Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d          dummy_mask,cutoff_mask;
109     __m128           tmpmask0,tmpmask1;
110     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
111     __m256d          one     = _mm256_set1_pd(1.0);
112     __m256d          two     = _mm256_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm256_set1_pd(fr->ic->k_rf);
127     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
128     crf              = _mm256_set1_pd(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
138     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
144
145     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
146     rvdw             = _mm256_set1_pd(fr->rvdw);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm256_setzero_pd();
182         fiy0             = _mm256_setzero_pd();
183         fiz0             = _mm256_setzero_pd();
184         fix1             = _mm256_setzero_pd();
185         fiy1             = _mm256_setzero_pd();
186         fiz1             = _mm256_setzero_pd();
187         fix2             = _mm256_setzero_pd();
188         fiy2             = _mm256_setzero_pd();
189         fiz2             = _mm256_setzero_pd();
190         fix3             = _mm256_setzero_pd();
191         fiy3             = _mm256_setzero_pd();
192         fiz3             = _mm256_setzero_pd();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_pd();
196         vvdwsum          = _mm256_setzero_pd();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm256_sub_pd(ix0,jx0);
219             dy00             = _mm256_sub_pd(iy0,jy0);
220             dz00             = _mm256_sub_pd(iz0,jz0);
221             dx10             = _mm256_sub_pd(ix1,jx0);
222             dy10             = _mm256_sub_pd(iy1,jy0);
223             dz10             = _mm256_sub_pd(iz1,jz0);
224             dx20             = _mm256_sub_pd(ix2,jx0);
225             dy20             = _mm256_sub_pd(iy2,jy0);
226             dz20             = _mm256_sub_pd(iz2,jz0);
227             dx30             = _mm256_sub_pd(ix3,jx0);
228             dy30             = _mm256_sub_pd(iy3,jy0);
229             dz30             = _mm256_sub_pd(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
235             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
236
237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
239             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
240
241             rinvsq00         = gmx_mm256_inv_pd(rsq00);
242             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
244             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
248                                                                  charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm256_setzero_pd();
255             fjy0             = _mm256_setzero_pd();
256             fjz0             = _mm256_setzero_pd();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             if (gmx_mm256_any_lt(rsq00,rcutoff2))
263             {
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
267                                             vdwioffsetptr0+vdwjidx0B,
268                                             vdwioffsetptr0+vdwjidx0C,
269                                             vdwioffsetptr0+vdwjidx0D,
270                                             &c6_00,&c12_00);
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
278                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
279             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
280
281             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
285             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             fscal            = _mm256_and_pd(fscal,cutoff_mask);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_pd(fscal,dx00);
293             ty               = _mm256_mul_pd(fscal,dy00);
294             tz               = _mm256_mul_pd(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm256_add_pd(fix0,tx);
298             fiy0             = _mm256_add_pd(fiy0,ty);
299             fiz0             = _mm256_add_pd(fiz0,tz);
300
301             fjx0             = _mm256_add_pd(fjx0,tx);
302             fjy0             = _mm256_add_pd(fjy0,ty);
303             fjz0             = _mm256_add_pd(fjz0,tz);
304
305             }
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm256_any_lt(rsq10,rcutoff2))
312             {
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm256_mul_pd(iq1,jq0);
316
317             /* REACTION-FIELD ELECTROSTATICS */
318             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
319             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
320
321             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm256_and_pd(velec,cutoff_mask);
325             velecsum         = _mm256_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             fscal            = _mm256_and_pd(fscal,cutoff_mask);
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm256_mul_pd(fscal,dx10);
333             ty               = _mm256_mul_pd(fscal,dy10);
334             tz               = _mm256_mul_pd(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm256_add_pd(fix1,tx);
338             fiy1             = _mm256_add_pd(fiy1,ty);
339             fiz1             = _mm256_add_pd(fiz1,tz);
340
341             fjx0             = _mm256_add_pd(fjx0,tx);
342             fjy0             = _mm256_add_pd(fjy0,ty);
343             fjz0             = _mm256_add_pd(fjz0,tz);
344
345             }
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             if (gmx_mm256_any_lt(rsq20,rcutoff2))
352             {
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm256_mul_pd(iq2,jq0);
356
357             /* REACTION-FIELD ELECTROSTATICS */
