Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_pd(fr->ic->k_rf);
122     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
131     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
132     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
138     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
141     rvdw             = _mm256_set1_pd(fr->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm256_setzero_pd();
177         fiy0             = _mm256_setzero_pd();
178         fiz0             = _mm256_setzero_pd();
179         fix1             = _mm256_setzero_pd();
180         fiy1             = _mm256_setzero_pd();
181         fiz1             = _mm256_setzero_pd();
182         fix2             = _mm256_setzero_pd();
183         fiy2             = _mm256_setzero_pd();
184         fiz2             = _mm256_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_pd();
188         vvdwsum          = _mm256_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                                  x+j_coord_offsetC,x+j_coord_offsetD,
207                                                  &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm256_sub_pd(ix0,jx0);
211             dy00             = _mm256_sub_pd(iy0,jy0);
212             dz00             = _mm256_sub_pd(iz0,jz0);
213             dx10             = _mm256_sub_pd(ix1,jx0);
214             dy10             = _mm256_sub_pd(iy1,jy0);
215             dz10             = _mm256_sub_pd(iz1,jz0);
216             dx20             = _mm256_sub_pd(ix2,jx0);
217             dy20             = _mm256_sub_pd(iy2,jy0);
218             dz20             = _mm256_sub_pd(iz2,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
222             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
223             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
224
225             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
226             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
227             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
228
229             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
230             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
231             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
235                                                                  charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm256_setzero_pd();
242             fjy0             = _mm256_setzero_pd();
243             fjz0             = _mm256_setzero_pd();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (gmx_mm256_any_lt(rsq00,rcutoff2))
250             {
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm256_mul_pd(iq0,jq0);
254             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
255                                             vdwioffsetptr0+vdwjidx0B,
256                                             vdwioffsetptr0+vdwjidx0C,
257                                             vdwioffsetptr0+vdwjidx0D,
258                                             &c6_00,&c12_00);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
262             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
268             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
269             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
270                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
271             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
272
273             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm256_and_pd(velec,cutoff_mask);
277             velecsum         = _mm256_add_pd(velecsum,velec);
278             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
279             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
280
281             fscal            = _mm256_add_pd(felec,fvdw);
282
283             fscal            = _mm256_and_pd(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx00);
287             ty               = _mm256_mul_pd(fscal,dy00);
288             tz               = _mm256_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_pd(fix0,tx);
292             fiy0             = _mm256_add_pd(fiy0,ty);
293             fiz0             = _mm256_add_pd(fiz0,tz);
294
295             fjx0             = _mm256_add_pd(fjx0,tx);
296             fjy0             = _mm256_add_pd(fjy0,ty);
297             fjz0             = _mm256_add_pd(fjz0,tz);
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm256_any_lt(rsq10,rcutoff2))
306             {
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm256_mul_pd(iq1,jq0);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
313             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
314
315             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm256_and_pd(velec,cutoff_mask);
319             velecsum         = _mm256_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             fscal            = _mm256_and_pd(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_pd(fscal,dx10);
327             ty               = _mm256_mul_pd(fscal,dy10);
328             tz               = _mm256_mul_pd(fscal,dz10);
329
330             /* Update vectorial force */
331             fix1             = _mm256_add_pd(fix1,tx);
332             fiy1             = _mm256_add_pd(fiy1,ty);
333             fiz1             = _mm256_add_pd(fiz1,tz);
334
335             fjx0             = _mm256_add_pd(fjx0,tx);
336             fjy0             = _mm256_add_pd(fjy0,ty);
337             fjz0             = _mm256_add_pd(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm256_any_lt(rsq20,rcutoff2))
346             {
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm256_mul_pd(iq2,jq0);
350
351             /* REACTION-FIELD ELECTROSTATICS */
352             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
353             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
354
355             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm256_and_pd(velec,cutoff_mask);
359             velecsum         = _mm256_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm256_and_pd(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx20);
367             ty               = _mm256_mul_pd(fscal,dy20);
368             tz               = _mm256_mul_pd(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm256_add_pd(fix2,tx);
372             fiy2             = _mm256_add_pd(fiy2,ty);
373             fiz2             = _mm256_add_pd(fiz2,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             }
380
381             fjptrA             = f+j_coord_offsetA;
382             fjptrB             = f+j_coord_offsetB;
383             fjptrC             = f+j_coord_offsetC;
384             fjptrD             = f+j_coord_offsetD;
385
386             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
387
388             /* Inner loop uses 129 flops */
389         }
390
391         if(jidx<j_index_end)
392         {
393
394             /* Get j neighbor index, and coordinate index */
395             jnrlistA         = jjnr[jidx];
396             jnrlistB         = jjnr[jidx+1];
397             jnrlistC         = jjnr[jidx+2];
398             jnrlistD         = jjnr[jidx+3];
399             /* Sign of each element will be negative for non-real atoms.
