Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m256d          dummy_mask,cutoff_mask;
93     __m128           tmpmask0,tmpmask1;
94     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
95     __m256d          one     = _mm256_set1_pd(1.0);
96     __m256d          two     = _mm256_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm256_set1_pd(fr->ic->k_rf);
111     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm256_set1_pd(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
120     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
121     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
122     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm256_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm256_setzero_pd();
166         fiy0             = _mm256_setzero_pd();
167         fiz0             = _mm256_setzero_pd();
168         fix1             = _mm256_setzero_pd();
169         fiy1             = _mm256_setzero_pd();
170         fiz1             = _mm256_setzero_pd();
171         fix2             = _mm256_setzero_pd();
172         fiy2             = _mm256_setzero_pd();
173         fiz2             = _mm256_setzero_pd();
174         fix3             = _mm256_setzero_pd();
175         fiy3             = _mm256_setzero_pd();
176         fiz3             = _mm256_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_pd();
180         vvdwsum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205             dx10             = _mm256_sub_pd(ix1,jx0);
206             dy10             = _mm256_sub_pd(iy1,jy0);
207             dz10             = _mm256_sub_pd(iz1,jz0);
208             dx20             = _mm256_sub_pd(ix2,jx0);
209             dy20             = _mm256_sub_pd(iy2,jy0);
210             dz20             = _mm256_sub_pd(iz2,jz0);
211             dx30             = _mm256_sub_pd(ix3,jx0);
212             dy30             = _mm256_sub_pd(iy3,jy0);
213             dz30             = _mm256_sub_pd(iz3,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
219             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
220
221             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
223             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
224
225             rinvsq00         = gmx_mm256_inv_pd(rsq00);
226             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
228             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm256_setzero_pd();
239             fjy0             = _mm256_setzero_pd();
240             fjz0             = _mm256_setzero_pd();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             if (gmx_mm256_any_lt(rsq00,rcutoff2))
247             {
248
249             /* Compute parameters for interactions between i and j atoms */
250             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
251                                             vdwioffsetptr0+vdwjidx0B,
252                                             vdwioffsetptr0+vdwjidx0C,
253                                             vdwioffsetptr0+vdwjidx0D,
254                                             &c6_00,&c12_00);
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
260             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
261             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
262                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
263             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
264
265             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
269             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
270
271             fscal            = fvdw;
272
273             fscal            = _mm256_and_pd(fscal,cutoff_mask);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm256_mul_pd(fscal,dx00);
277             ty               = _mm256_mul_pd(fscal,dy00);
278             tz               = _mm256_mul_pd(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm256_add_pd(fix0,tx);
282             fiy0             = _mm256_add_pd(fiy0,ty);
283             fiz0             = _mm256_add_pd(fiz0,tz);
284
285             fjx0             = _mm256_add_pd(fjx0,tx);
286             fjy0             = _mm256_add_pd(fjy0,ty);
287             fjz0             = _mm256_add_pd(fjz0,tz);
288
289             }
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm256_any_lt(rsq10,rcutoff2))
296             {
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm256_mul_pd(iq1,jq0);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
303             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
304
305             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm256_and_pd(velec,cutoff_mask);
309             velecsum         = _mm256_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm256_and_pd(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx10);
317             ty               = _mm256_mul_pd(fscal,dy10);
318             tz               = _mm256_mul_pd(fscal,dz10);
319
320             /* Update vectorial force */
321             fix1             = _mm256_add_pd(fix1,tx);
322             fiy1             = _mm256_add_pd(fiy1,ty);
323             fiz1             = _mm256_add_pd(fiz1,tz);
324
325             fjx0             = _mm256_add_pd(fjx0,tx);
326             fjy0             = _mm256_add_pd(fjy0,ty);
327             fjz0             = _mm256_add_pd(fjz0,tz);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm256_any_lt(rsq20,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm256_mul_pd(iq2,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
