Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m256d          dummy_mask,cutoff_mask;
103     __m128           tmpmask0,tmpmask1;
104     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
105     __m256d          one     = _mm256_set1_pd(1.0);
106     __m256d          two     = _mm256_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_pd(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm256_set1_pd(fr->ic->k_rf);
121     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
122     crf              = _mm256_set1_pd(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
130     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
131     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
132     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->ic->rcoulomb;
136     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
137     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
138
139     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
140     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178         fix1             = _mm256_setzero_pd();
179         fiy1             = _mm256_setzero_pd();
180         fiz1             = _mm256_setzero_pd();
181         fix2             = _mm256_setzero_pd();
182         fiy2             = _mm256_setzero_pd();
183         fiz2             = _mm256_setzero_pd();
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_pd();
187         vvdwsum          = _mm256_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm256_sub_pd(ix0,jx0);
210             dy00             = _mm256_sub_pd(iy0,jy0);
211             dz00             = _mm256_sub_pd(iz0,jz0);
212             dx10             = _mm256_sub_pd(ix1,jx0);
213             dy10             = _mm256_sub_pd(iy1,jy0);
214             dz10             = _mm256_sub_pd(iz1,jz0);
215             dx20             = _mm256_sub_pd(ix2,jx0);
216             dy20             = _mm256_sub_pd(iy2,jy0);
217             dz20             = _mm256_sub_pd(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
223
224             rinv00           = avx256_invsqrt_d(rsq00);
225             rinv10           = avx256_invsqrt_d(rsq10);
226             rinv20           = avx256_invsqrt_d(rsq20);
227
228             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
229             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
234                                                                  charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm256_setzero_pd();
241             fjy0             = _mm256_setzero_pd();
242             fjz0             = _mm256_setzero_pd();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             if (gmx_mm256_any_lt(rsq00,rcutoff2))
249             {
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_pd(iq0,jq0);
253             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             &c6_00,&c12_00);
258
259             /* REACTION-FIELD ELECTROSTATICS */
260             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
261             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
267             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
269                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
270             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
271
272             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm256_and_pd(velec,cutoff_mask);
276             velecsum         = _mm256_add_pd(velecsum,velec);
277             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
278             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm256_add_pd(felec,fvdw);
281
282             fscal            = _mm256_and_pd(fscal,cutoff_mask);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_pd(fscal,dx00);
286             ty               = _mm256_mul_pd(fscal,dy00);
287             tz               = _mm256_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_pd(fix0,tx);
291             fiy0             = _mm256_add_pd(fiy0,ty);
292             fiz0             = _mm256_add_pd(fiz0,tz);
293
294             fjx0             = _mm256_add_pd(fjx0,tx);
295             fjy0             = _mm256_add_pd(fjy0,ty);
296             fjz0             = _mm256_add_pd(fjz0,tz);
297
298             }
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             if (gmx_mm256_any_lt(rsq10,rcutoff2))
305             {
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm256_mul_pd(iq1,jq0);
309
310             /* REACTION-FIELD ELECTROSTATICS */
311             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
312             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
313
314             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm256_and_pd(velec,cutoff_mask);
318             velecsum         = _mm256_add_pd(velecsum,velec);
319
320             fscal            = felec;
321
322             fscal            = _mm256_and_pd(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_pd(fscal,dx10);
326             ty               = _mm256_mul_pd(fscal,dy10);
327             tz               = _mm256_mul_pd(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm256_add_pd(fix1,tx);
331             fiy1             = _mm256_add_pd(fiy1,ty);
332             fiz1             = _mm256_add_pd(fiz1,tz);
333
334             fjx0             = _mm256_add_pd(fjx0,tx);
335             fjy0             = _mm256_add_pd(fjy0,ty);
336             fjz0             = _mm256_add_pd(fjz0,tz);
337
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm256_any_lt(rsq20,rcutoff2))
345             {
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq20             = _mm256_mul_pd(iq2,jq0);
349
