Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm256_set1_pd(fr->ic->k_rf);
124     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
125     crf              = _mm256_set1_pd(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
133     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
134     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
143     rvdw             = _mm256_set1_pd(fr->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_pd();
179         fiy0             = _mm256_setzero_pd();
180         fiz0             = _mm256_setzero_pd();
181         fix1             = _mm256_setzero_pd();
182         fiy1             = _mm256_setzero_pd();
183         fiz1             = _mm256_setzero_pd();
184         fix2             = _mm256_setzero_pd();
185         fiy2             = _mm256_setzero_pd();
186         fiz2             = _mm256_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_pd();
190         vvdwsum          = _mm256_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_pd(ix0,jx0);
213             dy00             = _mm256_sub_pd(iy0,jy0);
214             dz00             = _mm256_sub_pd(iz0,jz0);
215             dx10             = _mm256_sub_pd(ix1,jx0);
216             dy10             = _mm256_sub_pd(iy1,jy0);
217             dz10             = _mm256_sub_pd(iz1,jz0);
218             dx20             = _mm256_sub_pd(ix2,jx0);
219             dy20             = _mm256_sub_pd(iy2,jy0);
220             dz20             = _mm256_sub_pd(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
224             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
225             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
226
227             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
228             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
229             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
230
231             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
232             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
233             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
237                                                                  charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm256_setzero_pd();
244             fjy0             = _mm256_setzero_pd();
245             fjz0             = _mm256_setzero_pd();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm256_any_lt(rsq00,rcutoff2))
252             {
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm256_mul_pd(iq0,jq0);
256             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
257                                             vdwioffsetptr0+vdwjidx0B,
258                                             vdwioffsetptr0+vdwjidx0C,
259                                             vdwioffsetptr0+vdwjidx0D,
260                                             &c6_00,&c12_00);
261
262             /* REACTION-FIELD ELECTROSTATICS */
263             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
264             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
270             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
272                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
273             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
274
275             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm256_and_pd(velec,cutoff_mask);
279             velecsum         = _mm256_add_pd(velecsum,velec);
280             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
281             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_pd(felec,fvdw);
284
285             fscal            = _mm256_and_pd(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx00);
289             ty               = _mm256_mul_pd(fscal,dy00);
290             tz               = _mm256_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_pd(fix0,tx);
294             fiy0             = _mm256_add_pd(fiy0,ty);
295             fiz0             = _mm256_add_pd(fiz0,tz);
296
297             fjx0             = _mm256_add_pd(fjx0,tx);
298             fjy0             = _mm256_add_pd(fjy0,ty);
299             fjz0             = _mm256_add_pd(fjz0,tz);
300
301             }
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm256_any_lt(rsq10,rcutoff2))
308             {
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm256_mul_pd(iq1,jq0);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
315             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
316
317             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm256_and_pd(velec,cutoff_mask);
321             velecsum         = _mm256_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm256_and_pd(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_pd(fscal,dx10);
329             ty               = _mm256_mul_pd(fscal,dy10);
330             tz               = _mm256_mul_pd(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm256_add_pd(fix1,tx);
334             fiy1             = _mm256_add_pd(fiy1,ty);
335             fiz1             = _mm256_add_pd(fiz1,tz);
336
337             fjx0             = _mm256_add_pd(fjx0,tx);
338             fjy0             = _mm256_add_pd(fjy0,ty);
339             fjz0             = _mm256_add_pd(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm256_any_lt(rsq20,rcutoff2))
348             {
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm256_mul_pd(iq2,jq0);
352
353             /* REACTION-FIELD ELECTROSTATICS */
354             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
355             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
356
357             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm256_and_pd(velec,cutoff_mask);
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             fscal            = _mm256_and_pd(fscal,cutoff_mask);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm256_mul_pd(fscal,dx20);
369             ty               = _mm256_mul_pd(fscal,dy20);
370             tz               = _mm256_mul_pd(fscal,dz20);
371
372             /* Update vectorial force */
373             fix2             = _mm256_add_pd(fix2,tx);
374             fiy2             = _mm256_add_pd(fiy2,ty);
375             fiz2             = _mm256_add_pd(fiz2,tz);
376
377             fjx0             = _mm256_add_pd(fjx0,tx);
378             fjy0             = _mm256_add_pd(fjy0,ty);
379             fjz0             = _mm256_add_pd(fjz0,tz);
380
381             }
382
383             fjptrA             = f+j_coord_offsetA;
384             fjptrB             = f+j_coord_offsetB;
385             fjptrC             = f+j_coord_offsetC;
386             fjptrD             = f+j_coord_offsetD;
387
388             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
389
390             /* Inner loop uses 129 flops */
391         }
392
393         if(jidx<j_index_end)
394         {
395
396             /* Get j neighbor index, and coordinate index */
397             jnrlistA         = jjnr[jidx];
398             jnrlistB         = jjnr[jidx+1];
399             jnrlistC         = jjnr[jidx+2];
400             jnrlistD         = jjnr[jidx+3];
401             /* Sign of each element will be negative for non-real atoms.