343             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
344
345             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm256_and_pd(velec,cutoff_mask);
349             velecsum         = _mm256_add_pd(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm256_and_pd(fscal,cutoff_mask);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_pd(fscal,dx20);
357             ty               = _mm256_mul_pd(fscal,dy20);
358             tz               = _mm256_mul_pd(fscal,dz20);
359
360             /* Update vectorial force */
361             fix2             = _mm256_add_pd(fix2,tx);
362             fiy2             = _mm256_add_pd(fiy2,ty);
363             fiz2             = _mm256_add_pd(fiz2,tz);
364
365             fjx0             = _mm256_add_pd(fjx0,tx);
366             fjy0             = _mm256_add_pd(fjy0,ty);
367             fjz0             = _mm256_add_pd(fjz0,tz);
368
369             }
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm256_any_lt(rsq30,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq30             = _mm256_mul_pd(iq3,jq0);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
383             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
384
385             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm256_and_pd(velec,cutoff_mask);
389             velecsum         = _mm256_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm256_and_pd(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm256_mul_pd(fscal,dx30);
397             ty               = _mm256_mul_pd(fscal,dy30);
398             tz               = _mm256_mul_pd(fscal,dz30);
399
400             /* Update vectorial force */
401             fix3             = _mm256_add_pd(fix3,tx);
402             fiy3             = _mm256_add_pd(fiy3,ty);
403             fiz3             = _mm256_add_pd(fiz3,tz);
404
405             fjx0             = _mm256_add_pd(fjx0,tx);
406             fjy0             = _mm256_add_pd(fjy0,ty);
407             fjz0             = _mm256_add_pd(fjz0,tz);
408
409             }
410
411             fjptrA             = f+j_coord_offsetA;
412             fjptrB             = f+j_coord_offsetB;
413             fjptrC             = f+j_coord_offsetC;
414             fjptrD             = f+j_coord_offsetD;
415
416             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 152 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             /* Sign of each element will be negative for non-real atoms.
430              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
431              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
432              */
433             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
434
435             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
436             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
437             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
438
439             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
440             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
441             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
442             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
443             j_coord_offsetA  = DIM*jnrA;
444             j_coord_offsetB  = DIM*jnrB;
445             j_coord_offsetC  = DIM*jnrC;
446             j_coord_offsetD  = DIM*jnrD;
447
448             /* load j atom coordinates */
449             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
450                                                  x+j_coord_offsetC,x+j_coord_offsetD,
451                                                  &jx0,&jy0,&jz0);
452
453             /* Calculate displacement vector */
454             dx00             = _mm256_sub_pd(ix0,jx0);
455             dy00             = _mm256_sub_pd(iy0,jy0);
456             dz00             = _mm256_sub_pd(iz0,jz0);
457             dx10             = _mm256_sub_pd(ix1,jx0);
458             dy10             = _mm256_sub_pd(iy1,jy0);
459             dz10             = _mm256_sub_pd(iz1,jz0);
460             dx20             = _mm256_sub_pd(ix2,jx0);
461             dy20             = _mm256_sub_pd(iy2,jy0);
462             dz20             = _mm256_sub_pd(iz2,jz0);
463             dx30             = _mm256_sub_pd(ix3,jx0);
464             dy30             = _mm256_sub_pd(iy3,jy0);
465             dz30             = _mm256_sub_pd(iz3,jz0);
466
467             /* Calculate squared distance and things based on it */
468             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
469             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
470             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
471             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
472
473             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
474             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
475             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
476
477             rinvsq00         = gmx_mm256_inv_pd(rsq00);
478             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
479             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
480             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
481
482             /* Load parameters for j particles */
483             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
