Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m256d          dummy_mask,cutoff_mask;
90     __m128           tmpmask0,tmpmask1;
91     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
92     __m256d          one     = _mm256_set1_pd(1.0);
93     __m256d          two     = _mm256_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm256_set1_pd(fr->ic->k_rf);
108     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
109     crf              = _mm256_set1_pd(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
117     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
118     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
119     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
127     rvdw             = _mm256_set1_pd(fr->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm256_setzero_pd();
163         fiy0             = _mm256_setzero_pd();
164         fiz0             = _mm256_setzero_pd();
165         fix1             = _mm256_setzero_pd();
166         fiy1             = _mm256_setzero_pd();
167         fiz1             = _mm256_setzero_pd();
168         fix2             = _mm256_setzero_pd();
169         fiy2             = _mm256_setzero_pd();
170         fiz2             = _mm256_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_pd();
174         vvdwsum          = _mm256_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                                  x+j_coord_offsetC,x+j_coord_offsetD,
193                                                  &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm256_sub_pd(ix0,jx0);
197             dy00             = _mm256_sub_pd(iy0,jy0);
198             dz00             = _mm256_sub_pd(iz0,jz0);
199             dx10             = _mm256_sub_pd(ix1,jx0);
200             dy10             = _mm256_sub_pd(iy1,jy0);
201             dz10             = _mm256_sub_pd(iz1,jz0);
202             dx20             = _mm256_sub_pd(ix2,jx0);
203             dy20             = _mm256_sub_pd(iy2,jy0);
204             dz20             = _mm256_sub_pd(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
210
211             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
212             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
213             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
214
215             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
216             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
217             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             fjx0             = _mm256_setzero_pd();
228             fjy0             = _mm256_setzero_pd();
229             fjz0             = _mm256_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm256_any_lt(rsq00,rcutoff2))
236             {
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm256_mul_pd(iq0,jq0);
240             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
241                                             vdwioffsetptr0+vdwjidx0B,
242                                             vdwioffsetptr0+vdwjidx0C,
243                                             vdwioffsetptr0+vdwjidx0D,
244                                             &c6_00,&c12_00);
245
246             /* REACTION-FIELD ELECTROSTATICS */
247             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
248             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
254             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
255             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
256                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
257             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
258
259             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm256_and_pd(velec,cutoff_mask);
263             velecsum         = _mm256_add_pd(velecsum,velec);
264             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm256_add_pd(felec,fvdw);
268
269             fscal            = _mm256_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjx0             = _mm256_add_pd(fjx0,tx);
282             fjy0             = _mm256_add_pd(fjy0,ty);
283             fjz0             = _mm256_add_pd(fjz0,tz);
284
285             }
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_mm256_any_lt(rsq10,rcutoff2))
292             {
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm256_mul_pd(iq1,jq0);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
299             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
300
301             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velec            = _mm256_and_pd(velec,cutoff_mask);
305             velecsum         = _mm256_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             fscal            = _mm256_and_pd(fscal,cutoff_mask);
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm256_mul_pd(fscal,dx10);
313             ty               = _mm256_mul_pd(fscal,dy10);
314             tz               = _mm256_mul_pd(fscal,dz10);
315
316             /* Update vectorial force */
317             fix1             = _mm256_add_pd(fix1,tx);
318             fiy1             = _mm256_add_pd(fiy1,ty);
319             fiz1             = _mm256_add_pd(fiz1,tz);
320
321             fjx0             = _mm256_add_pd(fjx0,tx);
322             fjy0             = _mm256_add_pd(fjy0,ty);
323             fjz0             = _mm256_add_pd(fjz0,tz);
324
325             }
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm256_any_lt(rsq20,rcutoff2))
332             {
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm256_mul_pd(iq2,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
339             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
340
341             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm256_and_pd(velec,cutoff_mask);
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm256_and_pd(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx20);
353             ty               = _mm256_mul_pd(fscal,dy20);
354             tz               = _mm256_mul_pd(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm256_add_pd(fix2,tx);
358             fiy2             = _mm256_add_pd(fiy2,ty);
359             fiz2             = _mm256_add_pd(fiz2,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             }
366
367             fjptrA             = f+j_coord_offsetA;
368             fjptrB             = f+j_coord_offsetB;
369             fjptrC             = f+j_coord_offsetC;
370             fjptrD             = f+j_coord_offsetD;
371
372             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
373
374             /* Inner loop uses 129 flops */
375         }
376
377         if(jidx<j_index_end)
378         {
379
380             /* Get j neighbor index, and coordinate index */
381             jnrlistA         = jjnr[jidx];
382             jnrlistB         = jjnr[jidx+1];
383             jnrlistC         = jjnr[jidx+2];
384             jnrlistD         = jjnr[jidx+3];
385             /* Sign of each element will be negative for non-real atoms.