350             /* REACTION-FIELD ELECTROSTATICS */
351             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
352             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
353
354             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm256_and_pd(velec,cutoff_mask);
358             velecsum         = _mm256_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm256_and_pd(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_pd(fscal,dx20);
366             ty               = _mm256_mul_pd(fscal,dy20);
367             tz               = _mm256_mul_pd(fscal,dz20);
368
369             /* Update vectorial force */
370             fix2             = _mm256_add_pd(fix2,tx);
371             fiy2             = _mm256_add_pd(fiy2,ty);
372             fiz2             = _mm256_add_pd(fiz2,tz);
373
374             fjx0             = _mm256_add_pd(fjx0,tx);
375             fjy0             = _mm256_add_pd(fjy0,ty);
376             fjz0             = _mm256_add_pd(fjz0,tz);
377
378             }
379
380             fjptrA             = f+j_coord_offsetA;
381             fjptrB             = f+j_coord_offsetB;
382             fjptrC             = f+j_coord_offsetC;
383             fjptrD             = f+j_coord_offsetD;
384
385             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
386
387             /* Inner loop uses 129 flops */
388         }
389
390         if(jidx<j_index_end)
391         {
392
393             /* Get j neighbor index, and coordinate index */
394             jnrlistA         = jjnr[jidx];
395             jnrlistB         = jjnr[jidx+1];
396             jnrlistC         = jjnr[jidx+2];
397             jnrlistD         = jjnr[jidx+3];
398             /* Sign of each element will be negative for non-real atoms.
399              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
400              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
401              */
402             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
403
404             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
405             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
406             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
407
408             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
409             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
410             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
411             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
412             j_coord_offsetA  = DIM*jnrA;
413             j_coord_offsetB  = DIM*jnrB;
414             j_coord_offsetC  = DIM*jnrC;
415             j_coord_offsetD  = DIM*jnrD;
416
417             /* load j atom coordinates */
418             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
419                                                  x+j_coord_offsetC,x+j_coord_offsetD,
420                                                  &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm256_sub_pd(ix0,jx0);
424             dy00             = _mm256_sub_pd(iy0,jy0);
425             dz00             = _mm256_sub_pd(iz0,jz0);
426             dx10             = _mm256_sub_pd(ix1,jx0);
427             dy10             = _mm256_sub_pd(iy1,jy0);
428             dz10             = _mm256_sub_pd(iz1,jz0);
429             dx20             = _mm256_sub_pd(ix2,jx0);
430             dy20             = _mm256_sub_pd(iy2,jy0);
431             dz20             = _mm256_sub_pd(iz2,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
435             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
436             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
437
438             rinv00           = avx256_invsqrt_d(rsq00);
439             rinv10           = avx256_invsqrt_d(rsq10);
440             rinv20           = avx256_invsqrt_d(rsq20);
441
442             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
443             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
444             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
448                                                                  charge+jnrC+0,charge+jnrD+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451             vdwjidx0C        = 2*vdwtype[jnrC+0];
452             vdwjidx0D        = 2*vdwtype[jnrD+0];
453
454             fjx0             = _mm256_setzero_pd();
455             fjy0             = _mm256_setzero_pd();
456             fjz0             = _mm256_setzero_pd();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             if (gmx_mm256_any_lt(rsq00,rcutoff2))
463             {
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq00             = _mm256_mul_pd(iq0,jq0);
467             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
468                                             vdwioffsetptr0+vdwjidx0B,
469                                             vdwioffsetptr0+vdwjidx0C,
470                                             vdwioffsetptr0+vdwjidx0D,
471                                             &c6_00,&c12_00);
472
473             /* REACTION-FIELD ELECTROSTATICS */
474             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
475             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
476
477             /* LENNARD-JONES DISPERSION/REPULSION */
478
479             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
480             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
481             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
482             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
483                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
484             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