484                                                                  charge+jnrC+0,charge+jnrD+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487             vdwjidx0C        = 2*vdwtype[jnrC+0];
488             vdwjidx0D        = 2*vdwtype[jnrD+0];
489
490             fjx0             = _mm256_setzero_pd();
491             fjy0             = _mm256_setzero_pd();
492             fjz0             = _mm256_setzero_pd();
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             if (gmx_mm256_any_lt(rsq00,rcutoff2))
499             {
500
501             /* Compute parameters for interactions between i and j atoms */
502             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
503                                             vdwioffsetptr0+vdwjidx0B,
504                                             vdwioffsetptr0+vdwjidx0C,
505                                             vdwioffsetptr0+vdwjidx0D,
506                                             &c6_00,&c12_00);
507
508             /* LENNARD-JONES DISPERSION/REPULSION */
509
510             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
511             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
512             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
513             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
514                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
515             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
516
517             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
521             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
522             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
523
524             fscal            = fvdw;
525
526             fscal            = _mm256_and_pd(fscal,cutoff_mask);
527
528             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm256_mul_pd(fscal,dx00);
532             ty               = _mm256_mul_pd(fscal,dy00);
533             tz               = _mm256_mul_pd(fscal,dz00);
534
535             /* Update vectorial force */
536             fix0             = _mm256_add_pd(fix0,tx);
537             fiy0             = _mm256_add_pd(fiy0,ty);
538             fiz0             = _mm256_add_pd(fiz0,tz);
539
540             fjx0             = _mm256_add_pd(fjx0,tx);
541             fjy0             = _mm256_add_pd(fjy0,ty);
542             fjz0             = _mm256_add_pd(fjz0,tz);
543
544             }
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm256_any_lt(rsq10,rcutoff2))
551             {
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _mm256_mul_pd(iq1,jq0);
555
556             /* REACTION-FIELD ELECTROSTATICS */
557             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
558             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
559
560             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm256_and_pd(velec,cutoff_mask);
564             velec            = _mm256_andnot_pd(dummy_mask,velec);
565             velecsum         = _mm256_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm256_and_pd(fscal,cutoff_mask);
570
571             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_pd(fscal,dx10);
575             ty               = _mm256_mul_pd(fscal,dy10);
576             tz               = _mm256_mul_pd(fscal,dz10);
577
578             /* Update vectorial force */
579             fix1             = _mm256_add_pd(fix1,tx);
580             fiy1             = _mm256_add_pd(fiy1,ty);
581             fiz1             = _mm256_add_pd(fiz1,tz);
582
583             fjx0             = _mm256_add_pd(fjx0,tx);
584             fjy0             = _mm256_add_pd(fjy0,ty);
585             fjz0             = _mm256_add_pd(fjz0,tz);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm256_any_lt(rsq20,rcutoff2))
594             {
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _mm256_mul_pd(iq2,jq0);
598
599             /* REACTION-FIELD ELECTROSTATICS */
600             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
601             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
602
603             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm256_and_pd(velec,cutoff_mask);
607             velec            = _mm256_andnot_pd(dummy_mask,velec);
608             velecsum         = _mm256_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm256_and_pd(fscal,cutoff_mask);
613
614             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm256_mul_pd(fscal,dx20);
618             ty               = _mm256_mul_pd(fscal,dy20);
619             tz               = _mm256_mul_pd(fscal,dz20);
620
621             /* Update vectorial force */
622             fix2             = _mm256_add_pd(fix2,tx);
623             fiy2             = _mm256_add_pd(fiy2,ty);
624             fiz2             = _mm256_add_pd(fiz2,tz);
625
626             fjx0             = _mm256_add_pd(fjx0,tx);
627             fjy0             = _mm256_add_pd(fjy0,ty);
628             fjz0             = _mm256_add_pd(fjz0,tz);
629
630             }
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             if (gmx_mm256_any_lt(rsq30,rcutoff2))
637             {
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq30             = _mm256_mul_pd(iq3,jq0);
641
642             /* REACTION-FIELD ELECTROSTATICS */
643             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
644             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
645
646             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm256_and_pd(velec,cutoff_mask);