386              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
387              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
388              */
389             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
390
391             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
392             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
393             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
394
395             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
396             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
397             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
398             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
399             j_coord_offsetA  = DIM*jnrA;
400             j_coord_offsetB  = DIM*jnrB;
401             j_coord_offsetC  = DIM*jnrC;
402             j_coord_offsetD  = DIM*jnrD;
403
404             /* load j atom coordinates */
405             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
406                                                  x+j_coord_offsetC,x+j_coord_offsetD,
407                                                  &jx0,&jy0,&jz0);
408
409             /* Calculate displacement vector */
410             dx00             = _mm256_sub_pd(ix0,jx0);
411             dy00             = _mm256_sub_pd(iy0,jy0);
412             dz00             = _mm256_sub_pd(iz0,jz0);
413             dx10             = _mm256_sub_pd(ix1,jx0);
414             dy10             = _mm256_sub_pd(iy1,jy0);
415             dz10             = _mm256_sub_pd(iz1,jz0);
416             dx20             = _mm256_sub_pd(ix2,jx0);
417             dy20             = _mm256_sub_pd(iy2,jy0);
418             dz20             = _mm256_sub_pd(iz2,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
422             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
423             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
424
425             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
426             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
427             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
428
429             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
430             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
431             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
432
433             /* Load parameters for j particles */
434             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
435                                                                  charge+jnrC+0,charge+jnrD+0);
436             vdwjidx0A        = 2*vdwtype[jnrA+0];
437             vdwjidx0B        = 2*vdwtype[jnrB+0];
438             vdwjidx0C        = 2*vdwtype[jnrC+0];
439             vdwjidx0D        = 2*vdwtype[jnrD+0];
440
441             fjx0             = _mm256_setzero_pd();
442             fjy0             = _mm256_setzero_pd();
443             fjz0             = _mm256_setzero_pd();
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             if (gmx_mm256_any_lt(rsq00,rcutoff2))
450             {
451
452             /* Compute parameters for interactions between i and j atoms */
453             qq00             = _mm256_mul_pd(iq0,jq0);
454             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
455                                             vdwioffsetptr0+vdwjidx0B,
456                                             vdwioffsetptr0+vdwjidx0C,
457                                             vdwioffsetptr0+vdwjidx0D,
458                                             &c6_00,&c12_00);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
462             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
463
464             /* LENNARD-JONES DISPERSION/REPULSION */
465
466             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
467             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
468             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
469             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
470                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
471             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
472
473             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm256_and_pd(velec,cutoff_mask);
477             velec            = _mm256_andnot_pd(dummy_mask,velec);
478             velecsum         = _mm256_add_pd(velecsum,velec);
479             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
480             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
481             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
482
483             fscal            = _mm256_add_pd(felec,fvdw);
484
485             fscal            = _mm256_and_pd(fscal,cutoff_mask);
486
487             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
488
489             /* Calculate temporary vectorial force */
490             tx               = _mm256_mul_pd(fscal,dx00);
491             ty               = _mm256_mul_pd(fscal,dy00);
492             tz               = _mm256_mul_pd(fscal,dz00);
493
494             /* Update vectorial force */
495             fix0             = _mm256_add_pd(fix0,tx);