485
486             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm256_and_pd(velec,cutoff_mask);
490             velec            = _mm256_andnot_pd(dummy_mask,velec);
491             velecsum         = _mm256_add_pd(velecsum,velec);
492             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
493             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
494             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
495
496             fscal            = _mm256_add_pd(felec,fvdw);
497
498             fscal            = _mm256_and_pd(fscal,cutoff_mask);
499
500             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_pd(fscal,dx00);
504             ty               = _mm256_mul_pd(fscal,dy00);
505             tz               = _mm256_mul_pd(fscal,dz00);
506
507             /* Update vectorial force */
508             fix0             = _mm256_add_pd(fix0,tx);
509             fiy0             = _mm256_add_pd(fiy0,ty);
510             fiz0             = _mm256_add_pd(fiz0,tz);
511
512             fjx0             = _mm256_add_pd(fjx0,tx);
513             fjy0             = _mm256_add_pd(fjy0,ty);
514             fjz0             = _mm256_add_pd(fjz0,tz);
515
516             }
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             if (gmx_mm256_any_lt(rsq10,rcutoff2))
523             {
524
525             /* Compute parameters for interactions between i and j atoms */
526             qq10             = _mm256_mul_pd(iq1,jq0);
527
528             /* REACTION-FIELD ELECTROSTATICS */
529             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
530             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
531
532             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm256_and_pd(velec,cutoff_mask);
536             velec            = _mm256_andnot_pd(dummy_mask,velec);
537             velecsum         = _mm256_add_pd(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _mm256_and_pd(fscal,cutoff_mask);
542
543             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm256_mul_pd(fscal,dx10);
547             ty               = _mm256_mul_pd(fscal,dy10);
548             tz               = _mm256_mul_pd(fscal,dz10);
549
550             /* Update vectorial force */
551             fix1             = _mm256_add_pd(fix1,tx);
552             fiy1             = _mm256_add_pd(fiy1,ty);
553             fiz1             = _mm256_add_pd(fiz1,tz);
554
555             fjx0             = _mm256_add_pd(fjx0,tx);
556             fjy0             = _mm256_add_pd(fjy0,ty);
557             fjz0             = _mm256_add_pd(fjz0,tz);
558
559             }
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm256_any_lt(rsq20,rcutoff2))
566             {
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq20             = _mm256_mul_pd(iq2,jq0);
570
571             /* REACTION-FIELD ELECTROSTATICS */
572             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
573             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
574
575             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_and_pd(velec,cutoff_mask);
579             velec            = _mm256_andnot_pd(dummy_mask,velec);
580             velecsum         = _mm256_add_pd(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm256_and_pd(fscal,cutoff_mask);
585
586             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm256_mul_pd(fscal,dx20);
590             ty               = _mm256_mul_pd(fscal,dy20);
591             tz               = _mm256_mul_pd(fscal,dz20);
592
593             /* Update vectorial force */
594             fix2             = _mm256_add_pd(fix2,tx);
595             fiy2             = _mm256_add_pd(fiy2,ty);
596             fiz2             = _mm256_add_pd(fiz2,tz);
597
598             fjx0             = _mm256_add_pd(fjx0,tx);
599             fjy0             = _mm256_add_pd(fjy0,ty);
600             fjz0             = _mm256_add_pd(fjz0,tz);
601
602             }
603
604             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608
609             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
610
611             /* Inner loop uses 129 flops */
612         }
613
614         /* End of innermost loop */
615
616         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
617                                                  f+i_coord_offset,fshift+i_shift_offset);
618
619         ggid                        = gid[iidx];
620         /* Update potential energies */
621         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
622         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 20 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
636 }
637 /*
638  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
639  * Electrostatics interaction: ReactionField
640  * VdW interaction:            LennardJones
641  * Geometry:                   Water3-Particle
642  * Calculate force/pot:        Force
643  */
644 void
645 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
646                     (t_nblist                    * gmx_restrict       nlist,
647                      rvec                        * gmx_restrict          xx,
648                      rvec                        * gmx_restrict          ff,
649                      struct t_forcerec           * gmx_restrict          fr,
650                      t_mdatoms                   * gmx_restrict     mdatoms,
651                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
652                      t_nrnb                      * gmx_restrict        nrnb)
653 {
654     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
655      * just 0 for non-waters.