650             velec            = _mm256_andnot_pd(dummy_mask,velec);
651             velecsum         = _mm256_add_pd(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm256_and_pd(fscal,cutoff_mask);
656
657             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm256_mul_pd(fscal,dx30);
661             ty               = _mm256_mul_pd(fscal,dy30);
662             tz               = _mm256_mul_pd(fscal,dz30);
663
664             /* Update vectorial force */
665             fix3             = _mm256_add_pd(fix3,tx);
666             fiy3             = _mm256_add_pd(fiy3,ty);
667             fiz3             = _mm256_add_pd(fiz3,tz);
668
669             fjx0             = _mm256_add_pd(fjx0,tx);
670             fjy0             = _mm256_add_pd(fjy0,ty);
671             fjz0             = _mm256_add_pd(fjz0,tz);
672
673             }
674
675             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
676             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
677             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
678             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
679
680             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
681
682             /* Inner loop uses 152 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
688                                                  f+i_coord_offset,fshift+i_shift_offset);
689
690         ggid                        = gid[iidx];
691         /* Update potential energies */
692         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
693         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 26 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
707 }
708 /*
709  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
710  * Electrostatics interaction: ReactionField
711  * VdW interaction:            LennardJones
712  * Geometry:                   Water4-Particle
713  * Calculate force/pot:        Force
714  */
715 void
716 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
717                     (t_nblist * gmx_restrict                nlist,
718                      rvec * gmx_restrict                    xx,
719                      rvec * gmx_restrict                    ff,
720                      t_forcerec * gmx_restrict              fr,
721                      t_mdatoms * gmx_restrict               mdatoms,
722                      nb_kernel_data_t * gmx_restrict        kernel_data,
723                      t_nrnb * gmx_restrict                  nrnb)
724 {
725     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
726      * just 0 for non-waters.
727      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
728      * jnr indices corresponding to data put in the four positions in the SIMD register.
729      */
730     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
731     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
732     int              jnrA,jnrB,jnrC,jnrD;
733     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
734     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
735     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
736     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
737     real             rcutoff_scalar;
738     real             *shiftvec,*fshift,*x,*f;
739     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
740     real             scratch[4*DIM];
741     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
742     real *           vdwioffsetptr0;
743     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
744     real *           vdwioffsetptr1;
745     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
746     real *           vdwioffsetptr2;
747     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
748     real *           vdwioffsetptr3;
749     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
750     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
751     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
752     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
753     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
754     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
755     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
756     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
757     real             *charge;
758     int              nvdwtype;
759     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
760     int              *vdwtype;
761     real             *vdwparam;
762     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
763     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
764     __m256d          dummy_mask,cutoff_mask;
765     __m128           tmpmask0,tmpmask1;
766     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
767     __m256d          one     = _mm256_set1_pd(1.0);
768     __m256d          two     = _mm256_set1_pd(2.0);
769     x                = xx[0];
770     f                = ff[0];
771
772     nri              = nlist->nri;
773     iinr             = nlist->iinr;
774     jindex           = nlist->jindex;
775     jjnr             = nlist->jjnr;
776     shiftidx         = nlist->shift;
777     gid              = nlist->gid;
778     shiftvec         = fr->shift_vec[0];
779     fshift           = fr->fshift[0];
780     facel            = _mm256_set1_pd(fr->epsfac);
781     charge           = mdatoms->chargeA;
782     krf              = _mm256_set1_pd(fr->ic->k_rf);
783     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
784     crf              = _mm256_set1_pd(fr->ic->c_rf);