496             fiy0             = _mm256_add_pd(fiy0,ty);
497             fiz0             = _mm256_add_pd(fiz0,tz);
498
499             fjx0             = _mm256_add_pd(fjx0,tx);
500             fjy0             = _mm256_add_pd(fjy0,ty);
501             fjz0             = _mm256_add_pd(fjz0,tz);
502
503             }
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             if (gmx_mm256_any_lt(rsq10,rcutoff2))
510             {
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm256_mul_pd(iq1,jq0);
514
515             /* REACTION-FIELD ELECTROSTATICS */
516             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
517             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
518
519             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm256_and_pd(velec,cutoff_mask);
523             velec            = _mm256_andnot_pd(dummy_mask,velec);
524             velecsum         = _mm256_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm256_and_pd(fscal,cutoff_mask);
529
530             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm256_mul_pd(fscal,dx10);
534             ty               = _mm256_mul_pd(fscal,dy10);
535             tz               = _mm256_mul_pd(fscal,dz10);
536
537             /* Update vectorial force */
538             fix1             = _mm256_add_pd(fix1,tx);
539             fiy1             = _mm256_add_pd(fiy1,ty);
540             fiz1             = _mm256_add_pd(fiz1,tz);
541
542             fjx0             = _mm256_add_pd(fjx0,tx);
543             fjy0             = _mm256_add_pd(fjy0,ty);
544             fjz0             = _mm256_add_pd(fjz0,tz);
545
546             }
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm256_any_lt(rsq20,rcutoff2))
553             {
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq20             = _mm256_mul_pd(iq2,jq0);
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
560             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
561
562             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm256_and_pd(velec,cutoff_mask);
566             velec            = _mm256_andnot_pd(dummy_mask,velec);
567             velecsum         = _mm256_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm256_and_pd(fscal,cutoff_mask);
572
573             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm256_mul_pd(fscal,dx20);
577             ty               = _mm256_mul_pd(fscal,dy20);
578             tz               = _mm256_mul_pd(fscal,dz20);
579
580             /* Update vectorial force */
581             fix2             = _mm256_add_pd(fix2,tx);
582             fiy2             = _mm256_add_pd(fiy2,ty);
583             fiz2             = _mm256_add_pd(fiz2,tz);
584
585             fjx0             = _mm256_add_pd(fjx0,tx);
586             fjy0             = _mm256_add_pd(fjy0,ty);
587             fjz0             = _mm256_add_pd(fjz0,tz);
588
589             }
590
591             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
592             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
593             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
594             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
595
596             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
597
598             /* Inner loop uses 129 flops */
599         }
600
601         /* End of innermost loop */
602
603         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
604                                                  f+i_coord_offset,fshift+i_shift_offset);
605
606         ggid                        = gid[iidx];
607         /* Update potential energies */
608         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
609         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
610
611         /* Increment number of inner iterations */
612         inneriter                  += j_index_end - j_index_start;
613
614         /* Outer loop uses 20 flops */
615     }
616
617     /* Increment number of outer iterations */
618     outeriter        += nri;
619
620     /* Update outer/inner flops */
621
622     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
623 }
624 /*
625  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
626  * Electrostatics interaction: ReactionField
627  * VdW interaction:            LennardJones
628  * Geometry:                   Water3-Particle
629  * Calculate force/pot:        Force
630  */
631 void
632 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
633                     (t_nblist * gmx_restrict                nlist,
634                      rvec * gmx_restrict                    xx,
635                      rvec * gmx_restrict                    ff,
636                      t_forcerec * gmx_restrict              fr,
637                      t_mdatoms * gmx_restrict               mdatoms,
638                      nb_kernel_data_t * gmx_restrict        kernel_data,
639                      t_nrnb * gmx_restrict                  nrnb)
640 {
641     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
642      * just 0 for non-waters.
643      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
644      * jnr indices corresponding to data put in the four positions in the SIMD register.