402              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
403              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
404              */
405             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
406
407             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
408             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
409             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
410
411             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
412             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
413             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
414             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
415             j_coord_offsetA  = DIM*jnrA;
416             j_coord_offsetB  = DIM*jnrB;
417             j_coord_offsetC  = DIM*jnrC;
418             j_coord_offsetD  = DIM*jnrD;
419
420             /* load j atom coordinates */
421             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
422                                                  x+j_coord_offsetC,x+j_coord_offsetD,
423                                                  &jx0,&jy0,&jz0);
424
425             /* Calculate displacement vector */
426             dx00             = _mm256_sub_pd(ix0,jx0);
427             dy00             = _mm256_sub_pd(iy0,jy0);
428             dz00             = _mm256_sub_pd(iz0,jz0);
429             dx10             = _mm256_sub_pd(ix1,jx0);
430             dy10             = _mm256_sub_pd(iy1,jy0);
431             dz10             = _mm256_sub_pd(iz1,jz0);
432             dx20             = _mm256_sub_pd(ix2,jx0);
433             dy20             = _mm256_sub_pd(iy2,jy0);
434             dz20             = _mm256_sub_pd(iz2,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
438             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
439             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
440
441             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
442             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
443             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
444
445             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
446             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
447             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
448
449             /* Load parameters for j particles */
450             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
451                                                                  charge+jnrC+0,charge+jnrD+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454             vdwjidx0C        = 2*vdwtype[jnrC+0];
455             vdwjidx0D        = 2*vdwtype[jnrD+0];
456
457             fjx0             = _mm256_setzero_pd();
458             fjy0             = _mm256_setzero_pd();
459             fjz0             = _mm256_setzero_pd();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             if (gmx_mm256_any_lt(rsq00,rcutoff2))
466             {
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq00             = _mm256_mul_pd(iq0,jq0);
470             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
471                                             vdwioffsetptr0+vdwjidx0B,
472                                             vdwioffsetptr0+vdwjidx0C,
473                                             vdwioffsetptr0+vdwjidx0D,
474                                             &c6_00,&c12_00);
475
476             /* REACTION-FIELD ELECTROSTATICS */
477             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
478             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
479
480             /* LENNARD-JONES DISPERSION/REPULSION */
481
482             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
483             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
484             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
485             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
486                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
487             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
488
489             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm256_and_pd(velec,cutoff_mask);
493             velec            = _mm256_andnot_pd(dummy_mask,velec);
494             velecsum         = _mm256_add_pd(velecsum,velec);
495             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
496             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
497             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
498
499             fscal            = _mm256_add_pd(felec,fvdw);
500
501             fscal            = _mm256_and_pd(fscal,cutoff_mask);
502
503             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx00);
507             ty               = _mm256_mul_pd(fscal,dy00);
508             tz               = _mm256_mul_pd(fscal,dz00);
509
510             /* Update vectorial force */
511             fix0             = _mm256_add_pd(fix0,tx);
512             fiy0             = _mm256_add_pd(fiy0,ty);
513             fiz0             = _mm256_add_pd(fiz0,tz);
514
515             fjx0             = _mm256_add_pd(fjx0,tx);
516             fjy0             = _mm256_add_pd(fjy0,ty);