656      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
657      * jnr indices corresponding to data put in the four positions in the SIMD register.
658      */
659     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
660     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
661     int              jnrA,jnrB,jnrC,jnrD;
662     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
663     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
664     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
665     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
666     real             rcutoff_scalar;
667     real             *shiftvec,*fshift,*x,*f;
668     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
669     real             scratch[4*DIM];
670     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
671     real *           vdwioffsetptr0;
672     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
673     real *           vdwioffsetptr1;
674     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
675     real *           vdwioffsetptr2;
676     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
677     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
678     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
679     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
680     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
681     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
682     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
683     real             *charge;
684     int              nvdwtype;
685     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
686     int              *vdwtype;
687     real             *vdwparam;
688     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
689     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
690     __m256d          dummy_mask,cutoff_mask;
691     __m128           tmpmask0,tmpmask1;
692     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
693     __m256d          one     = _mm256_set1_pd(1.0);
694     __m256d          two     = _mm256_set1_pd(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm256_set1_pd(fr->ic->epsfac);
707     charge           = mdatoms->chargeA;
708     krf              = _mm256_set1_pd(fr->ic->k_rf);
709     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
710     crf              = _mm256_set1_pd(fr->ic->c_rf);
711     nvdwtype         = fr->ntype;
712     vdwparam         = fr->nbfp;
713     vdwtype          = mdatoms->typeA;
714
715     /* Setup water-specific parameters */
716     inr              = nlist->iinr[0];
717     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
718     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
719     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
720     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
721
722     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
723     rcutoff_scalar   = fr->ic->rcoulomb;
724     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
725     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
726
727     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
728     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
729
730     /* Avoid stupid compiler warnings */
731     jnrA = jnrB = jnrC = jnrD = 0;
732     j_coord_offsetA = 0;
733     j_coord_offsetB = 0;
734     j_coord_offsetC = 0;
735     j_coord_offsetD = 0;
736
737     outeriter        = 0;
738     inneriter        = 0;
739
740     for(iidx=0;iidx<4*DIM;iidx++)
741     {
742         scratch[iidx] = 0.0;
743     }
744
745     /* Start outer loop over neighborlists */
746     for(iidx=0; iidx<nri; iidx++)
747     {
748         /* Load shift vector for this list */
749         i_shift_offset   = DIM*shiftidx[iidx];
750
751         /* Load limits for loop over neighbors */
752         j_index_start    = jindex[iidx];
753         j_index_end      = jindex[iidx+1];
754
755         /* Get outer coordinate index */
756         inr              = iinr[iidx];
757         i_coord_offset   = DIM*inr;
758
759         /* Load i particle coords and add shift vector */
760         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
761                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
762
763         fix0             = _mm256_setzero_pd();
764         fiy0             = _mm256_setzero_pd();
765         fiz0             = _mm256_setzero_pd();
766         fix1             = _mm256_setzero_pd();
767         fiy1             = _mm256_setzero_pd();
768         fiz1             = _mm256_setzero_pd();
769         fix2             = _mm256_setzero_pd();
770         fiy2             = _mm256_setzero_pd();
771         fiz2             = _mm256_setzero_pd();
772
773         /* Start inner kernel loop */
774         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
775         {
776
777             /* Get j neighbor index, and coordinate index */
778             jnrA             = jjnr[jidx];
779             jnrB             = jjnr[jidx+1];
780             jnrC             = jjnr[jidx+2];
781             jnrD             = jjnr[jidx+3];