400              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
402              */
403             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
404
405             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
406             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
407             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
408
409             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
410             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
411             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
412             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
413             j_coord_offsetA  = DIM*jnrA;
414             j_coord_offsetB  = DIM*jnrB;
415             j_coord_offsetC  = DIM*jnrC;
416             j_coord_offsetD  = DIM*jnrD;
417
418             /* load j atom coordinates */
419             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
420                                                  x+j_coord_offsetC,x+j_coord_offsetD,
421                                                  &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx00             = _mm256_sub_pd(ix0,jx0);
425             dy00             = _mm256_sub_pd(iy0,jy0);
426             dz00             = _mm256_sub_pd(iz0,jz0);
427             dx10             = _mm256_sub_pd(ix1,jx0);
428             dy10             = _mm256_sub_pd(iy1,jy0);
429             dz10             = _mm256_sub_pd(iz1,jz0);
430             dx20             = _mm256_sub_pd(ix2,jx0);
431             dy20             = _mm256_sub_pd(iy2,jy0);
432             dz20             = _mm256_sub_pd(iz2,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
436             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
437             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
438
439             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
440             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
441             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
442
443             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
444             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
445             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
449                                                                  charge+jnrC+0,charge+jnrD+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451             vdwjidx0B        = 2*vdwtype[jnrB+0];
452             vdwjidx0C        = 2*vdwtype[jnrC+0];
453             vdwjidx0D        = 2*vdwtype[jnrD+0];
454
455             fjx0             = _mm256_setzero_pd();
456             fjy0             = _mm256_setzero_pd();
457             fjz0             = _mm256_setzero_pd();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             if (gmx_mm256_any_lt(rsq00,rcutoff2))
464             {
465
466             /* Compute parameters for interactions between i and j atoms */
467             qq00             = _mm256_mul_pd(iq0,jq0);
468             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
469                                             vdwioffsetptr0+vdwjidx0B,
470                                             vdwioffsetptr0+vdwjidx0C,
471                                             vdwioffsetptr0+vdwjidx0D,
472                                             &c6_00,&c12_00);
473
474             /* REACTION-FIELD ELECTROSTATICS */
475             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
476             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
477
478             /* LENNARD-JONES DISPERSION/REPULSION */
479
480             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
481             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
482             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
483             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
484                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
485             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
486
487             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm256_and_pd(velec,cutoff_mask);
491             velec            = _mm256_andnot_pd(dummy_mask,velec);
492             velecsum         = _mm256_add_pd(velecsum,velec);
493             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
494             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
495             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
496
497             fscal            = _mm256_add_pd(felec,fvdw);
498
499             fscal            = _mm256_and_pd(fscal,cutoff_mask);
500
501             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
502
503             /* Calculate temporary vectorial force */
504             tx               = _mm256_mul_pd(fscal,dx00);
505             ty               = _mm256_mul_pd(fscal,dy00);
506             tz               = _mm256_mul_pd(fscal,dz00);
507
508             /* Update vectorial force */
509             fix0             = _mm256_add_pd(fix0,tx);
510             fiy0             = _mm256_add_pd(fiy0,ty);