517             fjz0             = _mm256_add_pd(fjz0,tz);
518
519             }
520
521             /**************************
522              * CALCULATE INTERACTIONS *
523              **************************/
524
525             if (gmx_mm256_any_lt(rsq10,rcutoff2))
526             {
527
528             /* Compute parameters for interactions between i and j atoms */
529             qq10             = _mm256_mul_pd(iq1,jq0);
530
531             /* REACTION-FIELD ELECTROSTATICS */
532             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
533             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
534
535             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm256_and_pd(velec,cutoff_mask);
539             velec            = _mm256_andnot_pd(dummy_mask,velec);
540             velecsum         = _mm256_add_pd(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _mm256_and_pd(fscal,cutoff_mask);
545
546             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm256_mul_pd(fscal,dx10);
550             ty               = _mm256_mul_pd(fscal,dy10);
551             tz               = _mm256_mul_pd(fscal,dz10);
552
553             /* Update vectorial force */
554             fix1             = _mm256_add_pd(fix1,tx);
555             fiy1             = _mm256_add_pd(fiy1,ty);
556             fiz1             = _mm256_add_pd(fiz1,tz);
557
558             fjx0             = _mm256_add_pd(fjx0,tx);
559             fjy0             = _mm256_add_pd(fjy0,ty);
560             fjz0             = _mm256_add_pd(fjz0,tz);
561
562             }
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (gmx_mm256_any_lt(rsq20,rcutoff2))
569             {
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq20             = _mm256_mul_pd(iq2,jq0);
573
574             /* REACTION-FIELD ELECTROSTATICS */
575             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
576             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
577
578             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
579
580             /* Update potential sum for this i atom from the interaction with this j atom. */
581             velec            = _mm256_and_pd(velec,cutoff_mask);
582             velec            = _mm256_andnot_pd(dummy_mask,velec);
583             velecsum         = _mm256_add_pd(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm256_and_pd(fscal,cutoff_mask);
588
589             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm256_mul_pd(fscal,dx20);
593             ty               = _mm256_mul_pd(fscal,dy20);
594             tz               = _mm256_mul_pd(fscal,dz20);
595
596             /* Update vectorial force */
597             fix2             = _mm256_add_pd(fix2,tx);
598             fiy2             = _mm256_add_pd(fiy2,ty);
599             fiz2             = _mm256_add_pd(fiz2,tz);
600
601             fjx0             = _mm256_add_pd(fjx0,tx);
602             fjy0             = _mm256_add_pd(fjy0,ty);
603             fjz0             = _mm256_add_pd(fjz0,tz);
604
605             }
606
607             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
608             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
609             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
610             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
611
612             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
613
614             /* Inner loop uses 129 flops */
615         }
616
617         /* End of innermost loop */
618
619         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
620                                                  f+i_coord_offset,fshift+i_shift_offset);
621
622         ggid                        = gid[iidx];
623         /* Update potential energies */
624         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
625         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
626
627         /* Increment number of inner iterations */
628         inneriter                  += j_index_end - j_index_start;
629
630         /* Outer loop uses 20 flops */
631     }
632
633     /* Increment number of outer iterations */
634     outeriter        += nri;
635
636     /* Update outer/inner flops */
637
638     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
639 }
640 /*
641  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
642  * Electrostatics interaction: ReactionField
643  * VdW interaction:            LennardJones
644  * Geometry:                   Water3-Particle
645  * Calculate force/pot:        Force
646  */
647 void
648 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
649                     (t_nblist                    * gmx_restrict       nlist,
650                      rvec                        * gmx_restrict          xx,
651                      rvec                        * gmx_restrict          ff,
652                      t_forcerec                  * gmx_restrict          fr,
653                      t_mdatoms                   * gmx_restrict     mdatoms,
654                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
655                      t_nrnb                      * gmx_restrict        nrnb)
656 {
657     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
658      * just 0 for non-waters.
