919a45bc41efac6ce288a9e7a67ada0bba742806
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_pd(fr->ic->k_rf);
125     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_pd(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
134     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
135     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
141     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
144     rvdw             = _mm256_set1_pd(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
178
179         fix0             = _mm256_setzero_pd();
180         fiy0             = _mm256_setzero_pd();
181         fiz0             = _mm256_setzero_pd();
182         fix1             = _mm256_setzero_pd();
183         fiy1             = _mm256_setzero_pd();
184         fiz1             = _mm256_setzero_pd();
185         fix2             = _mm256_setzero_pd();
186         fiy2             = _mm256_setzero_pd();
187         fiz2             = _mm256_setzero_pd();
188         fix3             = _mm256_setzero_pd();
189         fiy3             = _mm256_setzero_pd();
190         fiz3             = _mm256_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm256_setzero_pd();
194         vvdwsum          = _mm256_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                                  x+j_coord_offsetC,x+j_coord_offsetD,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_pd(ix0,jx0);
217             dy00             = _mm256_sub_pd(iy0,jy0);
218             dz00             = _mm256_sub_pd(iz0,jz0);
219             dx10             = _mm256_sub_pd(ix1,jx0);
220             dy10             = _mm256_sub_pd(iy1,jy0);
221             dz10             = _mm256_sub_pd(iz1,jz0);
222             dx20             = _mm256_sub_pd(ix2,jx0);
223             dy20             = _mm256_sub_pd(iy2,jy0);
224             dz20             = _mm256_sub_pd(iz2,jz0);
225             dx30             = _mm256_sub_pd(ix3,jx0);
226             dy30             = _mm256_sub_pd(iy3,jy0);
227             dz30             = _mm256_sub_pd(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
231             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
232             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
233             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
234
235             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
236             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
237             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
238
239             rinvsq00         = gmx_mm256_inv_pd(rsq00);
240             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251
252             fjx0             = _mm256_setzero_pd();
253             fjy0             = _mm256_setzero_pd();
254             fjz0             = _mm256_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm256_any_lt(rsq00,rcutoff2))
261             {
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
265                                             vdwioffsetptr0+vdwjidx0B,
266                                             vdwioffsetptr0+vdwjidx0C,
267                                             vdwioffsetptr0+vdwjidx0D,
268                                             &c6_00,&c12_00);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
276                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
277             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
278
279             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
283             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
284
285             fscal            = fvdw;
286
287             fscal            = _mm256_and_pd(fscal,cutoff_mask);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_pd(fscal,dx00);
291             ty               = _mm256_mul_pd(fscal,dy00);
292             tz               = _mm256_mul_pd(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_pd(fix0,tx);
296             fiy0             = _mm256_add_pd(fiy0,ty);
297             fiz0             = _mm256_add_pd(fiz0,tz);
298
299             fjx0             = _mm256_add_pd(fjx0,tx);
300             fjy0             = _mm256_add_pd(fjy0,ty);
301             fjz0             = _mm256_add_pd(fjz0,tz);
302
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm256_any_lt(rsq10,rcutoff2))
310             {
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm256_mul_pd(iq1,jq0);
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
317             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
318
319             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm256_and_pd(velec,cutoff_mask);
323             velecsum         = _mm256_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm256_and_pd(fscal,cutoff_mask);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_pd(fscal,dx10);
331             ty               = _mm256_mul_pd(fscal,dy10);
332             tz               = _mm256_mul_pd(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm256_add_pd(fix1,tx);
336             fiy1             = _mm256_add_pd(fiy1,ty);
337             fiz1             = _mm256_add_pd(fiz1,tz);
338
339             fjx0             = _mm256_add_pd(fjx0,tx);
340             fjy0             = _mm256_add_pd(fjy0,ty);
341             fjz0             = _mm256_add_pd(fjz0,tz);
342
343             }
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm256_any_lt(rsq20,rcutoff2))
350             {
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm256_mul_pd(iq2,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