785     nvdwtype         = fr->ntype;
786     vdwparam         = fr->nbfp;
787     vdwtype          = mdatoms->typeA;
788
789     /* Setup water-specific parameters */
790     inr              = nlist->iinr[0];
791     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
792     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
793     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
794     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
795
796     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
797     rcutoff_scalar   = fr->rcoulomb;
798     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
799     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
800
801     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
802     rvdw             = _mm256_set1_pd(fr->rvdw);
803
804     /* Avoid stupid compiler warnings */
805     jnrA = jnrB = jnrC = jnrD = 0;
806     j_coord_offsetA = 0;
807     j_coord_offsetB = 0;
808     j_coord_offsetC = 0;
809     j_coord_offsetD = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     for(iidx=0;iidx<4*DIM;iidx++)
815     {
816         scratch[iidx] = 0.0;
817     }
818
819     /* Start outer loop over neighborlists */
820     for(iidx=0; iidx<nri; iidx++)
821     {
822         /* Load shift vector for this list */
823         i_shift_offset   = DIM*shiftidx[iidx];
824
825         /* Load limits for loop over neighbors */
826         j_index_start    = jindex[iidx];
827         j_index_end      = jindex[iidx+1];
828
829         /* Get outer coordinate index */
830         inr              = iinr[iidx];
831         i_coord_offset   = DIM*inr;
832
833         /* Load i particle coords and add shift vector */
834         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
835                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
836
837         fix0             = _mm256_setzero_pd();
838         fiy0             = _mm256_setzero_pd();
839         fiz0             = _mm256_setzero_pd();
840         fix1             = _mm256_setzero_pd();
841         fiy1             = _mm256_setzero_pd();
842         fiz1             = _mm256_setzero_pd();
843         fix2             = _mm256_setzero_pd();
844         fiy2             = _mm256_setzero_pd();
845         fiz2             = _mm256_setzero_pd();
846         fix3             = _mm256_setzero_pd();
847         fiy3             = _mm256_setzero_pd();
848         fiz3             = _mm256_setzero_pd();
849
850         /* Start inner kernel loop */
851         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
852         {
853
854             /* Get j neighbor index, and coordinate index */
855             jnrA             = jjnr[jidx];
856             jnrB             = jjnr[jidx+1];
857             jnrC             = jjnr[jidx+2];
858             jnrD             = jjnr[jidx+3];
859             j_coord_offsetA  = DIM*jnrA;
860             j_coord_offsetB  = DIM*jnrB;
861             j_coord_offsetC  = DIM*jnrC;
862             j_coord_offsetD  = DIM*jnrD;
863
864             /* load j atom coordinates */
865             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
866                                                  x+j_coord_offsetC,x+j_coord_offsetD,
867                                                  &jx0,&jy0,&jz0);
868
869             /* Calculate displacement vector */
870             dx00             = _mm256_sub_pd(ix0,jx0);
871             dy00             = _mm256_sub_pd(iy0,jy0);
872             dz00             = _mm256_sub_pd(iz0,jz0);
873             dx10             = _mm256_sub_pd(ix1,jx0);
874             dy10             = _mm256_sub_pd(iy1,jy0);
875             dz10             = _mm256_sub_pd(iz1,jz0);
876             dx20             = _mm256_sub_pd(ix2,jx0);
877             dy20             = _mm256_sub_pd(iy2,jy0);
878             dz20             = _mm256_sub_pd(iz2,jz0);
879             dx30             = _mm256_sub_pd(ix3,jx0);
880             dy30             = _mm256_sub_pd(iy3,jy0);
881             dz30             = _mm256_sub_pd(iz3,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
885             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
886             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
887             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
888
889             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
890             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
891             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
892
893             rinvsq00         = gmx_mm256_inv_pd(rsq00);
894             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
895             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
896             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
897
898             /* Load parameters for j particles */
899             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
900                                                                  charge+jnrC+0,charge+jnrD+0);
901             vdwjidx0A        = 2*vdwtype[jnrA+0];
902             vdwjidx0B        = 2*vdwtype[jnrB+0];
903             vdwjidx0C        = 2*vdwtype[jnrC+0];
904             vdwjidx0D        = 2*vdwtype[jnrD+0];
905
906             fjx0             = _mm256_setzero_pd();
907             fjy0             = _mm256_setzero_pd();
908             fjz0             = _mm256_setzero_pd();
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             if (gmx_mm256_any_lt(rsq00,rcutoff2))
915             {