659      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
660      * jnr indices corresponding to data put in the four positions in the SIMD register.
661      */
662     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
663     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
664     int              jnrA,jnrB,jnrC,jnrD;
665     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
666     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
667     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
668     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
669     real             rcutoff_scalar;
670     real             *shiftvec,*fshift,*x,*f;
671     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
672     real             scratch[4*DIM];
673     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
674     real *           vdwioffsetptr0;
675     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
676     real *           vdwioffsetptr1;
677     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
678     real *           vdwioffsetptr2;
679     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
680     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
681     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
682     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
683     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
684     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
685     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
686     real             *charge;
687     int              nvdwtype;
688     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
689     int              *vdwtype;
690     real             *vdwparam;
691     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
692     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
693     __m256d          dummy_mask,cutoff_mask;
694     __m128           tmpmask0,tmpmask1;
695     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
696     __m256d          one     = _mm256_set1_pd(1.0);
697     __m256d          two     = _mm256_set1_pd(2.0);
698     x                = xx[0];
699     f                = ff[0];
700
701     nri              = nlist->nri;
702     iinr             = nlist->iinr;
703     jindex           = nlist->jindex;
704     jjnr             = nlist->jjnr;
705     shiftidx         = nlist->shift;
706     gid              = nlist->gid;
707     shiftvec         = fr->shift_vec[0];
708     fshift           = fr->fshift[0];
709     facel            = _mm256_set1_pd(fr->epsfac);
710     charge           = mdatoms->chargeA;
711     krf              = _mm256_set1_pd(fr->ic->k_rf);
712     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
713     crf              = _mm256_set1_pd(fr->ic->c_rf);
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717
718     /* Setup water-specific parameters */
719     inr              = nlist->iinr[0];
720     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
721     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
722     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
723     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
724
725     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
726     rcutoff_scalar   = fr->rcoulomb;
727     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
728     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
729
730     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
731     rvdw             = _mm256_set1_pd(fr->rvdw);
732
733     /* Avoid stupid compiler warnings */
734     jnrA = jnrB = jnrC = jnrD = 0;
735     j_coord_offsetA = 0;
736     j_coord_offsetB = 0;
737     j_coord_offsetC = 0;
738     j_coord_offsetD = 0;
739
740     outeriter        = 0;
741     inneriter        = 0;
742
743     for(iidx=0;iidx<4*DIM;iidx++)
744     {
745         scratch[iidx] = 0.0;
746     }
747
748     /* Start outer loop over neighborlists */
749     for(iidx=0; iidx<nri; iidx++)
750     {
751         /* Load shift vector for this list */
752         i_shift_offset   = DIM*shiftidx[iidx];
753
754         /* Load limits for loop over neighbors */
755         j_index_start    = jindex[iidx];
756         j_index_end      = jindex[iidx+1];
757
758         /* Get outer coordinate index */
759         inr              = iinr[iidx];
760         i_coord_offset   = DIM*inr;
761
762         /* Load i particle coords and add shift vector */
763         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
764                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
765
766         fix0             = _mm256_setzero_pd();
767         fiy0             = _mm256_setzero_pd();
768         fiz0             = _mm256_setzero_pd();
769         fix1             = _mm256_setzero_pd();
770         fiy1             = _mm256_setzero_pd();
771         fiz1             = _mm256_setzero_pd();
772         fix2             = _mm256_setzero_pd();
773         fiy2             = _mm256_setzero_pd();
774         fiz2             = _mm256_setzero_pd();
775
776         /* Start inner kernel loop */
777         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
778         {
779
780             /* Get j neighbor index, and coordinate index */
781             jnrA             = jjnr[jidx];