357             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
358
359             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm256_and_pd(velec,cutoff_mask);
363             velecsum         = _mm256_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm256_and_pd(fscal,cutoff_mask);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_pd(fscal,dx20);
371             ty               = _mm256_mul_pd(fscal,dy20);
372             tz               = _mm256_mul_pd(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm256_add_pd(fix2,tx);
376             fiy2             = _mm256_add_pd(fiy2,ty);
377             fiz2             = _mm256_add_pd(fiz2,tz);
378
379             fjx0             = _mm256_add_pd(fjx0,tx);
380             fjy0             = _mm256_add_pd(fjy0,ty);
381             fjz0             = _mm256_add_pd(fjz0,tz);
382
383             }
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             if (gmx_mm256_any_lt(rsq30,rcutoff2))
390             {
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm256_mul_pd(iq3,jq0);
394
395             /* REACTION-FIELD ELECTROSTATICS */
396             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
397             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
398
399             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm256_and_pd(velec,cutoff_mask);
403             velecsum         = _mm256_add_pd(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm256_and_pd(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm256_mul_pd(fscal,dx30);
411             ty               = _mm256_mul_pd(fscal,dy30);
412             tz               = _mm256_mul_pd(fscal,dz30);
413
414             /* Update vectorial force */
415             fix3             = _mm256_add_pd(fix3,tx);
416             fiy3             = _mm256_add_pd(fiy3,ty);
417             fiz3             = _mm256_add_pd(fiz3,tz);
418
419             fjx0             = _mm256_add_pd(fjx0,tx);
420             fjy0             = _mm256_add_pd(fjy0,ty);
421             fjz0             = _mm256_add_pd(fjz0,tz);
422
423             }
424
425             fjptrA             = f+j_coord_offsetA;
426             fjptrB             = f+j_coord_offsetB;
427             fjptrC             = f+j_coord_offsetC;
428             fjptrD             = f+j_coord_offsetD;
429
430             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 152 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             /* Get j neighbor index, and coordinate index */
439             jnrlistA         = jjnr[jidx];
440             jnrlistB         = jjnr[jidx+1];
441             jnrlistC         = jjnr[jidx+2];
442             jnrlistD         = jjnr[jidx+3];
443             /* Sign of each element will be negative for non-real atoms.
444              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
445              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
446              */
447             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
448
449             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
450             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
451             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
452
453             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
454             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
455             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
456             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
457             j_coord_offsetA  = DIM*jnrA;
458             j_coord_offsetB  = DIM*jnrB;
459             j_coord_offsetC  = DIM*jnrC;
460             j_coord_offsetD  = DIM*jnrD;
461
462             /* load j atom coordinates */
463             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
464                                                  x+j_coord_offsetC,x+j_coord_offsetD,
465                                                  &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm256_sub_pd(ix0,jx0);
469             dy00             = _mm256_sub_pd(iy0,jy0);
470             dz00             = _mm256_sub_pd(iz0,jz0);
471             dx10             = _mm256_sub_pd(ix1,jx0);
472             dy10             = _mm256_sub_pd(iy1,jy0);
473             dz10             = _mm256_sub_pd(iz1,jz0);
474             dx20             = _mm256_sub_pd(ix2,jx0);
475             dy20             = _mm256_sub_pd(iy2,jy0);
476             dz20             = _mm256_sub_pd(iz2,jz0);
477             dx30             = _mm256_sub_pd(ix3,jx0);
478             dy30             = _mm256_sub_pd(iy3,jy0);
479             dz30             = _mm256_sub_pd(iz3,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
483             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
484             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
485             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
486
487             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
488             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
489             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
490
491             rinvsq00         = gmx_mm256_inv_pd(rsq00);
492             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
493             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
494             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
498                                                                  charge+jnrC+0,charge+jnrD+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501             vdwjidx0C        = 2*vdwtype[jnrC+0];