645      */
646     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
647     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
648     int              jnrA,jnrB,jnrC,jnrD;
649     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
650     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
651     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
652     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
653     real             rcutoff_scalar;
654     real             *shiftvec,*fshift,*x,*f;
655     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
656     real             scratch[4*DIM];
657     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
658     real *           vdwioffsetptr0;
659     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
660     real *           vdwioffsetptr1;
661     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
662     real *           vdwioffsetptr2;
663     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
664     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
665     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
666     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
667     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
668     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
669     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
670     real             *charge;
671     int              nvdwtype;
672     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
673     int              *vdwtype;
674     real             *vdwparam;
675     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
676     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
677     __m256d          dummy_mask,cutoff_mask;
678     __m128           tmpmask0,tmpmask1;
679     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
680     __m256d          one     = _mm256_set1_pd(1.0);
681     __m256d          two     = _mm256_set1_pd(2.0);
682     x                = xx[0];
683     f                = ff[0];
684
685     nri              = nlist->nri;
686     iinr             = nlist->iinr;
687     jindex           = nlist->jindex;
688     jjnr             = nlist->jjnr;
689     shiftidx         = nlist->shift;
690     gid              = nlist->gid;
691     shiftvec         = fr->shift_vec[0];
692     fshift           = fr->fshift[0];
693     facel            = _mm256_set1_pd(fr->epsfac);
694     charge           = mdatoms->chargeA;
695     krf              = _mm256_set1_pd(fr->ic->k_rf);
696     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
697     crf              = _mm256_set1_pd(fr->ic->c_rf);
698     nvdwtype         = fr->ntype;
699     vdwparam         = fr->nbfp;
700     vdwtype          = mdatoms->typeA;
701
702     /* Setup water-specific parameters */
703     inr              = nlist->iinr[0];
704     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
705     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
706     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
707     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
708
709     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
710     rcutoff_scalar   = fr->rcoulomb;
711     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
712     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
713
714     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
715     rvdw             = _mm256_set1_pd(fr->rvdw);
716
717     /* Avoid stupid compiler warnings */
718     jnrA = jnrB = jnrC = jnrD = 0;
719     j_coord_offsetA = 0;
720     j_coord_offsetB = 0;
721     j_coord_offsetC = 0;
722     j_coord_offsetD = 0;
723
724     outeriter        = 0;
725     inneriter        = 0;
726
727     for(iidx=0;iidx<4*DIM;iidx++)
728     {
729         scratch[iidx] = 0.0;
730     }
731
732     /* Start outer loop over neighborlists */
733     for(iidx=0; iidx<nri; iidx++)
734     {
735         /* Load shift vector for this list */
736         i_shift_offset   = DIM*shiftidx[iidx];
737
738         /* Load limits for loop over neighbors */
739         j_index_start    = jindex[iidx];
740         j_index_end      = jindex[iidx+1];
741
742         /* Get outer coordinate index */
743         inr              = iinr[iidx];
744         i_coord_offset   = DIM*inr;
745
746         /* Load i particle coords and add shift vector */
747         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
748                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
749
750         fix0             = _mm256_setzero_pd();
751         fiy0             = _mm256_setzero_pd();
752         fiz0             = _mm256_setzero_pd();
753         fix1             = _mm256_setzero_pd();
754         fiy1             = _mm256_setzero_pd();
755         fiz1             = _mm256_setzero_pd();
756         fix2             = _mm256_setzero_pd();
757         fiy2             = _mm256_setzero_pd();
758         fiz2             = _mm256_setzero_pd();
759
760         /* Start inner kernel loop */
761         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrA             = jjnr[jidx];
766             jnrB             = jjnr[jidx+1];
767             jnrC             = jjnr[jidx+2];
768             jnrD             = jjnr[jidx+3];
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773
774             /* load j atom coordinates */
775             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
776                                                  x+j_coord_offsetC,x+j_coord_offsetD,
777                                                  &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm256_sub_pd(ix0,jx0);
781             dy00             = _mm256_sub_pd(iy0,jy0);
782             dz00             = _mm256_sub_pd(iz0,jz0);
783             dx10             = _mm256_sub_pd(ix1,jx0);
784             dy10             = _mm256_sub_pd(iy1,jy0);
785             dz10             = _mm256_sub_pd(iz1,jz0);
786             dx20             = _mm256_sub_pd(ix2,jx0);
787             dy20             = _mm256_sub_pd(iy2,jy0);