782             jnrB             = jjnr[jidx+1];
783             jnrC             = jjnr[jidx+2];
784             jnrD             = jjnr[jidx+3];
785             j_coord_offsetA  = DIM*jnrA;
786             j_coord_offsetB  = DIM*jnrB;
787             j_coord_offsetC  = DIM*jnrC;
788             j_coord_offsetD  = DIM*jnrD;
789
790             /* load j atom coordinates */
791             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
792                                                  x+j_coord_offsetC,x+j_coord_offsetD,
793                                                  &jx0,&jy0,&jz0);
794
795             /* Calculate displacement vector */
796             dx00             = _mm256_sub_pd(ix0,jx0);
797             dy00             = _mm256_sub_pd(iy0,jy0);
798             dz00             = _mm256_sub_pd(iz0,jz0);
799             dx10             = _mm256_sub_pd(ix1,jx0);
800             dy10             = _mm256_sub_pd(iy1,jy0);
801             dz10             = _mm256_sub_pd(iz1,jz0);
802             dx20             = _mm256_sub_pd(ix2,jx0);
803             dy20             = _mm256_sub_pd(iy2,jy0);
804             dz20             = _mm256_sub_pd(iz2,jz0);
805
806             /* Calculate squared distance and things based on it */
807             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
808             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
809             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
810
811             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
812             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
813             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
814
815             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
816             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
817             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
818
819             /* Load parameters for j particles */
820             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
821                                                                  charge+jnrC+0,charge+jnrD+0);
822             vdwjidx0A        = 2*vdwtype[jnrA+0];
823             vdwjidx0B        = 2*vdwtype[jnrB+0];
824             vdwjidx0C        = 2*vdwtype[jnrC+0];
825             vdwjidx0D        = 2*vdwtype[jnrD+0];
826
827             fjx0             = _mm256_setzero_pd();
828             fjy0             = _mm256_setzero_pd();
829             fjz0             = _mm256_setzero_pd();
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             if (gmx_mm256_any_lt(rsq00,rcutoff2))
836             {
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq00             = _mm256_mul_pd(iq0,jq0);
840             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
841                                             vdwioffsetptr0+vdwjidx0B,
842                                             vdwioffsetptr0+vdwjidx0C,
843                                             vdwioffsetptr0+vdwjidx0D,
844                                             &c6_00,&c12_00);
845
846             /* REACTION-FIELD ELECTROSTATICS */
847             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
848
849             /* LENNARD-JONES DISPERSION/REPULSION */
850
851             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
852             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
853
854             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
855
856             fscal            = _mm256_add_pd(felec,fvdw);
857
858             fscal            = _mm256_and_pd(fscal,cutoff_mask);
859
860             /* Calculate temporary vectorial force */
861             tx               = _mm256_mul_pd(fscal,dx00);
862             ty               = _mm256_mul_pd(fscal,dy00);
863             tz               = _mm256_mul_pd(fscal,dz00);
864
865             /* Update vectorial force */
866             fix0             = _mm256_add_pd(fix0,tx);
867             fiy0             = _mm256_add_pd(fiy0,ty);
868             fiz0             = _mm256_add_pd(fiz0,tz);
869
870             fjx0             = _mm256_add_pd(fjx0,tx);
871             fjy0             = _mm256_add_pd(fjy0,ty);
872             fjz0             = _mm256_add_pd(fjz0,tz);
873
874             }
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             if (gmx_mm256_any_lt(rsq10,rcutoff2))
881             {
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq10             = _mm256_mul_pd(iq1,jq0);
885
886             /* REACTION-FIELD ELECTROSTATICS */
887             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
888
889             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
890
891             fscal            = felec;
892
893             fscal            = _mm256_and_pd(fscal,cutoff_mask);
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx10);
897             ty               = _mm256_mul_pd(fscal,dy10);
898             tz               = _mm256_mul_pd(fscal,dz10);
899
900             /* Update vectorial force */
901             fix1             = _mm256_add_pd(fix1,tx);
902             fiy1             = _mm256_add_pd(fiy1,ty);
903             fiz1             = _mm256_add_pd(fiz1,tz);
904
905             fjx0             = _mm256_add_pd(fjx0,tx);
