIM*jnrC;
875             j_coord_offsetD  = DIM*jnrD;
876
877             /* load j atom coordinates */
878             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
879                                                  x+j_coord_offsetC,x+j_coord_offsetD,
880                                                  &jx0,&jy0,&jz0);
881
882             /* Calculate displacement vector */
883             dx00             = _mm256_sub_pd(ix0,jx0);
884             dy00             = _mm256_sub_pd(iy0,jy0);
885             dz00             = _mm256_sub_pd(iz0,jz0);
886             dx10             = _mm256_sub_pd(ix1,jx0);
887             dy10             = _mm256_sub_pd(iy1,jy0);
888             dz10             = _mm256_sub_pd(iz1,jz0);
889             dx20             = _mm256_sub_pd(ix2,jx0);
890             dy20             = _mm256_sub_pd(iy2,jy0);
891             dz20             = _mm256_sub_pd(iz2,jz0);
892             dx30             = _mm256_sub_pd(ix3,jx0);
893             dy30             = _mm256_sub_pd(iy3,jy0);
894             dz30             = _mm256_sub_pd(iz3,jz0);
895
896             /* Calculate squared distance and things based on it */
897             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
898             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
899             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
900             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
901
902             rinv10           = avx256_invsqrt_d(rsq10);
903             rinv20           = avx256_invsqrt_d(rsq20);
904             rinv30           = avx256_invsqrt_d(rsq30);
905
906             rinvsq00         = avx256_inv_d(rsq00);
907             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
908             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
909             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
910
911             /* Load parameters for j particles */
912             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
913                                                                  charge+jnrC+0,charge+jnrD+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916             vdwjidx0C        = 2*vdwtype[jnrC+0];
917             vdwjidx0D        = 2*vdwtype[jnrD+0];
918
919             fjx0             = _mm256_setzero_pd();
920             fjy0             = _mm256_setzero_pd();
921             fjz0             = _mm256_setzero_pd();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             if (gmx_mm256_any_lt(rsq00,rcutoff2))
928             {
929
930             /* Compute parameters for interactions between i and j atoms */
931             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
932                                             vdwioffsetptr0+vdwjidx0B,
933                                             vdwioffsetptr0+vdwjidx0C,
934                                             vdwioffsetptr0+vdwjidx0D,
935                                             &c6_00,&c12_00);
936
937             /* LENNARD-JONES DISPERSION/REPULSION */
938
939             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
940             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
941
942             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
943
944             fscal            = fvdw;
945
946             fscal            = _mm256_and_pd(fscal,cutoff_mask);
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm256_mul_pd(fscal,dx00);
950             ty               = _mm256_mul_pd(fscal,dy00);
951             tz               = _mm256_mul_pd(fscal,dz00);
952
953             /* Update vectorial force */
954             fix0             = _mm256_add_pd(fix0,tx);
955             fiy0             = _mm256_add_pd(fiy0,ty);
956             fiz0             = _mm256_add_pd(fiz0,tz);
957
958             fjx0             = _mm256_add_pd(fjx0,tx);
959             fjy0             = _mm256_add_pd(fjy0,ty);
960             fjz0             = _mm256_add_pd(fjz0,tz);
961
962             }
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             if (gmx_mm256_any_lt(rsq10,rcutoff2))
969             {
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq10             = _mm256_mul_pd(iq1,jq0);
973
974             /* REACTION-FIELD ELECTROSTATICS */
975             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
976
977             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
978
979             fscal            = felec;
980
981             fscal            = _mm256_and_pd(fscal,cutoff_mask);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm256_mul_pd(fscal,dx10);
985             ty               = _mm256_mul_pd(fscal,dy10);
986             tz               = _mm256_mul_pd(fscal,dz10);
987
988             /* Update vectorial force */
989             fix1             = _mm256_add_pd(fix1,tx);
990             fiy1             = _mm256_add_pd(fiy1,ty);
991             fiz1             = _mm256_add_pd(fiz1,tz);
992
993             fjx0             = _mm256_add_pd(fjx0,tx);
994             fjy0             = _mm256_add_pd(fjy0,ty);
995             fjz0             = _mm256_add_pd(fjz0,tz);
996
997             }
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1004             {
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm256_mul_pd(iq2,jq0);
1008
1009             /* REACTION-FIELD ELECTROSTATICS */
1010             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1011
1012             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1013
1014             fscal            = felec;
1015
1016             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm256_mul_pd(fscal,dx20);
1020             ty               = _mm256_mul_pd(fscal,dy20);
1021             tz               = _mm256_mul_pd(fscal,dz20);
1022
1023             /* Update vectorial force */
1024             fix2             = _mm256_add_pd(fix2,tx);
1025             fiy2             = _mm256_add_pd(fiy2,ty);