358             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
359             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
360
361             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm256_and_pd(velec,cutoff_mask);
365             velecsum         = _mm256_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm256_and_pd(fscal,cutoff_mask);
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm256_mul_pd(fscal,dx20);
373             ty               = _mm256_mul_pd(fscal,dy20);
374             tz               = _mm256_mul_pd(fscal,dz20);
375
376             /* Update vectorial force */
377             fix2             = _mm256_add_pd(fix2,tx);
378             fiy2             = _mm256_add_pd(fiy2,ty);
379             fiz2             = _mm256_add_pd(fiz2,tz);
380
381             fjx0             = _mm256_add_pd(fjx0,tx);
382             fjy0             = _mm256_add_pd(fjy0,ty);
383             fjz0             = _mm256_add_pd(fjz0,tz);
384
385             }
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             if (gmx_mm256_any_lt(rsq30,rcutoff2))
392             {
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq30             = _mm256_mul_pd(iq3,jq0);
396
397             /* REACTION-FIELD ELECTROSTATICS */
398             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
399             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
400
401             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm256_and_pd(velec,cutoff_mask);
405             velecsum         = _mm256_add_pd(velecsum,velec);
406
407             fscal            = felec;
408
409             fscal            = _mm256_and_pd(fscal,cutoff_mask);
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm256_mul_pd(fscal,dx30);
413             ty               = _mm256_mul_pd(fscal,dy30);
414             tz               = _mm256_mul_pd(fscal,dz30);
415
416             /* Update vectorial force */
417             fix3             = _mm256_add_pd(fix3,tx);
418             fiy3             = _mm256_add_pd(fiy3,ty);
419             fiz3             = _mm256_add_pd(fiz3,tz);
420
421             fjx0             = _mm256_add_pd(fjx0,tx);
422             fjy0             = _mm256_add_pd(fjy0,ty);
423             fjz0             = _mm256_add_pd(fjz0,tz);
424
425             }
426
427             fjptrA             = f+j_coord_offsetA;
428             fjptrB             = f+j_coord_offsetB;
429             fjptrC             = f+j_coord_offsetC;
430             fjptrD             = f+j_coord_offsetD;
431
432             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
433
434             /* Inner loop uses 152 flops */
435         }
436
437         if(jidx<j_index_end)
438         {
439
440             /* Get j neighbor index, and coordinate index */
441             jnrlistA         = jjnr[jidx];
442             jnrlistB         = jjnr[jidx+1];
443             jnrlistC         = jjnr[jidx+2];
444             jnrlistD         = jjnr[jidx+3];
445             /* Sign of each element will be negative for non-real atoms.
446              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
447              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
448              */
449             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
450
451             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
452             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
453             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
454
455             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
456             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
457             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
458             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
459             j_coord_offsetA  = DIM*jnrA;
460             j_coord_offsetB  = DIM*jnrB;
461             j_coord_offsetC  = DIM*jnrC;
462             j_coord_offsetD  = DIM*jnrD;
463
464             /* load j atom coordinates */
465             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
466                                                  x+j_coord_offsetC,x+j_coord_offsetD,
467                                                  &jx0,&jy0,&jz0);
468
469             /* Calculate displacement vector */
470             dx00             = _mm256_sub_pd(ix0,jx0);
471             dy00             = _mm256_sub_pd(iy0,jy0);
472             dz00             = _mm256_sub_pd(iz0,jz0);
473             dx10             = _mm256_sub_pd(ix1,jx0);
474             dy10             = _mm256_sub_pd(iy1,jy0);
475             dz10             = _mm256_sub_pd(iz1,jz0);
476             dx20             = _mm256_sub_pd(ix2,jx0);
477             dy20             = _mm256_sub_pd(iy2,jy0);
478             dz20             = _mm256_sub_pd(iz2,jz0);
479             dx30             = _mm256_sub_pd(ix3,jx0);
480             dy30             = _mm256_sub_pd(iy3,jy0);
481             dz30             = _mm256_sub_pd(iz3,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
485             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
486             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
487             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
488
489             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
490             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
491             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
492
493             rinvsq00         = gmx_mm256_inv_pd(rsq00);
494             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
495             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
496             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