906             fjy0             = _mm256_add_pd(fjy0,ty);
907             fjz0             = _mm256_add_pd(fjz0,tz);
908
909             }
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             if (gmx_mm256_any_lt(rsq20,rcutoff2))
916             {
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq20             = _mm256_mul_pd(iq2,jq0);
920
921             /* REACTION-FIELD ELECTROSTATICS */
922             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
923
924             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
925
926             fscal            = felec;
927
928             fscal            = _mm256_and_pd(fscal,cutoff_mask);
929
930             /* Calculate temporary vectorial force */
931             tx               = _mm256_mul_pd(fscal,dx20);
932             ty               = _mm256_mul_pd(fscal,dy20);
933             tz               = _mm256_mul_pd(fscal,dz20);
934
935             /* Update vectorial force */
936             fix2             = _mm256_add_pd(fix2,tx);
937             fiy2             = _mm256_add_pd(fiy2,ty);
938             fiz2             = _mm256_add_pd(fiz2,tz);
939
940             fjx0             = _mm256_add_pd(fjx0,tx);
941             fjy0             = _mm256_add_pd(fjy0,ty);
942             fjz0             = _mm256_add_pd(fjz0,tz);
943
944             }
945
946             fjptrA             = f+j_coord_offsetA;
947             fjptrB             = f+j_coord_offsetB;
948             fjptrC             = f+j_coord_offsetC;
949             fjptrD             = f+j_coord_offsetD;
950
951             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
952
953             /* Inner loop uses 100 flops */
954         }
955
956         if(jidx<j_index_end)
957         {
958
959             /* Get j neighbor index, and coordinate index */
960             jnrlistA         = jjnr[jidx];
961             jnrlistB         = jjnr[jidx+1];
962             jnrlistC         = jjnr[jidx+2];
963             jnrlistD         = jjnr[jidx+3];
964             /* Sign of each element will be negative for non-real atoms.
965              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
966              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
967              */
968             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
969
970             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
971             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
972             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
973
974             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
975             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
976             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
977             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
978             j_coord_offsetA  = DIM*jnrA;
979             j_coord_offsetB  = DIM*jnrB;
980             j_coord_offsetC  = DIM*jnrC;
981             j_coord_offsetD  = DIM*jnrD;
982
983             /* load j atom coordinates */
984             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
985                                                  x+j_coord_offsetC,x+j_coord_offsetD,
986                                                  &jx0,&jy0,&jz0);
987
988             /* Calculate displacement vector */
989             dx00             = _mm256_sub_pd(ix0,jx0);
990             dy00             = _mm256_sub_pd(iy0,jy0);
991             dz00             = _mm256_sub_pd(iz0,jz0);
992             dx10             = _mm256_sub_pd(ix1,jx0);
993             dy10             = _mm256_sub_pd(iy1,jy0);
994             dz10             = _mm256_sub_pd(iz1,jz0);
995             dx20             = _mm256_sub_pd(ix2,jx0);
996             dy20             = _mm256_sub_pd(iy2,jy0);
997             dz20             = _mm256_sub_pd(iz2,jz0);
998
999             /* Calculate squared distance and things based on it */
1000             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1001             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1002             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1003
1004             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1005             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1006             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1007
1008             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1009             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1010             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1011
1012             /* Load parameters for j particles */
1013             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1014                                                                  charge+jnrC+0,charge+jnrD+0);
1015             vdwjidx0A        = 2*vdwtype[jnrA+0];
1016             vdwjidx0B        = 2*vdwtype[jnrB+0];
1017             vdwjidx0C        = 2*vdwtype[jnrC+0];
1018             vdwjidx0D        = 2*vdwtype[jnrD+0];
1019
1020             fjx0             = _mm256_setzero_pd();
1021             fjy0             = _mm256_setzero_pd();
1022             fjz0             = _mm256_setzero_pd();
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1029             {