788             dz20             = _mm256_sub_pd(iz2,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
792             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
793             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
794
795             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
796             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
797             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
798
799             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
800             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
801             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
805                                                                  charge+jnrC+0,charge+jnrD+0);
806             vdwjidx0A        = 2*vdwtype[jnrA+0];
807             vdwjidx0B        = 2*vdwtype[jnrB+0];
808             vdwjidx0C        = 2*vdwtype[jnrC+0];
809             vdwjidx0D        = 2*vdwtype[jnrD+0];
810
811             fjx0             = _mm256_setzero_pd();
812             fjy0             = _mm256_setzero_pd();
813             fjz0             = _mm256_setzero_pd();
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             if (gmx_mm256_any_lt(rsq00,rcutoff2))
820             {
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq00             = _mm256_mul_pd(iq0,jq0);
824             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
825                                             vdwioffsetptr0+vdwjidx0B,
826                                             vdwioffsetptr0+vdwjidx0C,
827                                             vdwioffsetptr0+vdwjidx0D,
828                                             &c6_00,&c12_00);
829
830             /* REACTION-FIELD ELECTROSTATICS */
831             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
832
833             /* LENNARD-JONES DISPERSION/REPULSION */
834
835             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
836             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
837
838             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
839
840             fscal            = _mm256_add_pd(felec,fvdw);
841
842             fscal            = _mm256_and_pd(fscal,cutoff_mask);
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm256_mul_pd(fscal,dx00);
846             ty               = _mm256_mul_pd(fscal,dy00);
847             tz               = _mm256_mul_pd(fscal,dz00);
848
849             /* Update vectorial force */
850             fix0             = _mm256_add_pd(fix0,tx);
851             fiy0             = _mm256_add_pd(fiy0,ty);
852             fiz0             = _mm256_add_pd(fiz0,tz);
853
854             fjx0             = _mm256_add_pd(fjx0,tx);
855             fjy0             = _mm256_add_pd(fjy0,ty);
856             fjz0             = _mm256_add_pd(fjz0,tz);
857
858             }
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             if (gmx_mm256_any_lt(rsq10,rcutoff2))
865             {
866
867             /* Compute parameters for interactions between i and j atoms */
868             qq10             = _mm256_mul_pd(iq1,jq0);
869
870             /* REACTION-FIELD ELECTROSTATICS */
871             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
872
873             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
874
875             fscal            = felec;
876
877             fscal            = _mm256_and_pd(fscal,cutoff_mask);
878
879             /* Calculate temporary vectorial force */
880             tx               = _mm256_mul_pd(fscal,dx10);
881             ty               = _mm256_mul_pd(fscal,dy10);
882             tz               = _mm256_mul_pd(fscal,dz10);
883
884             /* Update vectorial force */
885             fix1             = _mm256_add_pd(fix1,tx);
886             fiy1             = _mm256_add_pd(fiy1,ty);
887             fiz1             = _mm256_add_pd(fiz1,tz);
888
889             fjx0             = _mm256_add_pd(fjx0,tx);
890             fjy0             = _mm256_add_pd(fjy0,ty);
891             fjz0             = _mm256_add_pd(fjz0,tz);
892
893             }
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             if (gmx_mm256_any_lt(rsq20,rcutoff2))
900             {
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq20             = _mm256_mul_pd(iq2,jq0);
904
905             /* REACTION-FIELD ELECTROSTATICS */
906             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
907
908             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
909
910             fscal            = felec;
911
912             fscal            = _mm256_and_pd(fscal,cutoff_mask);
913
914             /* Calculate temporary vectorial force */
915             tx               = _mm256_mul_pd(fscal,dx20);
916             ty               = _mm256_mul_pd(fscal,dy20);
917             tz               = _mm256_mul_pd(fscal,dz20);
918
919             /* Update vectorial force */
920             fix2             = _mm256_add_pd(fix2,tx);
921             fiy2             = _mm256_add_pd(fiy2,ty);
922             fiz2             = _mm256_add_pd(fiz2,tz);
923
924             fjx0             = _mm256_add_pd(fjx0,tx);
925             fjy0             = _mm256_add_pd(fjy0,ty);
926             fjz0             = _mm256_add_pd(fjz0,tz);
927
928             }
929
930             fjptrA             = f+j_coord_offsetA;
931             fjptrB             = f+j_coord_offsetB;
932             fjptrC             = f+j_coord_offsetC;
933             fjptrD             = f+j_coord_offsetD;
934
935             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
936
937             /* Inner loop uses 100 flops */
938         }
939
940         if(jidx<j_index_end)
941         {
942
943             /* Get j neighbor index, and coordinate index */
944             jnrlistA         = jjnr[jidx];
945             jnrlistB         = jjnr[jidx+1];
946             jnrlistC         = jjnr[jidx+2];
947             jnrlistD         = jjnr[jidx+3];
948             /* Sign of each element will be negative for non-real atoms.