782             j_coord_offsetA  = DIM*jnrA;
783             j_coord_offsetB  = DIM*jnrB;
784             j_coord_offsetC  = DIM*jnrC;
785             j_coord_offsetD  = DIM*jnrD;
786
787             /* load j atom coordinates */
788             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
789                                                  x+j_coord_offsetC,x+j_coord_offsetD,
790                                                  &jx0,&jy0,&jz0);
791
792             /* Calculate displacement vector */
793             dx00             = _mm256_sub_pd(ix0,jx0);
794             dy00             = _mm256_sub_pd(iy0,jy0);
795             dz00             = _mm256_sub_pd(iz0,jz0);
796             dx10             = _mm256_sub_pd(ix1,jx0);
797             dy10             = _mm256_sub_pd(iy1,jy0);
798             dz10             = _mm256_sub_pd(iz1,jz0);
799             dx20             = _mm256_sub_pd(ix2,jx0);
800             dy20             = _mm256_sub_pd(iy2,jy0);
801             dz20             = _mm256_sub_pd(iz2,jz0);
802
803             /* Calculate squared distance and things based on it */
804             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
805             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
806             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
807
808             rinv00           = avx256_invsqrt_d(rsq00);
809             rinv10           = avx256_invsqrt_d(rsq10);
810             rinv20           = avx256_invsqrt_d(rsq20);
811
812             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
813             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
814             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
815
816             /* Load parameters for j particles */
817             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
818                                                                  charge+jnrC+0,charge+jnrD+0);
819             vdwjidx0A        = 2*vdwtype[jnrA+0];
820             vdwjidx0B        = 2*vdwtype[jnrB+0];
821             vdwjidx0C        = 2*vdwtype[jnrC+0];
822             vdwjidx0D        = 2*vdwtype[jnrD+0];
823
824             fjx0             = _mm256_setzero_pd();
825             fjy0             = _mm256_setzero_pd();
826             fjz0             = _mm256_setzero_pd();
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             if (gmx_mm256_any_lt(rsq00,rcutoff2))
833             {
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq00             = _mm256_mul_pd(iq0,jq0);
837             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
838                                             vdwioffsetptr0+vdwjidx0B,
839                                             vdwioffsetptr0+vdwjidx0C,
840                                             vdwioffsetptr0+vdwjidx0D,
841                                             &c6_00,&c12_00);
842
843             /* REACTION-FIELD ELECTROSTATICS */
844             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
845
846             /* LENNARD-JONES DISPERSION/REPULSION */
847
848             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
849             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
850
851             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
852
853             fscal            = _mm256_add_pd(felec,fvdw);
854
855             fscal            = _mm256_and_pd(fscal,cutoff_mask);
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm256_mul_pd(fscal,dx00);
859             ty               = _mm256_mul_pd(fscal,dy00);
860             tz               = _mm256_mul_pd(fscal,dz00);
861
862             /* Update vectorial force */
863             fix0             = _mm256_add_pd(fix0,tx);
864             fiy0             = _mm256_add_pd(fiy0,ty);
865             fiz0             = _mm256_add_pd(fiz0,tz);
866
867             fjx0             = _mm256_add_pd(fjx0,tx);
868             fjy0             = _mm256_add_pd(fjy0,ty);
869             fjz0             = _mm256_add_pd(fjz0,tz);
870
871             }
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             if (gmx_mm256_any_lt(rsq10,rcutoff2))
878             {
879
880             /* Compute parameters for interactions between i and j atoms */
881             qq10             = _mm256_mul_pd(iq1,jq0);
882
883             /* REACTION-FIELD ELECTROSTATICS */
884             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
885
886             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
887
888             fscal            = felec;
889
890             fscal            = _mm256_and_pd(fscal,cutoff_mask);
891
892             /* Calculate temporary vectorial force */
893             tx               = _mm256_mul_pd(fscal,dx10);
894             ty               = _mm256_mul_pd(fscal,dy10);
895             tz               = _mm256_mul_pd(fscal,dz10);
896
897             /* Update vectorial force */
898             fix1             = _mm256_add_pd(fix1,tx);
899             fiy1             = _mm256_add_pd(fiy1,ty);
900             fiz1             = _mm256_add_pd(fiz1,tz);
901
902             fjx0             = _mm256_add_pd(fjx0,tx);