497
498             /* Load parameters for j particles */
499             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
500                                                                  charge+jnrC+0,charge+jnrD+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505
506             fjx0             = _mm256_setzero_pd();
507             fjy0             = _mm256_setzero_pd();
508             fjz0             = _mm256_setzero_pd();
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             if (gmx_mm256_any_lt(rsq00,rcutoff2))
515             {
516
517             /* Compute parameters for interactions between i and j atoms */
518             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
519                                             vdwioffsetptr0+vdwjidx0B,
520                                             vdwioffsetptr0+vdwjidx0C,
521                                             vdwioffsetptr0+vdwjidx0D,
522                                             &c6_00,&c12_00);
523
524             /* LENNARD-JONES DISPERSION/REPULSION */
525
526             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
527             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
528             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
529             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
530                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
531             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
532
533             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
537             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
538             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
539
540             fscal            = fvdw;
541
542             fscal            = _mm256_and_pd(fscal,cutoff_mask);
543
544             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
545
546             /* Calculate temporary vectorial force */
547             tx               = _mm256_mul_pd(fscal,dx00);
548             ty               = _mm256_mul_pd(fscal,dy00);
549             tz               = _mm256_mul_pd(fscal,dz00);
550
551             /* Update vectorial force */
552             fix0             = _mm256_add_pd(fix0,tx);
553             fiy0             = _mm256_add_pd(fiy0,ty);
554             fiz0             = _mm256_add_pd(fiz0,tz);
555
556             fjx0             = _mm256_add_pd(fjx0,tx);
557             fjy0             = _mm256_add_pd(fjy0,ty);
558             fjz0             = _mm256_add_pd(fjz0,tz);
559
560             }
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm256_any_lt(rsq10,rcutoff2))
567             {
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq10             = _mm256_mul_pd(iq1,jq0);
571
572             /* REACTION-FIELD ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
574             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
575
576             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm256_and_pd(velec,cutoff_mask);
580             velec            = _mm256_andnot_pd(dummy_mask,velec);
581             velecsum         = _mm256_add_pd(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_and_pd(fscal,cutoff_mask);
586
587             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_pd(fscal,dx10);
591             ty               = _mm256_mul_pd(fscal,dy10);
592             tz               = _mm256_mul_pd(fscal,dz10);
593
594             /* Update vectorial force */
595             fix1             = _mm256_add_pd(fix1,tx);
596             fiy1             = _mm256_add_pd(fiy1,ty);
597             fiz1             = _mm256_add_pd(fiz1,tz);
598
599             fjx0             = _mm256_add_pd(fjx0,tx);
600             fjy0             = _mm256_add_pd(fjy0,ty);
601             fjz0             = _mm256_add_pd(fjz0,tz);
602
603             }
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             if (gmx_mm256_any_lt(rsq20,rcutoff2))
610             {
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq20             = _mm256_mul_pd(iq2,jq0);
614
615             /* REACTION-FIELD ELECTROSTATICS */
616             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
617             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
618
619             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm256_and_pd(velec,cutoff_mask);
623             velec            = _mm256_andnot_pd(dummy_mask,velec);
624             velecsum         = _mm256_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm256_and_pd(fscal,cutoff_mask);
629
630             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_pd(fscal,dx20);
634             ty               = _mm256_mul_pd(fscal,dy20);
635             tz               = _mm256_mul_pd(fscal,dz20);
636
637             /* Update vectorial force */
638             fix2             = _mm256_add_pd(fix2,tx);
639             fiy2             = _mm256_add_pd(fiy2,ty);
640             fiz2             = _mm256_add_pd(fiz2,tz);
641
642             fjx0             = _mm256_add_pd(fjx0,tx);
643             fjy0             = _mm256_add_pd(fjy0,ty);
644             fjz0             = _mm256_add_pd(fjz0,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm256_any_lt(rsq30,rcutoff2))
653             {
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq30             = _mm256_mul_pd(iq3,jq0);
657
658             /* REACTION-FIELD ELECTROSTATICS */
659             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
660             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
661
662             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm256_and_pd(velec,cutoff_mask);
666             velec            = _mm256_andnot_pd(dummy_mask,velec);