502             vdwjidx0D        = 2*vdwtype[jnrD+0];
503
504             fjx0             = _mm256_setzero_pd();
505             fjy0             = _mm256_setzero_pd();
506             fjz0             = _mm256_setzero_pd();
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             if (gmx_mm256_any_lt(rsq00,rcutoff2))
513             {
514
515             /* Compute parameters for interactions between i and j atoms */
516             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
517                                             vdwioffsetptr0+vdwjidx0B,
518                                             vdwioffsetptr0+vdwjidx0C,
519                                             vdwioffsetptr0+vdwjidx0D,
520                                             &c6_00,&c12_00);
521
522             /* LENNARD-JONES DISPERSION/REPULSION */
523
524             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
525             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
526             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
527             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
528                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
529             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
530
531             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
535             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
536             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
537
538             fscal            = fvdw;
539
540             fscal            = _mm256_and_pd(fscal,cutoff_mask);
541
542             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm256_mul_pd(fscal,dx00);
546             ty               = _mm256_mul_pd(fscal,dy00);
547             tz               = _mm256_mul_pd(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm256_add_pd(fix0,tx);
551             fiy0             = _mm256_add_pd(fiy0,ty);
552             fiz0             = _mm256_add_pd(fiz0,tz);
553
554             fjx0             = _mm256_add_pd(fjx0,tx);
555             fjy0             = _mm256_add_pd(fjy0,ty);
556             fjz0             = _mm256_add_pd(fjz0,tz);
557
558             }
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm256_any_lt(rsq10,rcutoff2))
565             {
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm256_mul_pd(iq1,jq0);
569
570             /* REACTION-FIELD ELECTROSTATICS */
571             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
572             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
573
574             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_and_pd(velec,cutoff_mask);
578             velec            = _mm256_andnot_pd(dummy_mask,velec);
579             velecsum         = _mm256_add_pd(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_and_pd(fscal,cutoff_mask);
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx10);
589             ty               = _mm256_mul_pd(fscal,dy10);
590             tz               = _mm256_mul_pd(fscal,dz10);
591
592             /* Update vectorial force */
593             fix1             = _mm256_add_pd(fix1,tx);
594             fiy1             = _mm256_add_pd(fiy1,ty);
595             fiz1             = _mm256_add_pd(fiz1,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             }
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             if (gmx_mm256_any_lt(rsq20,rcutoff2))
608             {
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq20             = _mm256_mul_pd(iq2,jq0);
612
613             /* REACTION-FIELD ELECTROSTATICS */
614             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
615             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
616
617             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm256_and_pd(velec,cutoff_mask);
621             velec            = _mm256_andnot_pd(dummy_mask,velec);
622             velecsum         = _mm256_add_pd(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm256_and_pd(fscal,cutoff_mask);
627
628             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm256_mul_pd(fscal,dx20);
632             ty               = _mm256_mul_pd(fscal,dy20);
633             tz               = _mm256_mul_pd(fscal,dz20);
634
635             /* Update vectorial force */
636             fix2             = _mm256_add_pd(fix2,tx);
637             fiy2             = _mm256_add_pd(fiy2,ty);
638             fiz2             = _mm256_add_pd(fiz2,tz);
639
640             fjx0             = _mm256_add_pd(fjx0,tx);
641             fjy0             = _mm256_add_pd(fjy0,ty);
642             fjz0             = _mm256_add_pd(fjz0,tz);
643
644             }
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             if (gmx_mm256_any_lt(rsq30,rcutoff2))
651             {
652
653             /* Compute parameters for interactions between i and j atoms */
654             qq30             = _mm256_mul_pd(iq3,jq0);
655
656             /* REACTION-FIELD ELECTROSTATICS */
657             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
658             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
659
660             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm256_and_pd(velec,cutoff_mask);
664             velec            = _mm256_andnot_pd(dummy_mask,velec);
665             velecsum         = _mm256_add_pd(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm256_and_pd(fscal,cutoff_mask);
670
671             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