903             fjy0             = _mm256_add_pd(fjy0,ty);
904             fjz0             = _mm256_add_pd(fjz0,tz);
905
906             }
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             if (gmx_mm256_any_lt(rsq20,rcutoff2))
913             {
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq20             = _mm256_mul_pd(iq2,jq0);
917
918             /* REACTION-FIELD ELECTROSTATICS */
919             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
920
921             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
922
923             fscal            = felec;
924
925             fscal            = _mm256_and_pd(fscal,cutoff_mask);
926
927             /* Calculate temporary vectorial force */
928             tx               = _mm256_mul_pd(fscal,dx20);
929             ty               = _mm256_mul_pd(fscal,dy20);
930             tz               = _mm256_mul_pd(fscal,dz20);
931
932             /* Update vectorial force */
933             fix2             = _mm256_add_pd(fix2,tx);
934             fiy2             = _mm256_add_pd(fiy2,ty);
935             fiz2             = _mm256_add_pd(fiz2,tz);
936
937             fjx0             = _mm256_add_pd(fjx0,tx);
938             fjy0             = _mm256_add_pd(fjy0,ty);
939             fjz0             = _mm256_add_pd(fjz0,tz);
940
941             }
942
943             fjptrA             = f+j_coord_offsetA;
944             fjptrB             = f+j_coord_offsetB;
945             fjptrC             = f+j_coord_offsetC;
946             fjptrD             = f+j_coord_offsetD;
947
948             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
949
950             /* Inner loop uses 100 flops */
951         }
952
953         if(jidx<j_index_end)
954         {
955
956             /* Get j neighbor index, and coordinate index */
957             jnrlistA         = jjnr[jidx];
958             jnrlistB         = jjnr[jidx+1];
959             jnrlistC         = jjnr[jidx+2];
960             jnrlistD         = jjnr[jidx+3];
961             /* Sign of each element will be negative for non-real atoms.
962              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
963              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
964              */
965             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
966
967             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
968             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
969             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
970
971             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
972             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
973             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
974             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
975             j_coord_offsetA  = DIM*jnrA;
976             j_coord_offsetB  = DIM*jnrB;
977             j_coord_offsetC  = DIM*jnrC;
978             j_coord_offsetD  = DIM*jnrD;
979
980             /* load j atom coordinates */
981             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
982                                                  x+j_coord_offsetC,x+j_coord_offsetD,
983                                                  &jx0,&jy0,&jz0);
984
985             /* Calculate displacement vector */
986             dx00             = _mm256_sub_pd(ix0,jx0);
987             dy00             = _mm256_sub_pd(iy0,jy0);
988             dz00             = _mm256_sub_pd(iz0,jz0);
989             dx10             = _mm256_sub_pd(ix1,jx0);
990             dy10             = _mm256_sub_pd(iy1,jy0);
991             dz10             = _mm256_sub_pd(iz1,jz0);
992             dx20             = _mm256_sub_pd(ix2,jx0);
993             dy20             = _mm256_sub_pd(iy2,jy0);
994             dz20             = _mm256_sub_pd(iz2,jz0);
995
996             /* Calculate squared distance and things based on it */
997             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
998             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
999             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1000
1001             rinv00           = avx256_invsqrt_d(rsq00);
1002             rinv10           = avx256_invsqrt_d(rsq10);
1003             rinv20           = avx256_invsqrt_d(rsq20);
1004
1005             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1006             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1007             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1008
1009             /* Load parameters for j particles */
1010             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1011                                                                  charge+jnrC+0,charge+jnrD+0);
1012             vdwjidx0A        = 2*vdwtype[jnrA+0];
1013             vdwjidx0B        = 2*vdwtype[jnrB+0];
1014             vdwjidx0C        = 2*vdwtype[jnrC+0];
1015             vdwjidx0D        = 2*vdwtype[jnrD+0];
1016
1017             fjx0             = _mm256_setzero_pd();
1018             fjy0             = _mm256_setzero_pd();
