Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm256_set1_pd(fr->ic->k_rf);
118     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm256_set1_pd(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm256_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_pd();
174         vvdwsum          = _mm256_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                                  x+j_coord_offsetC,x+j_coord_offsetD,
193                                                  &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm256_sub_pd(ix0,jx0);
197             dy00             = _mm256_sub_pd(iy0,jy0);
198             dz00             = _mm256_sub_pd(iz0,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
202
203             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
204
205             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
209                                                                  charge+jnrC+0,charge+jnrD+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212             vdwjidx0C        = 2*vdwtype[jnrC+0];
213             vdwjidx0D        = 2*vdwtype[jnrD+0];
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm256_any_lt(rsq00,rcutoff2))
220             {
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm256_mul_pd(iq0,jq0);
224             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
225                                             vdwioffsetptr0+vdwjidx0B,
226                                             vdwioffsetptr0+vdwjidx0C,
227                                             vdwioffsetptr0+vdwjidx0D,
228                                             &c6_00,&c12_00);
229
230             /* REACTION-FIELD ELECTROSTATICS */
231             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
232             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
233
234             /* LENNARD-JONES DISPERSION/REPULSION */
235
236             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
237             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
238             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
239             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
240                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
241             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
242
243             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm256_and_pd(velec,cutoff_mask);
247             velecsum         = _mm256_add_pd(velecsum,velec);
248             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
249             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
250
251             fscal            = _mm256_add_pd(felec,fvdw);
252
253             fscal            = _mm256_and_pd(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_pd(fscal,dx00);
257             ty               = _mm256_mul_pd(fscal,dy00);
258             tz               = _mm256_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm256_add_pd(fix0,tx);
262             fiy0             = _mm256_add_pd(fiy0,ty);
263             fiz0             = _mm256_add_pd(fiz0,tz);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
270
271             }
272
273             /* Inner loop uses 54 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             /* Sign of each element will be negative for non-real atoms.
285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
286              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
287              */
288             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
289
290             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
291             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
292             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
293
294             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
295             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
296             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
297             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
298             j_coord_offsetA  = DIM*jnrA;
299             j_coord_offsetB  = DIM*jnrB;
300             j_coord_offsetC  = DIM*jnrC;
301             j_coord_offsetD  = DIM*jnrD;
302
303             /* load j atom coordinates */
304             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
305                                                  x+j_coord_offsetC,x+j_coord_offsetD,
306                                                  &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx00             = _mm256_sub_pd(ix0,jx0);
310             dy00             = _mm256_sub_pd(iy0,jy0);
311             dz00             = _mm256_sub_pd(iz0,jz0);
312
313             /* Calculate squared distance and things based on it */
314             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
315
316             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
317
318             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
319
320             /* Load parameters for j particles */
321             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
322                                                                  charge+jnrC+0,charge+jnrD+0);
323             vdwjidx0A        = 2*vdwtype[jnrA+0];
324             vdwjidx0B        = 2*vdwtype[jnrB+0];
325             vdwjidx0C        = 2*vdwtype[jnrC+0];
326             vdwjidx0D        = 2*vdwtype[jnrD+0];
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm256_any_lt(rsq00,rcutoff2))
333             {
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq00             = _mm256_mul_pd(iq0,jq0);
337             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
338                                             vdwioffsetptr0+vdwjidx0B,
339                                             vdwioffsetptr0+vdwjidx0C,
340                                             vdwioffsetptr0+vdwjidx0D,
341                                             &c6_00,&c12_00);
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
345             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
346
347             /* LENNARD-JONES DISPERSION/REPULSION */
348
349             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
350             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
351             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
352             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
353                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
354             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
355
356             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm256_and_pd(velec,cutoff_mask);
360             velec            = _mm256_andnot_pd(dummy_mask,velec);
361             velecsum         = _mm256_add_pd(velecsum,velec);
362             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
363             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
364             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
365
366             fscal            = _mm256_add_pd(felec,fvdw);
367
368             fscal            = _mm256_and_pd(fscal,cutoff_mask);
369
370             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_pd(fscal,dx00);
374             ty               = _mm256_mul_pd(fscal,dy00);
375             tz               = _mm256_mul_pd(fscal,dz00);
376
377             /* Update vectorial force */
378             fix0             = _mm256_add_pd(fix0,tx);
379             fiy0             = _mm256_add_pd(fiy0,ty);
380             fiz0             = _mm256_add_pd(fiz0,tz);
381
382             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
383             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
384             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
385             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
386             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
387
388             }
389
390             /* Inner loop uses 54 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
396                                                  f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
401         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
402
403         /* Increment number of inner iterations */
404         inneriter                  += j_index_end - j_index_start;
405
406         /* Outer loop uses 9 flops */
407     }
408
409     /* Increment number of outer iterations */
410     outeriter        += nri;
411
412     /* Update outer/inner flops */
413
414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
415 }
416 /*
417  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
418  * Electrostatics interaction: ReactionField
419  * VdW interaction:            LennardJones
420  * Geometry:                   Particle-Particle
421  * Calculate force/pot:        Force
422  */
423 void
424 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
425                     (t_nblist                    * gmx_restrict       nlist,
426                      rvec                        * gmx_restrict          xx,
427                      rvec                        * gmx_restrict          ff,
428                      t_forcerec                  * gmx_restrict          fr,
429                      t_mdatoms                   * gmx_restrict     mdatoms,
430                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
431                      t_nrnb                      * gmx_restrict        nrnb)
432 {
433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
434      * just 0 for non-waters.