672
673             /* Calculate temporary vectorial force */
674             tx               = _mm256_mul_pd(fscal,dx30);
675             ty               = _mm256_mul_pd(fscal,dy30);
676             tz               = _mm256_mul_pd(fscal,dz30);
677
678             /* Update vectorial force */
679             fix3             = _mm256_add_pd(fix3,tx);
680             fiy3             = _mm256_add_pd(fiy3,ty);
681             fiz3             = _mm256_add_pd(fiz3,tz);
682
683             fjx0             = _mm256_add_pd(fjx0,tx);
684             fjy0             = _mm256_add_pd(fjy0,ty);
685             fjz0             = _mm256_add_pd(fjz0,tz);
686
687             }
688
689             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
690             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
691             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
692             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
693
694             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
695
696             /* Inner loop uses 152 flops */
697         }
698
699         /* End of innermost loop */
700
701         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
702                                                  f+i_coord_offset,fshift+i_shift_offset);
703
704         ggid                        = gid[iidx];
705         /* Update potential energies */
706         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
707         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 26 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
721 }
722 /*
723  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
724  * Electrostatics interaction: ReactionField
725  * VdW interaction:            LennardJones
726  * Geometry:                   Water4-Particle
727  * Calculate force/pot:        Force
728  */
729 void
730 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
731                     (t_nblist                    * gmx_restrict       nlist,
732                      rvec                        * gmx_restrict          xx,
733                      rvec                        * gmx_restrict          ff,
734                      t_forcerec                  * gmx_restrict          fr,
735                      t_mdatoms                   * gmx_restrict     mdatoms,
736                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
737                      t_nrnb                      * gmx_restrict        nrnb)
738 {
739     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
740      * just 0 for non-waters.
741      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
742      * jnr indices corresponding to data put in the four positions in the SIMD register.
743      */
744     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
745     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
746     int              jnrA,jnrB,jnrC,jnrD;
747     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
748     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
749     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
750     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
751     real             rcutoff_scalar;
752     real             *shiftvec,*fshift,*x,*f;
753     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
754     real             scratch[4*DIM];
755     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
756     real *           vdwioffsetptr0;
757     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
758     real *           vdwioffsetptr1;
759     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
760     real *           vdwioffsetptr2;
761     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
762     real *           vdwioffsetptr3;
763     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
764     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
765     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
766     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
767     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
768     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
769     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
770     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
771     real             *charge;
772     int              nvdwtype;
773     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
774     int              *vdwtype;
775     real             *vdwparam;
776     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
777     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
778     __m256d          dummy_mask,cutoff_mask;
779     __m128           tmpmask0,tmpmask1;
780     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
781     __m256d          one     = _mm256_set1_pd(1.0);
782     __m256d          two     = _mm256_set1_pd(2.0);
783     x                = xx[0];
784     f                = ff[0];
785
786     nri              = nlist->nri;
787     iinr             = nlist->iinr;
788     jindex           = nlist->jindex;
789     jjnr             = nlist->jjnr;
790     shiftidx         = nlist->shift;
791     gid              = nlist->gid;
792     shiftvec         = fr->shift_vec[0];
793     fshift           = fr->fshift[0];
794     facel            = _mm256_set1_pd(fr->epsfac);
795     charge           = mdatoms->chargeA;
796     krf              = _mm256_set1_pd(fr->ic->k_rf);
797     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
798     crf              = _mm256_set1_pd(fr->ic->c_rf);
799     nvdwtype         = fr->ntype;
800     vdwparam         = fr->nbfp;