916
917             /* Compute parameters for interactions between i and j atoms */
918             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
919                                             vdwioffsetptr0+vdwjidx0B,
920                                             vdwioffsetptr0+vdwjidx0C,
921                                             vdwioffsetptr0+vdwjidx0D,
922                                             &c6_00,&c12_00);
923
924             /* LENNARD-JONES DISPERSION/REPULSION */
925
926             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
927             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
928
929             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
930
931             fscal            = fvdw;
932
933             fscal            = _mm256_and_pd(fscal,cutoff_mask);
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm256_mul_pd(fscal,dx00);
937             ty               = _mm256_mul_pd(fscal,dy00);
938             tz               = _mm256_mul_pd(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm256_add_pd(fix0,tx);
942             fiy0             = _mm256_add_pd(fiy0,ty);
943             fiz0             = _mm256_add_pd(fiz0,tz);
944
945             fjx0             = _mm256_add_pd(fjx0,tx);
946             fjy0             = _mm256_add_pd(fjy0,ty);
947             fjz0             = _mm256_add_pd(fjz0,tz);
948
949             }
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm256_any_lt(rsq10,rcutoff2))
956             {
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq10             = _mm256_mul_pd(iq1,jq0);
960
961             /* REACTION-FIELD ELECTROSTATICS */
962             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
963
964             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
965
966             fscal            = felec;
967
968             fscal            = _mm256_and_pd(fscal,cutoff_mask);
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm256_mul_pd(fscal,dx10);
972             ty               = _mm256_mul_pd(fscal,dy10);
973             tz               = _mm256_mul_pd(fscal,dz10);
974
975             /* Update vectorial force */
976             fix1             = _mm256_add_pd(fix1,tx);
977             fiy1             = _mm256_add_pd(fiy1,ty);
978             fiz1             = _mm256_add_pd(fiz1,tz);
979
980             fjx0             = _mm256_add_pd(fjx0,tx);
981             fjy0             = _mm256_add_pd(fjy0,ty);
982             fjz0             = _mm256_add_pd(fjz0,tz);
983
984             }
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             if (gmx_mm256_any_lt(rsq20,rcutoff2))
991             {
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq20             = _mm256_mul_pd(iq2,jq0);
995
996             /* REACTION-FIELD ELECTROSTATICS */
997             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
998
999             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1000
1001             fscal            = felec;
1002
1003             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm256_mul_pd(fscal,dx20);
1007             ty               = _mm256_mul_pd(fscal,dy20);
1008             tz               = _mm256_mul_pd(fscal,dz20);
1009
1010             /* Update vectorial force */
1011             fix2             = _mm256_add_pd(fix2,tx);
1012             fiy2             = _mm256_add_pd(fiy2,ty);
1013             fiz2             = _mm256_add_pd(fiz2,tz);
1014
1015             fjx0             = _mm256_add_pd(fjx0,tx);
1016             fjy0             = _mm256_add_pd(fjy0,ty);
1017             fjz0             = _mm256_add_pd(fjz0,tz);
1018
1019             }
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1026             {
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq30             = _mm256_mul_pd(iq3,jq0);
1030
1031             /* REACTION-FIELD ELECTROSTATICS */
1032             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1033
1034             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1035
1036             fscal            = felec;
1037
1038             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm256_mul_pd(fscal,dx30);
1042             ty               = _mm256_mul_pd(fscal,dy30);
1043             tz               = _mm256_mul_pd(fscal,dz30);
1044
1045             /* Update vectorial force */
1046             fix3             = _mm256_add_pd(fix3,tx);
1047             fiy3             = _mm256_add_pd(fiy3,ty);
1048             fiz3             = _mm256_add_pd(fiz3,tz);
1049
1050             fjx0             = _mm256_add_pd(fjx0,tx);
1051             fjy0             = _mm256_add_pd(fjy0,ty);
1052             fjz0             = _mm256_add_pd(fjz0,tz);
1053
1054             }
1055
1056             fjptrA             = f+j_coord_offsetA;
1057             fjptrB             = f+j_coord_offsetB;
1058             fjptrC             = f+j_coord_offsetC;
1059             fjptrD             = f+j_coord_offsetD;
1060
1061             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1062
1063             /* Inner loop uses 123 flops */
1064         }
1065
1066         if(jidx<j_index_end)
1067         {
1068
1069             /* Get j neighbor index, and coordinate index */
1070             jnrlistA         = jjnr[jidx];
1071             jnrlistB         = jjnr[jidx+1];
1072             jnrlistC         = jjnr[jidx+2];
1073             jnrlistD         = jjnr[jidx+3];
1074             /* Sign of each element will be negative for non-real atoms.