435      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
436      * jnr indices corresponding to data put in the four positions in the SIMD register.
437      */
438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
440     int              jnrA,jnrB,jnrC,jnrD;
441     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
442     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
443     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
444     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
445     real             rcutoff_scalar;
446     real             *shiftvec,*fshift,*x,*f;
447     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
448     real             scratch[4*DIM];
449     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
450     real *           vdwioffsetptr0;
451     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
452     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
453     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
454     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
455     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
456     real             *charge;
457     int              nvdwtype;
458     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
459     int              *vdwtype;
460     real             *vdwparam;
461     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
462     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
463     __m256d          dummy_mask,cutoff_mask;
464     __m128           tmpmask0,tmpmask1;
465     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
466     __m256d          one     = _mm256_set1_pd(1.0);
467     __m256d          two     = _mm256_set1_pd(2.0);
468     x                = xx[0];
469     f                = ff[0];
470
471     nri              = nlist->nri;
472     iinr             = nlist->iinr;
473     jindex           = nlist->jindex;
474     jjnr             = nlist->jjnr;
475     shiftidx         = nlist->shift;
476     gid              = nlist->gid;
477     shiftvec         = fr->shift_vec[0];
478     fshift           = fr->fshift[0];
479     facel            = _mm256_set1_pd(fr->epsfac);
480     charge           = mdatoms->chargeA;
481     krf              = _mm256_set1_pd(fr->ic->k_rf);
482     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
483     crf              = _mm256_set1_pd(fr->ic->c_rf);
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487
488     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
489     rcutoff_scalar   = fr->rcoulomb;
490     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
491     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
492
493     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
494     rvdw             = _mm256_set1_pd(fr->rvdw);
495
496     /* Avoid stupid compiler warnings */
497     jnrA = jnrB = jnrC = jnrD = 0;
498     j_coord_offsetA = 0;
499     j_coord_offsetB = 0;
500     j_coord_offsetC = 0;
501     j_coord_offsetD = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     for(iidx=0;iidx<4*DIM;iidx++)
507     {
508         scratch[iidx] = 0.0;
509     }
510
511     /* Start outer loop over neighborlists */
512     for(iidx=0; iidx<nri; iidx++)
513     {
514         /* Load shift vector for this list */
515         i_shift_offset   = DIM*shiftidx[iidx];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
527
528         fix0             = _mm256_setzero_pd();
529         fiy0             = _mm256_setzero_pd();
530         fiz0             = _mm256_setzero_pd();
531
532         /* Load parameters for i particles */
533         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
534         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
535
536         /* Start inner kernel loop */
537         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
538         {
539
540             /* Get j neighbor index, and coordinate index */
541             jnrA             = jjnr[jidx];
542             jnrB             = jjnr[jidx+1];
543             jnrC             = jjnr[jidx+2];
544             jnrD             = jjnr[jidx+3];
545             j_coord_offsetA  = DIM*jnrA;
546             j_coord_offsetB  = DIM*jnrB;
547             j_coord_offsetC  = DIM*jnrC;
548             j_coord_offsetD  = DIM*jnrD;
549
550             /* load j atom coordinates */
551             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
552                                                  x+j_coord_offsetC,x+j_coord_offsetD,
553                                                  &jx0,&jy0,&jz0);
554
555             /* Calculate displacement vector */
556             dx00             = _mm256_sub_pd(ix0,jx0);
557             dy00             = _mm256_sub_pd(iy0,jy0);
558             dz00             = _mm256_sub_pd(iz0,jz0);
559
560             /* Calculate squared distance and things based on it */
561             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
562
563             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
564
565             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
569                                                                  charge+jnrC+0,charge+jnrD+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572             vdwjidx0C        = 2*vdwtype[jnrC+0];
573             vdwjidx0D        = 2*vdwtype[jnrD+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm256_any_lt(rsq00,rcutoff2))
580             {
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq00             = _mm256_mul_pd(iq0,jq0);
584             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
585                                             vdwioffsetptr0+vdwjidx0B,
586                                             vdwioffsetptr0+vdwjidx0C,
587                                             vdwioffsetptr0+vdwjidx0D,
588                                             &c6_00,&c12_00);
589
590             /* REACTION-FIELD ELECTROSTATICS */
591             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
592
593             /* LENNARD-JONES DISPERSION/REPULSION */
594
595             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