511             fiz0             = _mm256_add_pd(fiz0,tz);
512
513             fjx0             = _mm256_add_pd(fjx0,tx);
514             fjy0             = _mm256_add_pd(fjy0,ty);
515             fjz0             = _mm256_add_pd(fjz0,tz);
516
517             }
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             if (gmx_mm256_any_lt(rsq10,rcutoff2))
524             {
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq10             = _mm256_mul_pd(iq1,jq0);
528
529             /* REACTION-FIELD ELECTROSTATICS */
530             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
531             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
532
533             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm256_and_pd(velec,cutoff_mask);
537             velec            = _mm256_andnot_pd(dummy_mask,velec);
538             velecsum         = _mm256_add_pd(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _mm256_and_pd(fscal,cutoff_mask);
543
544             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
545
546             /* Calculate temporary vectorial force */
547             tx               = _mm256_mul_pd(fscal,dx10);
548             ty               = _mm256_mul_pd(fscal,dy10);
549             tz               = _mm256_mul_pd(fscal,dz10);
550
551             /* Update vectorial force */
552             fix1             = _mm256_add_pd(fix1,tx);
553             fiy1             = _mm256_add_pd(fiy1,ty);
554             fiz1             = _mm256_add_pd(fiz1,tz);
555
556             fjx0             = _mm256_add_pd(fjx0,tx);
557             fjy0             = _mm256_add_pd(fjy0,ty);
558             fjz0             = _mm256_add_pd(fjz0,tz);
559
560             }
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm256_any_lt(rsq20,rcutoff2))
567             {
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq20             = _mm256_mul_pd(iq2,jq0);
571
572             /* REACTION-FIELD ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
574             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
575
576             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm256_and_pd(velec,cutoff_mask);
580             velec            = _mm256_andnot_pd(dummy_mask,velec);
581             velecsum         = _mm256_add_pd(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm256_and_pd(fscal,cutoff_mask);
586
587             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_pd(fscal,dx20);
591             ty               = _mm256_mul_pd(fscal,dy20);
592             tz               = _mm256_mul_pd(fscal,dz20);
593
594             /* Update vectorial force */
595             fix2             = _mm256_add_pd(fix2,tx);
596             fiy2             = _mm256_add_pd(fiy2,ty);
597             fiz2             = _mm256_add_pd(fiz2,tz);
598
599             fjx0             = _mm256_add_pd(fjx0,tx);
600             fjy0             = _mm256_add_pd(fjy0,ty);
601             fjz0             = _mm256_add_pd(fjz0,tz);
602
603             }
604
605             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
606             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
607             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
608             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
609
610             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
611
612             /* Inner loop uses 129 flops */
613         }
614
615         /* End of innermost loop */
616
617         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
618                                                  f+i_coord_offset,fshift+i_shift_offset);
619
620         ggid                        = gid[iidx];
621         /* Update potential energies */
622         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
623         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 20 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
637 }
638 /*
639  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
640  * Electrostatics interaction: ReactionField
641  * VdW interaction:            LennardJones
642  * Geometry:                   Water3-Particle
643  * Calculate force/pot:        Force
644  */
645 void
646 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_256_double
647                     (t_nblist                    * gmx_restrict       nlist,
648                      rvec                        * gmx_restrict          xx,
649                      rvec                        * gmx_restrict          ff,
650                      t_forcerec                  * gmx_restrict          fr,
651                      t_mdatoms                   * gmx_restrict     mdatoms,
652                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
653                      t_nrnb                      * gmx_restrict        nrnb)
654 {
655     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
656      * just 0 for non-waters.
657      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
658      * jnr indices corresponding to data put in the four positions in the SIMD register.