667             velecsum         = _mm256_add_pd(velecsum,velec);
668
669             fscal            = felec;
670
671             fscal            = _mm256_and_pd(fscal,cutoff_mask);
672
673             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm256_mul_pd(fscal,dx30);
677             ty               = _mm256_mul_pd(fscal,dy30);
678             tz               = _mm256_mul_pd(fscal,dz30);
679
680             /* Update vectorial force */
681             fix3             = _mm256_add_pd(fix3,tx);
682             fiy3             = _mm256_add_pd(fiy3,ty);
683             fiz3             = _mm256_add_pd(fiz3,tz);
684
685             fjx0             = _mm256_add_pd(fjx0,tx);
686             fjy0             = _mm256_add_pd(fjy0,ty);
687             fjz0             = _mm256_add_pd(fjz0,tz);
688
689             }
690
691             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
692             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
693             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
694             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
695
696             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
697
698             /* Inner loop uses 152 flops */
699         }
700
701         /* End of innermost loop */
702
703         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
704                                                  f+i_coord_offset,fshift+i_shift_offset);
705
706         ggid                        = gid[iidx];
707         /* Update potential energies */
708         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
709         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
710
711         /* Increment number of inner iterations */
712         inneriter                  += j_index_end - j_index_start;
713
714         /* Outer loop uses 26 flops */
715     }
716
717     /* Increment number of outer iterations */
718     outeriter        += nri;
719
720     /* Update outer/inner flops */
721
722     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
723 }
724 /*
725  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
726  * Electrostatics interaction: ReactionField
727  * VdW interaction:            LennardJones
728  * Geometry:                   Water4-Particle
729  * Calculate force/pot:        Force
730  */
731 void
732 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_avx_256_double
733                     (t_nblist                    * gmx_restrict       nlist,
734                      rvec                        * gmx_restrict          xx,
735                      rvec                        * gmx_restrict          ff,
736                      t_forcerec                  * gmx_restrict          fr,
737                      t_mdatoms                   * gmx_restrict     mdatoms,
738                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
739                      t_nrnb                      * gmx_restrict        nrnb)
740 {
741     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
742      * just 0 for non-waters.
743      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
744      * jnr indices corresponding to data put in the four positions in the SIMD register.
745      */
746     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
747     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
748     int              jnrA,jnrB,jnrC,jnrD;
749     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
750     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
751     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
752     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
753     real             rcutoff_scalar;
754     real             *shiftvec,*fshift,*x,*f;
755     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
756     real             scratch[4*DIM];
757     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
758     real *           vdwioffsetptr0;
759     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
760     real *           vdwioffsetptr1;
761     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
762     real *           vdwioffsetptr2;
763     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
764     real *           vdwioffsetptr3;
765     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
766     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
767     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
768     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
769     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
770     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
771     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
772     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
773     real             *charge;
774     int              nvdwtype;
775     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
776     int              *vdwtype;
777     real             *vdwparam;
778     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
779     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
780     __m256d          dummy_mask,cutoff_mask;
781     __m128           tmpmask0,tmpmask1;
782     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
783     __m256d          one     = _mm256_set1_pd(1.0);
784     __m256d          two     = _mm256_set1_pd(2.0);
785     x                = xx[0];
786     f                = ff[0];
787
788     nri              = nlist->nri;
789     iinr             = nlist->iinr;
790     jindex           = nlist->jindex;
791     jjnr             = nlist->jjnr;
792     shiftidx         = nlist->shift;
793     gid              = nlist->gid;
794     shiftvec         = fr->shift_vec[0];
795     fshift           = fr->fshift[0];