949              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
950              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
951              */
952             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
953
954             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
955             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
956             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
957
958             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
959             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
960             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
961             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
962             j_coord_offsetA  = DIM*jnrA;
963             j_coord_offsetB  = DIM*jnrB;
964             j_coord_offsetC  = DIM*jnrC;
965             j_coord_offsetD  = DIM*jnrD;
966
967             /* load j atom coordinates */
968             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
969                                                  x+j_coord_offsetC,x+j_coord_offsetD,
970                                                  &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm256_sub_pd(ix0,jx0);
974             dy00             = _mm256_sub_pd(iy0,jy0);
975             dz00             = _mm256_sub_pd(iz0,jz0);
976             dx10             = _mm256_sub_pd(ix1,jx0);
977             dy10             = _mm256_sub_pd(iy1,jy0);
978             dz10             = _mm256_sub_pd(iz1,jz0);
979             dx20             = _mm256_sub_pd(ix2,jx0);
980             dy20             = _mm256_sub_pd(iy2,jy0);
981             dz20             = _mm256_sub_pd(iz2,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
985             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
986             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
987
988             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
989             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
990             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
991
992             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
993             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
994             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
995
996             /* Load parameters for j particles */
997             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
998                                                                  charge+jnrC+0,charge+jnrD+0);
999             vdwjidx0A        = 2*vdwtype[jnrA+0];
1000             vdwjidx0B        = 2*vdwtype[jnrB+0];
1001             vdwjidx0C        = 2*vdwtype[jnrC+0];
1002             vdwjidx0D        = 2*vdwtype[jnrD+0];
1003
1004             fjx0             = _mm256_setzero_pd();
1005             fjy0             = _mm256_setzero_pd();
1006             fjz0             = _mm256_setzero_pd();
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1013             {
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq00             = _mm256_mul_pd(iq0,jq0);
1017             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1018                                             vdwioffsetptr0+vdwjidx0B,
1019                                             vdwioffsetptr0+vdwjidx0C,
1020                                             vdwioffsetptr0+vdwjidx0D,
1021                                             &c6_00,&c12_00);
1022
1023             /* REACTION-FIELD ELECTROSTATICS */
1024             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1025
1026             /* LENNARD-JONES DISPERSION/REPULSION */
1027
1028             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1029             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1030
1031             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1032
1033             fscal            = _mm256_add_pd(felec,fvdw);
1034
1035             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1036
1037             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm256_mul_pd(fscal,dx00);
1041             ty               = _mm256_mul_pd(fscal,dy00);
1042             tz               = _mm256_mul_pd(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm256_add_pd(fix0,tx);
1046             fiy0             = _mm256_add_pd(fiy0,ty);
1047             fiz0             = _mm256_add_pd(fiz0,tz);
1048
1049             fjx0             = _mm256_add_pd(fjx0,tx);
1050             fjy0             = _mm256_add_pd(fjy0,ty);
1051             fjz0             = _mm256_add_pd(fjz0,tz);
1052
1053             }
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1060             {
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq10             = _mm256_mul_pd(iq1,jq0);
1064
1065             /* REACTION-FIELD ELECTROSTATICS */
1066             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1067
1068             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1069
1070             fscal            = felec;
1071
1072             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1073
1074             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx10);
1078             ty               = _mm256_mul_pd(fscal,dy10);
1079             tz               = _mm256_mul_pd(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm256_add_pd(fix1,tx);
1083             fiy1             = _mm256_add_pd(fiy1,ty);
1084             fiz1             = _mm256_add_pd(fiz1,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1097             {
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq20             = _mm256_mul_pd(iq2,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1104
1105             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1110
1111             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm256_mul_pd(fscal,dx20);
1115             ty               = _mm256_mul_pd(fscal,dy20);
1116             tz               = _mm256_mul_pd(fscal,dz20);
1117
1118             /* Update vectorial force */
1119             fix2             = _mm256_add_pd(fix2,tx);
1120             fiy2             = _mm256_add_pd(fiy2,ty);
1121             fiz2             = _mm256_add_pd(fiz2,tz);
1122
1123             fjx0             = _mm256_add_pd(fjx0,tx);
1124             fjy0             = _mm256_add_pd(fjy0,ty);
1125             fjz0             = _mm256_add_pd(fjz0,tz);
1126
1127             }
1128
1129             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1130             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1131             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1132             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1133
1134             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 100 flops */
1137         }
1138
1139         /* End of innermost loop */
1140
1141         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1142                                                  f+i_coord_offset,fshift+i_shift_offset);
1143
1144         /* Increment number of inner iterations */
1145         inneriter                  += j_index_end - j_index_start;
1146
1147         /* Outer loop uses 18 flops */
1148     }
1149
1150     /* Increment number of outer iterations */
1151     outeriter        += nri;
1152
1153     /* Update outer/inner flops */
1154
1155     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1156 }