1075              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1076              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1077              */
1078             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1079
1080             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1081             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1082             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1083
1084             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1085             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1086             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1087             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1088             j_coord_offsetA  = DIM*jnrA;
1089             j_coord_offsetB  = DIM*jnrB;
1090             j_coord_offsetC  = DIM*jnrC;
1091             j_coord_offsetD  = DIM*jnrD;
1092
1093             /* load j atom coordinates */
1094             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1095                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1096                                                  &jx0,&jy0,&jz0);
1097
1098             /* Calculate displacement vector */
1099             dx00             = _mm256_sub_pd(ix0,jx0);
1100             dy00             = _mm256_sub_pd(iy0,jy0);
1101             dz00             = _mm256_sub_pd(iz0,jz0);
1102             dx10             = _mm256_sub_pd(ix1,jx0);
1103             dy10             = _mm256_sub_pd(iy1,jy0);
1104             dz10             = _mm256_sub_pd(iz1,jz0);
1105             dx20             = _mm256_sub_pd(ix2,jx0);
1106             dy20             = _mm256_sub_pd(iy2,jy0);
1107             dz20             = _mm256_sub_pd(iz2,jz0);
1108             dx30             = _mm256_sub_pd(ix3,jx0);
1109             dy30             = _mm256_sub_pd(iy3,jy0);
1110             dz30             = _mm256_sub_pd(iz3,jz0);
1111
1112             /* Calculate squared distance and things based on it */
1113             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1114             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1115             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1116             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1117
1118             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1119             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1120             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1121
1122             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1123             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1124             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1125             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1126
1127             /* Load parameters for j particles */
1128             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1129                                                                  charge+jnrC+0,charge+jnrD+0);
1130             vdwjidx0A        = 2*vdwtype[jnrA+0];
1131             vdwjidx0B        = 2*vdwtype[jnrB+0];
1132             vdwjidx0C        = 2*vdwtype[jnrC+0];
1133             vdwjidx0D        = 2*vdwtype[jnrD+0];
1134
1135             fjx0             = _mm256_setzero_pd();
1136             fjy0             = _mm256_setzero_pd();
1137             fjz0             = _mm256_setzero_pd();
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1144             {
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1148                                             vdwioffsetptr0+vdwjidx0B,
1149                                             vdwioffsetptr0+vdwjidx0C,
1150                                             vdwioffsetptr0+vdwjidx0D,
1151                                             &c6_00,&c12_00);
1152
1153             /* LENNARD-JONES DISPERSION/REPULSION */
1154
1155             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1156             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1157
1158             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1159
1160             fscal            = fvdw;
1161
1162             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1163
1164             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm256_mul_pd(fscal,dx00);
1168             ty               = _mm256_mul_pd(fscal,dy00);
1169             tz               = _mm256_mul_pd(fscal,dz00);
1170
1171             /* Update vectorial force */
1172             fix0             = _mm256_add_pd(fix0,tx);
1173             fiy0             = _mm256_add_pd(fiy0,ty);
1174             fiz0             = _mm256_add_pd(fiz0,tz);
1175
1176             fjx0             = _mm256_add_pd(fjx0,tx);
1177             fjy0             = _mm256_add_pd(fjy0,ty);