801     vdwtype          = mdatoms->typeA;
802
803     /* Setup water-specific parameters */
804     inr              = nlist->iinr[0];
805     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
806     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
807     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
808     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
809
810     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
811     rcutoff_scalar   = fr->rcoulomb;
812     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
813     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
814
815     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
816     rvdw             = _mm256_set1_pd(fr->rvdw);
817
818     /* Avoid stupid compiler warnings */
819     jnrA = jnrB = jnrC = jnrD = 0;
820     j_coord_offsetA = 0;
821     j_coord_offsetB = 0;
822     j_coord_offsetC = 0;
823     j_coord_offsetD = 0;
824
825     outeriter        = 0;
826     inneriter        = 0;
827
828     for(iidx=0;iidx<4*DIM;iidx++)
829     {
830         scratch[iidx] = 0.0;
831     }
832
833     /* Start outer loop over neighborlists */
834     for(iidx=0; iidx<nri; iidx++)
835     {
836         /* Load shift vector for this list */
837         i_shift_offset   = DIM*shiftidx[iidx];
838
839         /* Load limits for loop over neighbors */
840         j_index_start    = jindex[iidx];
841         j_index_end      = jindex[iidx+1];
842
843         /* Get outer coordinate index */
844         inr              = iinr[iidx];
845         i_coord_offset   = DIM*inr;
846
847         /* Load i particle coords and add shift vector */
848         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
849                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
850
851         fix0             = _mm256_setzero_pd();
852         fiy0             = _mm256_setzero_pd();
853         fiz0             = _mm256_setzero_pd();
854         fix1             = _mm256_setzero_pd();
855         fiy1             = _mm256_setzero_pd();
856         fiz1             = _mm256_setzero_pd();
857         fix2             = _mm256_setzero_pd();
858         fiy2             = _mm256_setzero_pd();
859         fiz2             = _mm256_setzero_pd();
860         fix3             = _mm256_setzero_pd();
861         fiy3             = _mm256_setzero_pd();
862         fiz3             = _mm256_setzero_pd();
863
864         /* Start inner kernel loop */
865         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
866         {
867
868             /* Get j neighbor index, and coordinate index */
869             jnrA             = jjnr[jidx];
870             jnrB             = jjnr[jidx+1];
871             jnrC             = jjnr[jidx+2];
872             jnrD             = jjnr[jidx+3];
873             j_coord_offsetA  = DIM*jnrA;
874             j_coord_offsetB  = DIM*jnrB;
875             j_coord_offsetC  = DIM*jnrC;
876             j_coord_offsetD  = DIM*jnrD;
877
878             /* load j atom coordinates */
879             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
880                                                  x+j_coord_offsetC,x+j_coord_offsetD,
881                                                  &jx0,&jy0,&jz0);
882
883             /* Calculate displacement vector */
884             dx00             = _mm256_sub_pd(ix0,jx0);
885             dy00             = _mm256_sub_pd(iy0,jy0);
886             dz00             = _mm256_sub_pd(iz0,jz0);
887             dx10             = _mm256_sub_pd(ix1,jx0);
888             dy10             = _mm256_sub_pd(iy1,jy0);
889             dz10             = _mm256_sub_pd(iz1,jz0);
890             dx20             = _mm256_sub_pd(ix2,jx0);
891             dy20             = _mm256_sub_pd(iy2,jy0);
892             dz20             = _mm256_sub_pd(iz2,jz0);
893             dx30             = _mm256_sub_pd(ix3,jx0);
894             dy30             = _mm256_sub_pd(iy3,jy0);
895             dz30             = _mm256_sub_pd(iz3,jz0);
896
897             /* Calculate squared distance and things based on it */
898             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
899             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
900             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
901             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
902
903             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
904             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
905             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
906
907             rinvsq00         = gmx_mm256_inv_pd(rsq00);
908             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
909             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
910             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
911
912             /* Load parameters for j particles */
913             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
914                                                                  charge+jnrC+0,charge+jnrD+0);
915             vdwjidx0A        = 2*vdwtype[jnrA+0];
916             vdwjidx0B        = 2*vdwtype[jnrB+0];
917             vdwjidx0C        = 2*vdwtype[jnrC+0];
918             vdwjidx0D        = 2*vdwtype[jnrD+0];
919
920             fjx0             = _mm256_setzero_pd();
921             fjy0             = _mm256_setzero_pd();
922             fjz0             = _mm256_setzero_pd();
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             if (gmx_mm256_any_lt(rsq00,rcutoff2))
929             {