659      */
660     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
661     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
662     int              jnrA,jnrB,jnrC,jnrD;
663     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
664     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
665     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
666     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
667     real             rcutoff_scalar;
668     real             *shiftvec,*fshift,*x,*f;
669     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
670     real             scratch[4*DIM];
671     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
672     real *           vdwioffsetptr0;
673     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
674     real *           vdwioffsetptr1;
675     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
676     real *           vdwioffsetptr2;
677     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
678     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
679     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
680     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
681     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
682     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
683     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
684     real             *charge;
685     int              nvdwtype;
686     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
687     int              *vdwtype;
688     real             *vdwparam;
689     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
690     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
691     __m256d          dummy_mask,cutoff_mask;
692     __m128           tmpmask0,tmpmask1;
693     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
694     __m256d          one     = _mm256_set1_pd(1.0);
695     __m256d          two     = _mm256_set1_pd(2.0);
696     x                = xx[0];
697     f                = ff[0];
698
699     nri              = nlist->nri;
700     iinr             = nlist->iinr;
701     jindex           = nlist->jindex;
702     jjnr             = nlist->jjnr;
703     shiftidx         = nlist->shift;
704     gid              = nlist->gid;
705     shiftvec         = fr->shift_vec[0];
706     fshift           = fr->fshift[0];
707     facel            = _mm256_set1_pd(fr->epsfac);
708     charge           = mdatoms->chargeA;
709     krf              = _mm256_set1_pd(fr->ic->k_rf);
710     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
711     crf              = _mm256_set1_pd(fr->ic->c_rf);
712     nvdwtype         = fr->ntype;
713     vdwparam         = fr->nbfp;
714     vdwtype          = mdatoms->typeA;
715
716     /* Setup water-specific parameters */
717     inr              = nlist->iinr[0];
718     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
719     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
720     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
721     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
722
723     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
724     rcutoff_scalar   = fr->rcoulomb;
725     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
726     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
727
728     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
729     rvdw             = _mm256_set1_pd(fr->rvdw);
730
731     /* Avoid stupid compiler warnings */
732     jnrA = jnrB = jnrC = jnrD = 0;
733     j_coord_offsetA = 0;
734     j_coord_offsetB = 0;
735     j_coord_offsetC = 0;
736     j_coord_offsetD = 0;
737
738     outeriter        = 0;
739     inneriter        = 0;
740
741     for(iidx=0;iidx<4*DIM;iidx++)
742     {
743         scratch[iidx] = 0.0;
744     }
745
746     /* Start outer loop over neighborlists */
747     for(iidx=0; iidx<nri; iidx++)
748     {
749         /* Load shift vector for this list */
750         i_shift_offset   = DIM*shiftidx[iidx];
751
752         /* Load limits for loop over neighbors */
753         j_index_start    = jindex[iidx];
754         j_index_end      = jindex[iidx+1];
755
756         /* Get outer coordinate index */
757         inr              = iinr[iidx];
758         i_coord_offset   = DIM*inr;
759
760         /* Load i particle coords and add shift vector */
761         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
762                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
763
764         fix0             = _mm256_setzero_pd();
765         fiy0             = _mm256_setzero_pd();
766         fiz0             = _mm256_setzero_pd();
767         fix1             = _mm256_setzero_pd();
768         fiy1             = _mm256_setzero_pd();
769         fiz1             = _mm256_setzero_pd();
770         fix2             = _mm256_setzero_pd();
771         fiy2             = _mm256_setzero_pd();
772         fiz2             = _mm256_setzero_pd();
773
774         /* Start inner kernel loop */
775         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
776         {
777
778             /* Get j neighbor index, and coordinate index */
779             jnrA             = jjnr[jidx];
780             jnrB             = jjnr[jidx+1];