1019             fjz0             = _mm256_setzero_pd();
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1026             {
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq00             = _mm256_mul_pd(iq0,jq0);
1030             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1031                                             vdwioffsetptr0+vdwjidx0B,
1032                                             vdwioffsetptr0+vdwjidx0C,
1033                                             vdwioffsetptr0+vdwjidx0D,
1034                                             &c6_00,&c12_00);
1035
1036             /* REACTION-FIELD ELECTROSTATICS */
1037             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1038
1039             /* LENNARD-JONES DISPERSION/REPULSION */
1040
1041             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1042             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1043
1044             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1045
1046             fscal            = _mm256_add_pd(felec,fvdw);
1047
1048             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1049
1050             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = _mm256_mul_pd(fscal,dx00);
1054             ty               = _mm256_mul_pd(fscal,dy00);
1055             tz               = _mm256_mul_pd(fscal,dz00);
1056
1057             /* Update vectorial force */
1058             fix0             = _mm256_add_pd(fix0,tx);
1059             fiy0             = _mm256_add_pd(fiy0,ty);
1060             fiz0             = _mm256_add_pd(fiz0,tz);
1061
1062             fjx0             = _mm256_add_pd(fjx0,tx);
1063             fjy0             = _mm256_add_pd(fjy0,ty);
1064             fjz0             = _mm256_add_pd(fjz0,tz);
1065
1066             }
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1073             {
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq10             = _mm256_mul_pd(iq1,jq0);
1077
1078             /* REACTION-FIELD ELECTROSTATICS */
1079             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1080
1081             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1082
1083             fscal            = felec;
1084
1085             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1086
1087             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm256_mul_pd(fscal,dx10);
1091             ty               = _mm256_mul_pd(fscal,dy10);
1092             tz               = _mm256_mul_pd(fscal,dz10);
1093
1094             /* Update vectorial force */
1095             fix1             = _mm256_add_pd(fix1,tx);
1096             fiy1             = _mm256_add_pd(fiy1,ty);
1097             fiz1             = _mm256_add_pd(fiz1,tz);
1098
1099             fjx0             = _mm256_add_pd(fjx0,tx);
1100             fjy0             = _mm256_add_pd(fjy0,ty);
1101             fjz0             = _mm256_add_pd(fjz0,tz);
1102
1103             }
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1110             {
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq20             = _mm256_mul_pd(iq2,jq0);
1114
1115             /* REACTION-FIELD ELECTROSTATICS */
1116             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1117
1118             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1119
1120             fscal            = felec;
1121
1122             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1123
1124             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm256_mul_pd(fscal,dx20);
1128             ty               = _mm256_mul_pd(fscal,dy20);
1129             tz               = _mm256_mul_pd(fscal,dz20);
1130
1131             /* Update vectorial force */
1132             fix2             = _mm256_add_pd(fix2,tx);
1133             fiy2             = _mm256_add_pd(fiy2,ty);
1134             fiz2             = _mm256_add_pd(fiz2,tz);
1135
1136             fjx0             = _mm256_add_pd(fjx0,tx);
1137             fjy0             = _mm256_add_pd(fjy0,ty);
1138             fjz0             = _mm256_add_pd(fjz0,tz);
1139
1140             }
1141
1142             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1143             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1144             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1145             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1146
1147             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1148
1149             /* Inner loop uses 100 flops */
1150         }
1151
1152         /* End of innermost loop */
1153
1154         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1155                                                  f+i_coord_offset,fshift+i_shift_offset);
1156
1157         /* Increment number of inner iterations */
1158         inneriter                  += j_index_end - j_index_start;
1159
1160         /* Outer loop uses 18 flops */
1161     }
1162
1163     /* Increment number of outer iterations */
1164     outeriter        += nri;
1165
1166     /* Update outer/inner flops */
1167
1168     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1169 }