1026             fiz2             = _mm256_add_pd(fiz2,tz);
1027
1028             fjx0             = _mm256_add_pd(fjx0,tx);
1029             fjy0             = _mm256_add_pd(fjy0,ty);
1030             fjz0             = _mm256_add_pd(fjz0,tz);
1031
1032             }
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1039             {
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq30             = _mm256_mul_pd(iq3,jq0);
1043
1044             /* REACTION-FIELD ELECTROSTATICS */
1045             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1046
1047             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1048
1049             fscal            = felec;
1050
1051             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm256_mul_pd(fscal,dx30);
1055             ty               = _mm256_mul_pd(fscal,dy30);
1056             tz               = _mm256_mul_pd(fscal,dz30);
1057
1058             /* Update vectorial force */
1059             fix3             = _mm256_add_pd(fix3,tx);
1060             fiy3             = _mm256_add_pd(fiy3,ty);
1061             fiz3             = _mm256_add_pd(fiz3,tz);
1062
1063             fjx0             = _mm256_add_pd(fjx0,tx);
1064             fjy0             = _mm256_add_pd(fjy0,ty);
1065             fjz0             = _mm256_add_pd(fjz0,tz);
1066
1067             }
1068
1069             fjptrA             = f+j_coord_offsetA;
1070             fjptrB             = f+j_coord_offsetB;
1071             fjptrC             = f+j_coord_offsetC;
1072             fjptrD             = f+j_coord_offsetD;
1073
1074             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1075
1076             /* Inner loop uses 123 flops */
1077         }
1078
1079         if(jidx<j_index_end)
1080         {
1081
1082             /* Get j neighbor index, and coordinate index */
1083             jnrlistA         = jjnr[jidx];
1084             jnrlistB         = jjnr[jidx+1];
1085             jnrlistC         = jjnr[jidx+2];
1086             jnrlistD         = jjnr[jidx+3];
1087             /* Sign of each element will be negative for non-real atoms.
1088              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1089              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1090              */
1091             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1092
1093             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1094             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1095             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1096
1097             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1098             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1099             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1100             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1101             j_coord_offsetA  = DIM*jnrA;
1102             j_coord_offsetB  = DIM*jnrB;
1103             j_coord_offsetC  = DIM*jnrC;
1104             j_coord_offsetD  = DIM*jnrD;
1105
1106             /* load j atom coordinates */
1107             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1108                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1109                                                  &jx0,&jy0,&jz0);
1110
1111             /* Calculate displacement vector */
1112             dx00             = _mm256_sub_pd(ix0,jx0);
1113             dy00             = _mm256_sub_pd(iy0,jy0);
1114             dz00             = _mm256_sub_pd(iz0,jz0);
1115             dx10             = _mm256_sub_pd(ix1,jx0);
1116             dy10             = _mm256_sub_pd(iy1,jy0);
1117             dz10             = _mm256_sub_pd(iz1,jz0);
1118             dx20             = _mm256_sub_pd(ix2,jx0);
1119             dy20             = _mm256_sub_pd(iy2,jy0);
1120             dz20             = _mm256_sub_pd(iz2,jz0);
1121             dx30             = _mm256_sub_pd(ix3,jx0);
1122             dy30             = _mm256_sub_pd(iy3,jy0);
1123             dz30             = _mm256_sub_pd(iz3,jz0);
1124
1125             /* Calculate squared distance and things based on it */
1126             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1127             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1128             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1129             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1130
1131             rinv10           = avx256_invsqrt_d(rsq10);
1132             rinv20           = avx256_invsqrt_d(rsq20);
1133             rinv30           = avx256_invsqrt_d(rsq30);
1134
1135             rinvsq00         = avx256_inv_d(rsq00);
1136             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1137             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1138             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1139
1140             /* Load parameters for j particles */
1141             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1142                                                                  charge+jnrC+0,charge+jnrD+0);
1143             vdwjidx0A        = 2*vdwtype[jnrA+0];
1144             vdwjidx0B        = 2*vdwtype[jnrB+0];
1145             vdwjidx0C        = 2*vdwtype[jnrC+0];
1146             vdwjidx0D        = 2*vdwtype[jnrD+0];
1147
1148             fjx0             = _mm256_setzero_pd();
1149             fjy0             = _mm256_setzero_pd();
1150             fjz0             = _mm256_setzero_pd();
1151
1152             /**************************
1153              * CALCULATE INTERACTIONS *
1154              **************************/
1155
1156             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1157             {
1158
1159             /* Compute parameters for interactions between i and j atoms */
1160             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1161                                             vdwioffsetptr0+vdwjidx0B,
1162                                             vdwioffsetptr0+vdwjidx0C,