781             jnrC             = jjnr[jidx+2];
782             jnrD             = jjnr[jidx+3];
783             j_coord_offsetA  = DIM*jnrA;
784             j_coord_offsetB  = DIM*jnrB;
785             j_coord_offsetC  = DIM*jnrC;
786             j_coord_offsetD  = DIM*jnrD;
787
788             /* load j atom coordinates */
789             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
790                                                  x+j_coord_offsetC,x+j_coord_offsetD,
791                                                  &jx0,&jy0,&jz0);
792
793             /* Calculate displacement vector */
794             dx00             = _mm256_sub_pd(ix0,jx0);
795             dy00             = _mm256_sub_pd(iy0,jy0);
796             dz00             = _mm256_sub_pd(iz0,jz0);
797             dx10             = _mm256_sub_pd(ix1,jx0);
798             dy10             = _mm256_sub_pd(iy1,jy0);
799             dz10             = _mm256_sub_pd(iz1,jz0);
800             dx20             = _mm256_sub_pd(ix2,jx0);
801             dy20             = _mm256_sub_pd(iy2,jy0);
802             dz20             = _mm256_sub_pd(iz2,jz0);
803
804             /* Calculate squared distance and things based on it */
805             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
806             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
807             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
808
809             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
810             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
811             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
812
813             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
814             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
815             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
816
817             /* Load parameters for j particles */
818             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
819                                                                  charge+jnrC+0,charge+jnrD+0);
820             vdwjidx0A        = 2*vdwtype[jnrA+0];
821             vdwjidx0B        = 2*vdwtype[jnrB+0];
822             vdwjidx0C        = 2*vdwtype[jnrC+0];
823             vdwjidx0D        = 2*vdwtype[jnrD+0];
824
825             fjx0             = _mm256_setzero_pd();
826             fjy0             = _mm256_setzero_pd();
827             fjz0             = _mm256_setzero_pd();
828
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             if (gmx_mm256_any_lt(rsq00,rcutoff2))
834             {
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq00             = _mm256_mul_pd(iq0,jq0);
838             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
839                                             vdwioffsetptr0+vdwjidx0B,
840                                             vdwioffsetptr0+vdwjidx0C,
841                                             vdwioffsetptr0+vdwjidx0D,
842                                             &c6_00,&c12_00);
843
844             /* REACTION-FIELD ELECTROSTATICS */
845             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
846
847             /* LENNARD-JONES DISPERSION/REPULSION */
848
849             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
850             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
851
852             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
853
854             fscal            = _mm256_add_pd(felec,fvdw);
855
856             fscal            = _mm256_and_pd(fscal,cutoff_mask);
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm256_mul_pd(fscal,dx00);
860             ty               = _mm256_mul_pd(fscal,dy00);
861             tz               = _mm256_mul_pd(fscal,dz00);
862
863             /* Update vectorial force */
864             fix0             = _mm256_add_pd(fix0,tx);
865             fiy0             = _mm256_add_pd(fiy0,ty);
866             fiz0             = _mm256_add_pd(fiz0,tz);
867
868             fjx0             = _mm256_add_pd(fjx0,tx);
869             fjy0             = _mm256_add_pd(fjy0,ty);
870             fjz0             = _mm256_add_pd(fjz0,tz);
871
872             }
873
874             /**************************
875              * CALCULATE INTERACTIONS *
876              **************************/
877
878             if (gmx_mm256_any_lt(rsq10,rcutoff2))
879             {
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq10             = _mm256_mul_pd(iq1,jq0);
883
884             /* REACTION-FIELD ELECTROSTATICS */
885             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
886
887             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
888
889             fscal            = felec;
890
891             fscal            = _mm256_and_pd(fscal,cutoff_mask);
892
893             /* Calculate temporary vectorial force */
894             tx               = _mm256_mul_pd(fscal,dx10);
895             ty               = _mm256_mul_pd(fscal,dy10);
896             tz               = _mm256_mul_pd(fscal,dz10);
897
898             /* Update vectorial force */
899             fix1             = _mm256_add_pd(fix1,tx);