930
931             /* Compute parameters for interactions between i and j atoms */
932             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
933                                             vdwioffsetptr0+vdwjidx0B,
934                                             vdwioffsetptr0+vdwjidx0C,
935                                             vdwioffsetptr0+vdwjidx0D,
936                                             &c6_00,&c12_00);
937
938             /* LENNARD-JONES DISPERSION/REPULSION */
939
940             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
941             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
942
943             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
944
945             fscal            = fvdw;
946
947             fscal            = _mm256_and_pd(fscal,cutoff_mask);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm256_mul_pd(fscal,dx00);
951             ty               = _mm256_mul_pd(fscal,dy00);
952             tz               = _mm256_mul_pd(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm256_add_pd(fix0,tx);
956             fiy0             = _mm256_add_pd(fiy0,ty);
957             fiz0             = _mm256_add_pd(fiz0,tz);
958
959             fjx0             = _mm256_add_pd(fjx0,tx);
960             fjy0             = _mm256_add_pd(fjy0,ty);
961             fjz0             = _mm256_add_pd(fjz0,tz);
962
963             }
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm256_any_lt(rsq10,rcutoff2))
970             {
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq10             = _mm256_mul_pd(iq1,jq0);
974
975             /* REACTION-FIELD ELECTROSTATICS */
976             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
977
978             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
979
980             fscal            = felec;
981
982             fscal            = _mm256_and_pd(fscal,cutoff_mask);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm256_mul_pd(fscal,dx10);
986             ty               = _mm256_mul_pd(fscal,dy10);
987             tz               = _mm256_mul_pd(fscal,dz10);
988
989             /* Update vectorial force */
990             fix1             = _mm256_add_pd(fix1,tx);
991             fiy1             = _mm256_add_pd(fiy1,ty);
992             fiz1             = _mm256_add_pd(fiz1,tz);
993
994             fjx0             = _mm256_add_pd(fjx0,tx);
995             fjy0             = _mm256_add_pd(fjy0,ty);
996             fjz0             = _mm256_add_pd(fjz0,tz);
997
998             }
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1005             {
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq20             = _mm256_mul_pd(iq2,jq0);
1009
1010             /* REACTION-FIELD ELECTROSTATICS */
1011             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1012
1013             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1014
1015             fscal            = felec;
1016
1017             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm256_mul_pd(fscal,dx20);
1021             ty               = _mm256_mul_pd(fscal,dy20);
1022             tz               = _mm256_mul_pd(fscal,dz20);
1023
1024             /* Update vectorial force */
1025             fix2             = _mm256_add_pd(fix2,tx);
1026             fiy2             = _mm256_add_pd(fiy2,ty);
1027             fiz2             = _mm256_add_pd(fiz2,tz);
1028
1029             fjx0             = _mm256_add_pd(fjx0,tx);
1030             fjy0             = _mm256_add_pd(fjy0,ty);
1031             fjz0             = _mm256_add_pd(fjz0,tz);
1032
1033             }
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1040             {
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq30             = _mm256_mul_pd(iq3,jq0);
1044
1045             /* REACTION-FIELD ELECTROSTATICS */
1046             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1047
1048             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1049
1050             fscal            = felec;
1051
1052             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1053
1054             /* Calculate temporary vectorial force */
1055             tx               = _mm256_mul_pd(fscal,dx30);
1056             ty               = _mm256_mul_pd(fscal,dy30);
1057             tz               = _mm256_mul_pd(fscal,dz30);
1058
1059             /* Update vectorial force */
1060             fix3             = _mm256_add_pd(fix3,tx);
1061             fiy3             = _mm256_add_pd(fiy3,ty);
1062             fiz3             = _mm256_add_pd(fiz3,tz);
1063
1064             fjx0             = _mm256_add_pd(fjx0,tx);
1065             fjy0             = _mm256_add_pd(fjy0,ty);
1066             fjz0             = _mm256_add_pd(fjz0,tz);
1067
1068             }
1069
1070             fjptrA             = f+j_coord_offsetA;
1071             fjptrB             = f+j_coord_offsetB;
1072             fjptrC             = f+j_coord_offsetC;
1073             fjptrD             = f+j_coord_offsetD;
1074
1075             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1076
1077             /* Inner loop uses 123 flops */
1078         }
1079
1080         if(jidx<j_index_end)
1081         {
1082
1083             /* Get j neighbor index, and coordinate index */
1084             jnrlistA         = jjnr[jidx];
1085             jnrlistB         = jjnr[jidx+1];
1086             jnrlistC         = jjnr[jidx+2];
1087             jnrlistD         = jjnr[jidx+3];
1088             /* Sign of each element will be negative for non-real atoms.