796     facel            = _mm256_set1_pd(fr->epsfac);
797     charge           = mdatoms->chargeA;
798     krf              = _mm256_set1_pd(fr->ic->k_rf);
799     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
800     crf              = _mm256_set1_pd(fr->ic->c_rf);
801     nvdwtype         = fr->ntype;
802     vdwparam         = fr->nbfp;
803     vdwtype          = mdatoms->typeA;
804
805     /* Setup water-specific parameters */
806     inr              = nlist->iinr[0];
807     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
808     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
809     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
810     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
811
812     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
813     rcutoff_scalar   = fr->rcoulomb;
814     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
815     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
816
817     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
818     rvdw             = _mm256_set1_pd(fr->rvdw);
819
820     /* Avoid stupid compiler warnings */
821     jnrA = jnrB = jnrC = jnrD = 0;
822     j_coord_offsetA = 0;
823     j_coord_offsetB = 0;
824     j_coord_offsetC = 0;
825     j_coord_offsetD = 0;
826
827     outeriter        = 0;
828     inneriter        = 0;
829
830     for(iidx=0;iidx<4*DIM;iidx++)
831     {
832         scratch[iidx] = 0.0;
833     }
834
835     /* Start outer loop over neighborlists */
836     for(iidx=0; iidx<nri; iidx++)
837     {
838         /* Load shift vector for this list */
839         i_shift_offset   = DIM*shiftidx[iidx];
840
841         /* Load limits for loop over neighbors */
842         j_index_start    = jindex[iidx];
843         j_index_end      = jindex[iidx+1];
844
845         /* Get outer coordinate index */
846         inr              = iinr[iidx];
847         i_coord_offset   = DIM*inr;
848
849         /* Load i particle coords and add shift vector */
850         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
851                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
852
853         fix0             = _mm256_setzero_pd();
854         fiy0             = _mm256_setzero_pd();
855         fiz0             = _mm256_setzero_pd();
856         fix1             = _mm256_setzero_pd();
857         fiy1             = _mm256_setzero_pd();
858         fiz1             = _mm256_setzero_pd();
859         fix2             = _mm256_setzero_pd();
860         fiy2             = _mm256_setzero_pd();
861         fiz2             = _mm256_setzero_pd();
862         fix3             = _mm256_setzero_pd();
863         fiy3             = _mm256_setzero_pd();
864         fiz3             = _mm256_setzero_pd();
865
866         /* Start inner kernel loop */
867         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
868         {
869
870             /* Get j neighbor index, and coordinate index */
871             jnrA             = jjnr[jidx];
872             jnrB             = jjnr[jidx+1];
873             jnrC             = jjnr[jidx+2];
874             jnrD             = jjnr[jidx+3];
875             j_coord_offsetA  = DIM*jnrA;
876             j_coord_offsetB  = DIM*jnrB;
877             j_coord_offsetC  = DIM*jnrC;
878             j_coord_offsetD  = DIM*jnrD;
879
880             /* load j atom coordinates */
881             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
882                                                  x+j_coord_offsetC,x+j_coord_offsetD,
883                                                  &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm256_sub_pd(ix0,jx0);
887             dy00             = _mm256_sub_pd(iy0,jy0);
888             dz00             = _mm256_sub_pd(iz0,jz0);
889             dx10             = _mm256_sub_pd(ix1,jx0);
890             dy10             = _mm256_sub_pd(iy1,jy0);
891             dz10             = _mm256_sub_pd(iz1,jz0);
892             dx20             = _mm256_sub_pd(ix2,jx0);
893             dy20             = _mm256_sub_pd(iy2,jy0);
894             dz20             = _mm256_sub_pd(iz2,jz0);
895             dx30             = _mm256_sub_pd(ix3,jx0);
896             dy30             = _mm256_sub_pd(iy3,jy0);
897             dz30             = _mm256_sub_pd(iz3,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
901             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
902             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
903             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
904
905             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
906             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
907             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
908
909             rinvsq00         = gmx_mm256_inv_pd(rsq00);
910             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
911             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
912             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
913
914             /* Load parameters for j particles */
915             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
916                                                                  charge+jnrC+0,charge+jnrD+0);
917             vdwjidx0A        = 2*vdwtype[jnrA+0];
918             vdwjidx0B        = 2*vdwtype[jnrB+0];
919             vdwjidx0C        = 2*vdwtype[jnrC+0];
920             vdwjidx0D        = 2*vdwtype[jnrD+0];
921
922             fjx0             = _mm256_setzero_pd();
923             fjy0             = _mm256_setzero_pd();
924             fjz0             = _mm256_setzero_pd();
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             if (gmx_mm256_any_lt(rsq00,rcutoff2))
931             {