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq00             = _mm256_mul_pd(iq0,jq0);
1033             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1034                                             vdwioffsetptr0+vdwjidx0B,
1035                                             vdwioffsetptr0+vdwjidx0C,
1036                                             vdwioffsetptr0+vdwjidx0D,
1037                                             &c6_00,&c12_00);
1038
1039             /* REACTION-FIELD ELECTROSTATICS */
1040             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1041
1042             /* LENNARD-JONES DISPERSION/REPULSION */
1043
1044             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1045             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1046
1047             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1048
1049             fscal            = _mm256_add_pd(felec,fvdw);
1050
1051             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1052
1053             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1054
1055             /* Calculate temporary vectorial force */
1056             tx               = _mm256_mul_pd(fscal,dx00);
1057             ty               = _mm256_mul_pd(fscal,dy00);
1058             tz               = _mm256_mul_pd(fscal,dz00);
1059
1060             /* Update vectorial force */
1061             fix0             = _mm256_add_pd(fix0,tx);
1062             fiy0             = _mm256_add_pd(fiy0,ty);
1063             fiz0             = _mm256_add_pd(fiz0,tz);
1064
1065             fjx0             = _mm256_add_pd(fjx0,tx);
1066             fjy0             = _mm256_add_pd(fjy0,ty);
1067             fjz0             = _mm256_add_pd(fjz0,tz);
1068
1069             }
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1076             {
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             qq10             = _mm256_mul_pd(iq1,jq0);
1080
1081             /* REACTION-FIELD ELECTROSTATICS */
1082             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1083
1084             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1085
1086             fscal            = felec;
1087
1088             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1089
1090             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1091
1092             /* Calculate temporary vectorial force */
1093             tx               = _mm256_mul_pd(fscal,dx10);
1094             ty               = _mm256_mul_pd(fscal,dy10);
1095             tz               = _mm256_mul_pd(fscal,dz10);
1096
1097             /* Update vectorial force */
1098             fix1             = _mm256_add_pd(fix1,tx);
1099             fiy1             = _mm256_add_pd(fiy1,ty);
1100             fiz1             = _mm256_add_pd(fiz1,tz);
1101
1102             fjx0             = _mm256_add_pd(fjx0,tx);
1103             fjy0             = _mm256_add_pd(fjy0,ty);
1104             fjz0             = _mm256_add_pd(fjz0,tz);
1105
1106             }
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1113             {
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq20             = _mm256_mul_pd(iq2,jq0);
1117
1118             /* REACTION-FIELD ELECTROSTATICS */
1119             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1120
1121             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1122
1123             fscal            = felec;
1124
1125             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1126
1127             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1128
1129             /* Calculate temporary vectorial force */
1130             tx               = _mm256_mul_pd(fscal,dx20);
1131             ty               = _mm256_mul_pd(fscal,dy20);
1132             tz               = _mm256_mul_pd(fscal,dz20);
1133
1134             /* Update vectorial force */
1135             fix2             = _mm256_add_pd(fix2,tx);
1136             fiy2             = _mm256_add_pd(fiy2,ty);
1137             fiz2             = _mm256_add_pd(fiz2,tz);
1138
1139             fjx0             = _mm256_add_pd(fjx0,tx);
1140             fjy0             = _mm256_add_pd(fjy0,ty);
1141             fjz0             = _mm256_add_pd(fjz0,tz);
1142
1143             }
1144
1145             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1146             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1147             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1148             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1149
1150             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1151
1152             /* Inner loop uses 100 flops */
1153         }
1154
1155         /* End of innermost loop */
1156
1157         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1158                                                  f+i_coord_offset,fshift+i_shift_offset);
1159
1160         /* Increment number of inner iterations */
1161         inneriter                  += j_index_end - j_index_start;
1162
1163         /* Outer loop uses 18 flops */
1164     }
1165
1166     /* Increment number of outer iterations */
1167     outeriter        += nri;
1168
1169     /* Update outer/inner flops */
1170
1171     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1172 }