900             fiy1             = _mm256_add_pd(fiy1,ty);
901             fiz1             = _mm256_add_pd(fiz1,tz);
902
903             fjx0             = _mm256_add_pd(fjx0,tx);
904             fjy0             = _mm256_add_pd(fjy0,ty);
905             fjz0             = _mm256_add_pd(fjz0,tz);
906
907             }
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             if (gmx_mm256_any_lt(rsq20,rcutoff2))
914             {
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq20             = _mm256_mul_pd(iq2,jq0);
918
919             /* REACTION-FIELD ELECTROSTATICS */
920             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
921
922             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
923
924             fscal            = felec;
925
926             fscal            = _mm256_and_pd(fscal,cutoff_mask);
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm256_mul_pd(fscal,dx20);
930             ty               = _mm256_mul_pd(fscal,dy20);
931             tz               = _mm256_mul_pd(fscal,dz20);
932
933             /* Update vectorial force */
934             fix2             = _mm256_add_pd(fix2,tx);
935             fiy2             = _mm256_add_pd(fiy2,ty);
936             fiz2             = _mm256_add_pd(fiz2,tz);
937
938             fjx0             = _mm256_add_pd(fjx0,tx);
939             fjy0             = _mm256_add_pd(fjy0,ty);
940             fjz0             = _mm256_add_pd(fjz0,tz);
941
942             }
943
944             fjptrA             = f+j_coord_offsetA;
945             fjptrB             = f+j_coord_offsetB;
946             fjptrC             = f+j_coord_offsetC;
947             fjptrD             = f+j_coord_offsetD;
948
949             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
950
951             /* Inner loop uses 100 flops */
952         }
953
954         if(jidx<j_index_end)
955         {
956
957             /* Get j neighbor index, and coordinate index */
958             jnrlistA         = jjnr[jidx];
959             jnrlistB         = jjnr[jidx+1];
960             jnrlistC         = jjnr[jidx+2];
961             jnrlistD         = jjnr[jidx+3];
962             /* Sign of each element will be negative for non-real atoms.
963              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
964              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
965              */
966             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
967
968             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
969             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
970             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
971
972             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
973             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
974             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
975             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
976             j_coord_offsetA  = DIM*jnrA;
977             j_coord_offsetB  = DIM*jnrB;
978             j_coord_offsetC  = DIM*jnrC;
979             j_coord_offsetD  = DIM*jnrD;
980
981             /* load j atom coordinates */
982             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
983                                                  x+j_coord_offsetC,x+j_coord_offsetD,
984                                                  &jx0,&jy0,&jz0);
985
986             /* Calculate displacement vector */
987             dx00             = _mm256_sub_pd(ix0,jx0);
988             dy00             = _mm256_sub_pd(iy0,jy0);
989             dz00             = _mm256_sub_pd(iz0,jz0);
990             dx10             = _mm256_sub_pd(ix1,jx0);
991             dy10             = _mm256_sub_pd(iy1,jy0);
992             dz10             = _mm256_sub_pd(iz1,jz0);
993             dx20             = _mm256_sub_pd(ix2,jx0);
994             dy20             = _mm256_sub_pd(iy2,jy0);
995             dz20             = _mm256_sub_pd(iz2,jz0);
996
997             /* Calculate squared distance and things based on it */
998             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
999             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1000             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1001
1002             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1003             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1004             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1005
1006             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1007             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1008             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1009
1010             /* Load parameters for j particles */
1011             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1012                                                                  charge+jnrC+0,charge+jnrD+0);
1013             vdwjidx0A        = 2*vdwtype[jnrA+0];
1014             vdwjidx0B        = 2*vdwtype[jnrB+0];
1015             vdwjidx0C        = 2*vdwtype[jnrC+0];
1016             vdwjidx0D        = 2*vdwtype[jnrD+0];
1017
1018             fjx0             = _mm256_setzero_pd();