932
933             /* Compute parameters for interactions between i and j atoms */
934             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
935                                             vdwioffsetptr0+vdwjidx0B,
936                                             vdwioffsetptr0+vdwjidx0C,
937                                             vdwioffsetptr0+vdwjidx0D,
938                                             &c6_00,&c12_00);
939
940             /* LENNARD-JONES DISPERSION/REPULSION */
941
942             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
943             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
944
945             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
946
947             fscal            = fvdw;
948
949             fscal            = _mm256_and_pd(fscal,cutoff_mask);
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm256_mul_pd(fscal,dx00);
953             ty               = _mm256_mul_pd(fscal,dy00);
954             tz               = _mm256_mul_pd(fscal,dz00);
955
956             /* Update vectorial force */
957             fix0             = _mm256_add_pd(fix0,tx);
958             fiy0             = _mm256_add_pd(fiy0,ty);
959             fiz0             = _mm256_add_pd(fiz0,tz);
960
961             fjx0             = _mm256_add_pd(fjx0,tx);
962             fjy0             = _mm256_add_pd(fjy0,ty);
963             fjz0             = _mm256_add_pd(fjz0,tz);
964
965             }
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             if (gmx_mm256_any_lt(rsq10,rcutoff2))
972             {
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq10             = _mm256_mul_pd(iq1,jq0);
976
977             /* REACTION-FIELD ELECTROSTATICS */
978             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
979
980             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
981
982             fscal            = felec;
983
984             fscal            = _mm256_and_pd(fscal,cutoff_mask);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm256_mul_pd(fscal,dx10);
988             ty               = _mm256_mul_pd(fscal,dy10);
989             tz               = _mm256_mul_pd(fscal,dz10);
990
991             /* Update vectorial force */
992             fix1             = _mm256_add_pd(fix1,tx);
993             fiy1             = _mm256_add_pd(fiy1,ty);
994             fiz1             = _mm256_add_pd(fiz1,tz);
995
996             fjx0             = _mm256_add_pd(fjx0,tx);
997             fjy0             = _mm256_add_pd(fjy0,ty);
998             fjz0             = _mm256_add_pd(fjz0,tz);
999
1000             }
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1007             {
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq20             = _mm256_mul_pd(iq2,jq0);
1011
1012             /* REACTION-FIELD ELECTROSTATICS */
1013             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1014
1015             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1016
1017             fscal            = felec;
1018
1019             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1020
1021             /* Calculate temporary vectorial force */
1022             tx               = _mm256_mul_pd(fscal,dx20);
1023             ty               = _mm256_mul_pd(fscal,dy20);
1024             tz               = _mm256_mul_pd(fscal,dz20);
1025
1026             /* Update vectorial force */
1027             fix2             = _mm256_add_pd(fix2,tx);
1028             fiy2             = _mm256_add_pd(fiy2,ty);
1029             fiz2             = _mm256_add_pd(fiz2,tz);
1030
1031             fjx0             = _mm256_add_pd(fjx0,tx);
1032             fjy0             = _mm256_add_pd(fjy0,ty);
1033             fjz0             = _mm256_add_pd(fjz0,tz);
1034
1035             }
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1042             {
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq30             = _mm256_mul_pd(iq3,jq0);
1046
1047             /* REACTION-FIELD ELECTROSTATICS */
1048             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1049
1050             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1051
1052             fscal            = felec;
1053
1054             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1055
1056             /* Calculate temporary vectorial force */
1057             tx               = _mm256_mul_pd(fscal,dx30);
1058             ty               = _mm256_mul_pd(fscal,dy30);
1059             tz               = _mm256_mul_pd(fscal,dz30);
1060
1061             /* Update vectorial force */
1062             fix3             = _mm256_add_pd(fix3,tx);
1063             fiy3             = _mm256_add_pd(fiy3,ty);
1064             fiz3             = _mm256_add_pd(fiz3,tz);
1065
1066             fjx0             = _mm256_add_pd(fjx0,tx);
1067             fjy0             = _mm256_add_pd(fjy0,ty);
1068             fjz0             = _mm256_add_pd(fjz0,tz);
1069
1070             }
1071
1072             fjptrA             = f+j_coord_offsetA;
1073             fjptrB             = f+j_coord_offsetB;
1074             fjptrC             = f+j_coord_offsetC;
1075             fjptrD             = f+j_coord_offsetD;
1076
1077             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1078
1079             /* Inner loop uses 123 flops */
1080         }
1081
1082         if(jidx<j_index_end)
1083         {
1084
1085             /* Get j neighbor index, and coordinate index */
1086             jnrlistA         = jjnr[jidx];
1087             jnrlistB         = jjnr[jidx+1];
1088             jnrlistC         = jjnr[jidx+2];
1089             jnrlistD         = jjnr[jidx+3];
1090             /* Sign of each element will be negative for non-real atoms.