1178             fjz0             = _mm256_add_pd(fjz0,tz);
1179
1180             }
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1187             {
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq10             = _mm256_mul_pd(iq1,jq0);
1191
1192             /* REACTION-FIELD ELECTROSTATICS */
1193             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1194
1195             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1200
1201             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm256_mul_pd(fscal,dx10);
1205             ty               = _mm256_mul_pd(fscal,dy10);
1206             tz               = _mm256_mul_pd(fscal,dz10);
1207
1208             /* Update vectorial force */
1209             fix1             = _mm256_add_pd(fix1,tx);
1210             fiy1             = _mm256_add_pd(fiy1,ty);
1211             fiz1             = _mm256_add_pd(fiz1,tz);
1212
1213             fjx0             = _mm256_add_pd(fjx0,tx);
1214             fjy0             = _mm256_add_pd(fjy0,ty);
1215             fjz0             = _mm256_add_pd(fjz0,tz);
1216
1217             }
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1224             {
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq20             = _mm256_mul_pd(iq2,jq0);
1228
1229             /* REACTION-FIELD ELECTROSTATICS */
1230             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1231
1232             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1233
1234             fscal            = felec;
1235
1236             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1237
1238             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1239
1240             /* Calculate temporary vectorial force */
1241             tx               = _mm256_mul_pd(fscal,dx20);
1242             ty               = _mm256_mul_pd(fscal,dy20);
1243             tz               = _mm256_mul_pd(fscal,dz20);
1244
1245             /* Update vectorial force */
1246             fix2             = _mm256_add_pd(fix2,tx);
1247             fiy2             = _mm256_add_pd(fiy2,ty);
1248             fiz2             = _mm256_add_pd(fiz2,tz);
1249
1250             fjx0             = _mm256_add_pd(fjx0,tx);
1251             fjy0             = _mm256_add_pd(fjy0,ty);
1252             fjz0             = _mm256_add_pd(fjz0,tz);
1253
1254             }
1255
1256             /**************************
1257              * CALCULATE INTERACTIONS *
1258              **************************/
1259
1260             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1261             {
1262
1263             /* Compute parameters for interactions between i and j atoms */
1264             qq30             = _mm256_mul_pd(iq3,jq0);
1265
1266             /* REACTION-FIELD ELECTROSTATICS */
1267             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1268
1269             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1270
1271             fscal            = felec;
1272
1273             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1274
1275             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1276
1277             /* Calculate temporary vectorial force */
1278             tx               = _mm256_mul_pd(fscal,dx30);
1279             ty               = _mm256_mul_pd(fscal,dy30);
1280             tz               = _mm256_mul_pd(fscal,dz30);
1281
1282             /* Update vectorial force */
1283             fix3             = _mm256_add_pd(fix3,tx);
1284             fiy3             = _mm256_add_pd(fiy3,ty);
1285             fiz3             = _mm256_add_pd(fiz3,tz);
1286
1287             fjx0             = _mm256_add_pd(fjx0,tx);
1288             fjy0             = _mm256_add_pd(fjy0,ty);
1289             fjz0             = _mm256_add_pd(fjz0,tz);
1290
1291             }
1292
1293             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1294             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1295             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1296             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1297
1298             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1299
1300             /* Inner loop uses 123 flops */
1301         }
1302
1303         /* End of innermost loop */
1304
1305         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1306                                                  f+i_coord_offset,fshift+i_shift_offset);
1307
1308         /* Increment number of inner iterations */
1309         inneriter                  += j_index_end - j_index_start;
1310
1311         /* Outer loop uses 24 flops */
1312     }
1313
1314     /* Increment number of outer iterations */
1315     outeriter        += nri;
1316
1317     /* Update outer/inner flops */
1318
1319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1320 }