1019             fjy0             = _mm256_setzero_pd();
1020             fjz0             = _mm256_setzero_pd();
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1027             {
1028
1029             /* Compute parameters for interactions between i and j atoms */
1030             qq00             = _mm256_mul_pd(iq0,jq0);
1031             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1032                                             vdwioffsetptr0+vdwjidx0B,
1033                                             vdwioffsetptr0+vdwjidx0C,
1034                                             vdwioffsetptr0+vdwjidx0D,
1035                                             &c6_00,&c12_00);
1036
1037             /* REACTION-FIELD ELECTROSTATICS */
1038             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1039
1040             /* LENNARD-JONES DISPERSION/REPULSION */
1041
1042             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1043             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1044
1045             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1046
1047             fscal            = _mm256_add_pd(felec,fvdw);
1048
1049             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1050
1051             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm256_mul_pd(fscal,dx00);
1055             ty               = _mm256_mul_pd(fscal,dy00);
1056             tz               = _mm256_mul_pd(fscal,dz00);
1057
1058             /* Update vectorial force */
1059             fix0             = _mm256_add_pd(fix0,tx);
1060             fiy0             = _mm256_add_pd(fiy0,ty);
1061             fiz0             = _mm256_add_pd(fiz0,tz);
1062
1063             fjx0             = _mm256_add_pd(fjx0,tx);
1064             fjy0             = _mm256_add_pd(fjy0,ty);
1065             fjz0             = _mm256_add_pd(fjz0,tz);
1066
1067             }
1068
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1074             {
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq10             = _mm256_mul_pd(iq1,jq0);
1078
1079             /* REACTION-FIELD ELECTROSTATICS */
1080             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1081
1082             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1083
1084             fscal            = felec;
1085
1086             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1087
1088             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm256_mul_pd(fscal,dx10);
1092             ty               = _mm256_mul_pd(fscal,dy10);
1093             tz               = _mm256_mul_pd(fscal,dz10);
1094
1095             /* Update vectorial force */
1096             fix1             = _mm256_add_pd(fix1,tx);
1097             fiy1             = _mm256_add_pd(fiy1,ty);
1098             fiz1             = _mm256_add_pd(fiz1,tz);
1099
1100             fjx0             = _mm256_add_pd(fjx0,tx);
1101             fjy0             = _mm256_add_pd(fjy0,ty);
1102             fjz0             = _mm256_add_pd(fjz0,tz);
1103
1104             }
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1111             {
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq20             = _mm256_mul_pd(iq2,jq0);
1115
1116             /* REACTION-FIELD ELECTROSTATICS */
1117             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1118
1119             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1124
1125             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1126
1127             /* Calculate temporary vectorial force */
1128             tx               = _mm256_mul_pd(fscal,dx20);
1129             ty               = _mm256_mul_pd(fscal,dy20);
1130             tz               = _mm256_mul_pd(fscal,dz20);
1131
1132             /* Update vectorial force */
1133             fix2             = _mm256_add_pd(fix2,tx);
1134             fiy2             = _mm256_add_pd(fiy2,ty);
1135             fiz2             = _mm256_add_pd(fiz2,tz);
1136
1137             fjx0             = _mm256_add_pd(fjx0,tx);
1138             fjy0             = _mm256_add_pd(fjy0,ty);
1139             fjz0             = _mm256_add_pd(fjz0,tz);
1140
1141             }
1142
1143             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1144             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1145             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1146             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1147
1148             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1149
1150             /* Inner loop uses 100 flops */
1151         }
1152
1153         /* End of innermost loop */
1154
1155         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1156                                                  f+i_coord_offset,fshift+i_shift_offset);
1157
1158         /* Increment number of inner iterations */
1159         inneriter                  += j_index_end - j_index_start;
1160
1161         /* Outer loop uses 18 flops */
1162     }
1163
1164     /* Increment number of outer iterations */
1165     outeriter        += nri;
1166
1167     /* Update outer/inner flops */
1168
1169     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1170 }