1163                                             vdwioffsetptr0+vdwjidx0D,
1164                                             &c6_00,&c12_00);
1165
1166             /* LENNARD-JONES DISPERSION/REPULSION */
1167
1168             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1169             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1170
1171             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1172
1173             fscal            = fvdw;
1174
1175             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1176
1177             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = _mm256_mul_pd(fscal,dx00);
1181             ty               = _mm256_mul_pd(fscal,dy00);
1182             tz               = _mm256_mul_pd(fscal,dz00);
1183
1184             /* Update vectorial force */
1185             fix0             = _mm256_add_pd(fix0,tx);
1186             fiy0             = _mm256_add_pd(fiy0,ty);
1187             fiz0             = _mm256_add_pd(fiz0,tz);
1188
1189             fjx0             = _mm256_add_pd(fjx0,tx);
1190             fjy0             = _mm256_add_pd(fjy0,ty);
1191             fjz0             = _mm256_add_pd(fjz0,tz);
1192
1193             }
1194
1195             /**************************
1196              * CALCULATE INTERACTIONS *
1197              **************************/
1198
1199             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1200             {
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq10             = _mm256_mul_pd(iq1,jq0);
1204
1205             /* REACTION-FIELD ELECTROSTATICS */
1206             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1207
1208             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1209
1210             fscal            = felec;
1211
1212             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1213
1214             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1215
1216             /* Calculate temporary vectorial force */
1217             tx               = _mm256_mul_pd(fscal,dx10);
1218             ty               = _mm256_mul_pd(fscal,dy10);
1219             tz               = _mm256_mul_pd(fscal,dz10);
1220
1221             /* Update vectorial force */
1222             fix1             = _mm256_add_pd(fix1,tx);
1223             fiy1             = _mm256_add_pd(fiy1,ty);
1224             fiz1             = _mm256_add_pd(fiz1,tz);
1225
1226             fjx0             = _mm256_add_pd(fjx0,tx);
1227             fjy0             = _mm256_add_pd(fjy0,ty);
1228             fjz0             = _mm256_add_pd(fjz0,tz);
1229
1230             }
1231
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1237             {
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq20             = _mm256_mul_pd(iq2,jq0);
1241
1242             /* REACTION-FIELD ELECTROSTATICS */
1243             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1244
1245             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1250
1251             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = _mm256_mul_pd(fscal,dx20);
1255             ty               = _mm256_mul_pd(fscal,dy20);
1256             tz               = _mm256_mul_pd(fscal,dz20);
1257
1258             /* Update vectorial force */
1259             fix2             = _mm256_add_pd(fix2,tx);
1260             fiy2             = _mm256_add_pd(fiy2,ty);
1261             fiz2             = _mm256_add_pd(fiz2,tz);
1262
1263             fjx0             = _mm256_add_pd(fjx0,tx);
1264             fjy0             = _mm256_add_pd(fjy0,ty);
1265             fjz0             = _mm256_add_pd(fjz0,tz);
1266
1267             }
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1274             {
1275
1276             /* Compute parameters for interactions between i and j atoms */
1277             qq30             = _mm256_mul_pd(iq3,jq0);
1278
1279             /* REACTION-FIELD ELECTROSTATICS */
1280             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1281
1282             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1283
1284             fscal            = felec;
1285
1286             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1287
1288             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1289
1290             /* Calculate temporary vectorial force */
1291             tx               = _mm256_mul_pd(fscal,dx30);
1292             ty               = _mm256_mul_pd(fscal,dy30);
1293             tz               = _mm256_mul_pd(fscal,dz30);
1294
1295             /* Update vectorial force */
1296             fix3             = _mm256_add_pd(fix3,tx);
1297             fiy3             = _mm256_add_pd(fiy3,ty);
1298             fiz3             = _mm256_add_pd(fiz3,tz);
1299
1300             fjx0             = _mm256_add_pd(fjx0,tx);
1301             fjy0             = _mm256_add_pd(fjy0,ty);
1302             fjz0             = _mm256_add_pd(fjz0,tz);
1303
1304             }
1305
1306             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1307             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1308             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1309             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1310
1311             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1312
1313             /* Inner loop uses 123 flops */
1314         }
1315
1316         /* End of innermost loop */
1317
1318         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1319                                                  f+i_coord_offset,fshift+i_shift_offset);
1320
1321         /* Increment number of inner iterations */
1322         inneriter                  += j_index_end - j_index_start;
1323
1324         /* Outer loop uses 24 flops */
1325     }
1326
1327     /* Increment number of outer iterations */
1328     outeriter        += nri;
1329
1330     /* Update outer/inner flops */
1331
1332     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1333 }