1091              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1092              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1093              */
1094             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1095
1096             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1097             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1098             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1099
1100             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1101             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1102             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1103             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1104             j_coord_offsetA  = DIM*jnrA;
1105             j_coord_offsetB  = DIM*jnrB;
1106             j_coord_offsetC  = DIM*jnrC;
1107             j_coord_offsetD  = DIM*jnrD;
1108
1109             /* load j atom coordinates */
1110             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1111                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1112                                                  &jx0,&jy0,&jz0);
1113
1114             /* Calculate displacement vector */
1115             dx00             = _mm256_sub_pd(ix0,jx0);
1116             dy00             = _mm256_sub_pd(iy0,jy0);
1117             dz00             = _mm256_sub_pd(iz0,jz0);
1118             dx10             = _mm256_sub_pd(ix1,jx0);
1119             dy10             = _mm256_sub_pd(iy1,jy0);
1120             dz10             = _mm256_sub_pd(iz1,jz0);
1121             dx20             = _mm256_sub_pd(ix2,jx0);
1122             dy20             = _mm256_sub_pd(iy2,jy0);
1123             dz20             = _mm256_sub_pd(iz2,jz0);
1124             dx30             = _mm256_sub_pd(ix3,jx0);
1125             dy30             = _mm256_sub_pd(iy3,jy0);
1126             dz30             = _mm256_sub_pd(iz3,jz0);
1127
1128             /* Calculate squared distance and things based on it */
1129             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1130             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1131             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1132             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1133
1134             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1135             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1136             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1137
1138             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1139             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1140             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1141             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1142
1143             /* Load parameters for j particles */
1144             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1145                                                                  charge+jnrC+0,charge+jnrD+0);
1146             vdwjidx0A        = 2*vdwtype[jnrA+0];
1147             vdwjidx0B        = 2*vdwtype[jnrB+0];
1148             vdwjidx0C        = 2*vdwtype[jnrC+0];
1149             vdwjidx0D        = 2*vdwtype[jnrD+0];
1150
1151             fjx0             = _mm256_setzero_pd();
1152             fjy0             = _mm256_setzero_pd();
1153             fjz0             = _mm256_setzero_pd();
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1160             {
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1164                                             vdwioffsetptr0+vdwjidx0B,
1165                                             vdwioffsetptr0+vdwjidx0C,
1166                                             vdwioffsetptr0+vdwjidx0D,
1167                                             &c6_00,&c12_00);
1168
1169             /* LENNARD-JONES DISPERSION/REPULSION */
1170
1171             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1172             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1173
1174             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1175
1176             fscal            = fvdw;
1177
1178             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1179
1180             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1181
1182             /* Calculate temporary vectorial force */
1183             tx               = _mm256_mul_pd(fscal,dx00);
1184             ty               = _mm256_mul_pd(fscal,dy00);
1185             tz               = _mm256_mul_pd(fscal,dz00);
1186
1187             /* Update vectorial force */
1188             fix0             = _mm256_add_pd(fix0,tx);
1189             fiy0             = _mm256_add_pd(fiy0,ty);
1190             fiz0             = _mm256_add_pd(fiz0,tz);
1191
1192             fjx0             = _mm256_add_pd(fjx0,tx);
1193             fjy0             = _mm256_add_pd(fjy0,ty);