1089              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1090              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1091              */
1092             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1093
1094             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1095             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1096             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1097
1098             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1099             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1100             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1101             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1102             j_coord_offsetA  = DIM*jnrA;
1103             j_coord_offsetB  = DIM*jnrB;
1104             j_coord_offsetC  = DIM*jnrC;
1105             j_coord_offsetD  = DIM*jnrD;
1106
1107             /* load j atom coordinates */
1108             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1109                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1110                                                  &jx0,&jy0,&jz0);
1111
1112             /* Calculate displacement vector */
1113             dx00             = _mm256_sub_pd(ix0,jx0);
1114             dy00             = _mm256_sub_pd(iy0,jy0);
1115             dz00             = _mm256_sub_pd(iz0,jz0);
1116             dx10             = _mm256_sub_pd(ix1,jx0);
1117             dy10             = _mm256_sub_pd(iy1,jy0);
1118             dz10             = _mm256_sub_pd(iz1,jz0);
1119             dx20             = _mm256_sub_pd(ix2,jx0);
1120             dy20             = _mm256_sub_pd(iy2,jy0);
1121             dz20             = _mm256_sub_pd(iz2,jz0);
1122             dx30             = _mm256_sub_pd(ix3,jx0);
1123             dy30             = _mm256_sub_pd(iy3,jy0);
1124             dz30             = _mm256_sub_pd(iz3,jz0);
1125
1126             /* Calculate squared distance and things based on it */
1127             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1128             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1129             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1130             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1131
1132             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1133             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1134             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1135
1136             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1137             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1138             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1139             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1140
1141             /* Load parameters for j particles */
1142             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1143                                                                  charge+jnrC+0,charge+jnrD+0);
1144             vdwjidx0A        = 2*vdwtype[jnrA+0];
1145             vdwjidx0B        = 2*vdwtype[jnrB+0];
1146             vdwjidx0C        = 2*vdwtype[jnrC+0];
1147             vdwjidx0D        = 2*vdwtype[jnrD+0];
1148
1149             fjx0             = _mm256_setzero_pd();
1150             fjy0             = _mm256_setzero_pd();
1151             fjz0             = _mm256_setzero_pd();
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1158             {
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1162                                             vdwioffsetptr0+vdwjidx0B,
1163                                             vdwioffsetptr0+vdwjidx0C,
1164                                             vdwioffsetptr0+vdwjidx0D,
1165                                             &c6_00,&c12_00);
1166
1167             /* LENNARD-JONES DISPERSION/REPULSION */
1168
1169             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1170             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1171
1172             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1173
1174             fscal            = fvdw;
1175
1176             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1177
1178             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1179
1180             /* Calculate temporary vectorial force */
1181             tx               = _mm256_mul_pd(fscal,dx00);
1182             ty               = _mm256_mul_pd(fscal,dy00);
1183             tz               = _mm256_mul_pd(fscal,dz00);
1184
1185             /* Update vectorial force */
1186             fix0             = _mm256_add_pd(fix0,tx);
1187             fiy0             = _mm256_add_pd(fiy0,ty);
1188             fiz0             = _mm256_add_pd(fiz0,tz);