596             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
597
598             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
599
600             fscal            = _mm256_add_pd(felec,fvdw);
601
602             fscal            = _mm256_and_pd(fscal,cutoff_mask);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_pd(fscal,dx00);
606             ty               = _mm256_mul_pd(fscal,dy00);
607             tz               = _mm256_mul_pd(fscal,dz00);
608
609             /* Update vectorial force */
610             fix0             = _mm256_add_pd(fix0,tx);
611             fiy0             = _mm256_add_pd(fiy0,ty);
612             fiz0             = _mm256_add_pd(fiz0,tz);
613
614             fjptrA             = f+j_coord_offsetA;
615             fjptrB             = f+j_coord_offsetB;
616             fjptrC             = f+j_coord_offsetC;
617             fjptrD             = f+j_coord_offsetD;
618             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
619
620             }
621
622             /* Inner loop uses 37 flops */
623         }
624
625         if(jidx<j_index_end)
626         {
627
628             /* Get j neighbor index, and coordinate index */
629             jnrlistA         = jjnr[jidx];
630             jnrlistB         = jjnr[jidx+1];
631             jnrlistC         = jjnr[jidx+2];
632             jnrlistD         = jjnr[jidx+3];
633             /* Sign of each element will be negative for non-real atoms.
634              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
635              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
636              */
637             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
638
639             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
640             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
641             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
642
643             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
644             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
645             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
646             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
647             j_coord_offsetA  = DIM*jnrA;
648             j_coord_offsetB  = DIM*jnrB;
649             j_coord_offsetC  = DIM*jnrC;
650             j_coord_offsetD  = DIM*jnrD;
651
652             /* load j atom coordinates */
653             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
654                                                  x+j_coord_offsetC,x+j_coord_offsetD,
655                                                  &jx0,&jy0,&jz0);
656
657             /* Calculate displacement vector */
658             dx00             = _mm256_sub_pd(ix0,jx0);
659             dy00             = _mm256_sub_pd(iy0,jy0);
660             dz00             = _mm256_sub_pd(iz0,jz0);
661
662             /* Calculate squared distance and things based on it */
663             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
664
665             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
666
667             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
668
669             /* Load parameters for j particles */
670             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
671                                                                  charge+jnrC+0,charge+jnrD+0);
672             vdwjidx0A        = 2*vdwtype[jnrA+0];
673             vdwjidx0B        = 2*vdwtype[jnrB+0];
674             vdwjidx0C        = 2*vdwtype[jnrC+0];
675             vdwjidx0D        = 2*vdwtype[jnrD+0];
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm256_any_lt(rsq00,rcutoff2))
682             {
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq00             = _mm256_mul_pd(iq0,jq0);
686             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
687                                             vdwioffsetptr0+vdwjidx0B,
688                                             vdwioffsetptr0+vdwjidx0C,
689                                             vdwioffsetptr0+vdwjidx0D,
690                                             &c6_00,&c12_00);
691
692             /* REACTION-FIELD ELECTROSTATICS */
693             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
694
695             /* LENNARD-JONES DISPERSION/REPULSION */
696
697             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
698             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
699
700             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
701
702             fscal            = _mm256_add_pd(felec,fvdw);
703
704             fscal            = _mm256_and_pd(fscal,cutoff_mask);
705
706             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
707
708             /* Calculate temporary vectorial force */
709             tx               = _mm256_mul_pd(fscal,dx00);
710             ty               = _mm256_mul_pd(fscal,dy00);
711             tz               = _mm256_mul_pd(fscal,dz00);
712
713             /* Update vectorial force */
714             fix0             = _mm256_add_pd(fix0,tx);
715             fiy0             = _mm256_add_pd(fiy0,ty);
716             fiz0             = _mm256_add_pd(fiz0,tz);
717
718             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
719             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
720             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
721             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
722             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
723
724             }
725
726             /* Inner loop uses 37 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
732                                                  f+i_coord_offset,fshift+i_shift_offset);
733
734         /* Increment number of inner iterations */
735         inneriter                  += j_index_end - j_index_start;
736
737         /* Outer loop uses 7 flops */
738     }
739
740     /* Increment number of outer iterations */
741     outeriter        += nri;
742
743     /* Update outer/inner flops */
744
745     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
746 }