1194             fjz0             = _mm256_add_pd(fjz0,tz);
1195
1196             }
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1203             {
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq10             = _mm256_mul_pd(iq1,jq0);
1207
1208             /* REACTION-FIELD ELECTROSTATICS */
1209             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1210
1211             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1212
1213             fscal            = felec;
1214
1215             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1216
1217             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1218
1219             /* Calculate temporary vectorial force */
1220             tx               = _mm256_mul_pd(fscal,dx10);
1221             ty               = _mm256_mul_pd(fscal,dy10);
1222             tz               = _mm256_mul_pd(fscal,dz10);
1223
1224             /* Update vectorial force */
1225             fix1             = _mm256_add_pd(fix1,tx);
1226             fiy1             = _mm256_add_pd(fiy1,ty);
1227             fiz1             = _mm256_add_pd(fiz1,tz);
1228
1229             fjx0             = _mm256_add_pd(fjx0,tx);
1230             fjy0             = _mm256_add_pd(fjy0,ty);
1231             fjz0             = _mm256_add_pd(fjz0,tz);
1232
1233             }
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1240             {
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq20             = _mm256_mul_pd(iq2,jq0);
1244
1245             /* REACTION-FIELD ELECTROSTATICS */
1246             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1247
1248             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1253
1254             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1255
1256             /* Calculate temporary vectorial force */
1257             tx               = _mm256_mul_pd(fscal,dx20);
1258             ty               = _mm256_mul_pd(fscal,dy20);
1259             tz               = _mm256_mul_pd(fscal,dz20);
1260
1261             /* Update vectorial force */
1262             fix2             = _mm256_add_pd(fix2,tx);
1263             fiy2             = _mm256_add_pd(fiy2,ty);
1264             fiz2             = _mm256_add_pd(fiz2,tz);
1265
1266             fjx0             = _mm256_add_pd(fjx0,tx);
1267             fjy0             = _mm256_add_pd(fjy0,ty);
1268             fjz0             = _mm256_add_pd(fjz0,tz);
1269
1270             }
1271
1272             /**************************
1273              * CALCULATE INTERACTIONS *
1274              **************************/
1275
1276             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1277             {
1278
1279             /* Compute parameters for interactions between i and j atoms */
1280             qq30             = _mm256_mul_pd(iq3,jq0);
1281
1282             /* REACTION-FIELD ELECTROSTATICS */
1283             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1284
1285             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1286
1287             fscal            = felec;
1288
1289             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1290
1291             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1292
1293             /* Calculate temporary vectorial force */
1294             tx               = _mm256_mul_pd(fscal,dx30);
1295             ty               = _mm256_mul_pd(fscal,dy30);
1296             tz               = _mm256_mul_pd(fscal,dz30);
1297
1298             /* Update vectorial force */
1299             fix3             = _mm256_add_pd(fix3,tx);
1300             fiy3             = _mm256_add_pd(fiy3,ty);
1301             fiz3             = _mm256_add_pd(fiz3,tz);
1302
1303             fjx0             = _mm256_add_pd(fjx0,tx);
1304             fjy0             = _mm256_add_pd(fjy0,ty);
1305             fjz0             = _mm256_add_pd(fjz0,tz);
1306
1307             }
1308
1309             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1310             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1311             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1312             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1313
1314             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1315
1316             /* Inner loop uses 123 flops */
1317         }
1318
1319         /* End of innermost loop */
1320
1321         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1322                                                  f+i_coord_offset,fshift+i_shift_offset);
1323
1324         /* Increment number of inner iterations */
1325         inneriter                  += j_index_end - j_index_start;
1326
1327         /* Outer loop uses 24 flops */
1328     }
1329
1330     /* Increment number of outer iterations */
1331     outeriter        += nri;
1332
1333     /* Update outer/inner flops */
1334
1335     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1336 }