1189
1190             fjx0             = _mm256_add_pd(fjx0,tx);
1191             fjy0             = _mm256_add_pd(fjy0,ty);
1192             fjz0             = _mm256_add_pd(fjz0,tz);
1193
1194             }
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1201             {
1202
1203             /* Compute parameters for interactions between i and j atoms */
1204             qq10             = _mm256_mul_pd(iq1,jq0);
1205
1206             /* REACTION-FIELD ELECTROSTATICS */
1207             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1208
1209             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1214
1215             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm256_mul_pd(fscal,dx10);
1219             ty               = _mm256_mul_pd(fscal,dy10);
1220             tz               = _mm256_mul_pd(fscal,dz10);
1221
1222             /* Update vectorial force */
1223             fix1             = _mm256_add_pd(fix1,tx);
1224             fiy1             = _mm256_add_pd(fiy1,ty);
1225             fiz1             = _mm256_add_pd(fiz1,tz);
1226
1227             fjx0             = _mm256_add_pd(fjx0,tx);
1228             fjy0             = _mm256_add_pd(fjy0,ty);
1229             fjz0             = _mm256_add_pd(fjz0,tz);
1230
1231             }
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1238             {
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq20             = _mm256_mul_pd(iq2,jq0);
1242
1243             /* REACTION-FIELD ELECTROSTATICS */
1244             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1245
1246             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1247
1248             fscal            = felec;
1249
1250             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1251
1252             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_pd(fscal,dx20);
1256             ty               = _mm256_mul_pd(fscal,dy20);
1257             tz               = _mm256_mul_pd(fscal,dz20);
1258
1259             /* Update vectorial force */
1260             fix2             = _mm256_add_pd(fix2,tx);
1261             fiy2             = _mm256_add_pd(fiy2,ty);
1262             fiz2             = _mm256_add_pd(fiz2,tz);
1263
1264             fjx0             = _mm256_add_pd(fjx0,tx);
1265             fjy0             = _mm256_add_pd(fjy0,ty);
1266             fjz0             = _mm256_add_pd(fjz0,tz);
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1275             {
1276
1277             /* Compute parameters for interactions between i and j atoms */
1278             qq30             = _mm256_mul_pd(iq3,jq0);
1279
1280             /* REACTION-FIELD ELECTROSTATICS */
1281             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1282
1283             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1284
1285             fscal            = felec;
1286
1287             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1288
1289             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1290
1291             /* Calculate temporary vectorial force */
1292             tx               = _mm256_mul_pd(fscal,dx30);
1293             ty               = _mm256_mul_pd(fscal,dy30);
1294             tz               = _mm256_mul_pd(fscal,dz30);
1295
1296             /* Update vectorial force */
1297             fix3             = _mm256_add_pd(fix3,tx);
1298             fiy3             = _mm256_add_pd(fiy3,ty);
1299             fiz3             = _mm256_add_pd(fiz3,tz);
1300
1301             fjx0             = _mm256_add_pd(fjx0,tx);
1302             fjy0             = _mm256_add_pd(fjy0,ty);
1303             fjz0             = _mm256_add_pd(fjz0,tz);
1304
1305             }
1306
1307             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1308             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1309             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1310             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1311
1312             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1313
1314             /* Inner loop uses 123 flops */
1315         }
1316
1317         /* End of innermost loop */
1318
1319         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1320                                                  f+i_coord_offset,fshift+i_shift_offset);
1321
1322         /* Increment number of inner iterations */
1323         inneriter                  += j_index_end - j_index_start;
1324
1325         /* Outer loop uses 24 flops */
1326     }
1327
1328     /* Increment number of outer iterations */
1329     outeriter        += nri;
1330
1331     /* Update outer/inner flops */
1332
1333     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1334 }