Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm256_set1_pd(fr->ic->k_rf);
116     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
117     crf              = _mm256_set1_pd(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
125     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
128     rvdw             = _mm256_set1_pd(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm256_setzero_pd();
163         fiy0             = _mm256_setzero_pd();
164         fiz0             = _mm256_setzero_pd();
165
166         /* Load parameters for i particles */
167         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
168         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_pd();
172         vvdwsum          = _mm256_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                                  x+j_coord_offsetC,x+j_coord_offsetD,
191                                                  &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm256_sub_pd(ix0,jx0);
195             dy00             = _mm256_sub_pd(iy0,jy0);
196             dz00             = _mm256_sub_pd(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
200
201             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
202
203             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
207                                                                  charge+jnrC+0,charge+jnrD+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm256_any_lt(rsq00,rcutoff2))
218             {
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm256_mul_pd(iq0,jq0);
222             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
223                                             vdwioffsetptr0+vdwjidx0B,
224                                             vdwioffsetptr0+vdwjidx0C,
225                                             vdwioffsetptr0+vdwjidx0D,
226                                             &c6_00,&c12_00);
227
228             /* REACTION-FIELD ELECTROSTATICS */
229             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
230             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
236             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
237             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
238                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
239             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
240
241             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm256_and_pd(velec,cutoff_mask);
245             velecsum         = _mm256_add_pd(velecsum,velec);
246             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
247             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
248
249             fscal            = _mm256_add_pd(felec,fvdw);
250
251             fscal            = _mm256_and_pd(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm256_mul_pd(fscal,dx00);
255             ty               = _mm256_mul_pd(fscal,dy00);
256             tz               = _mm256_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm256_add_pd(fix0,tx);
260             fiy0             = _mm256_add_pd(fiy0,ty);
261             fiz0             = _mm256_add_pd(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268
269             }
270
271             /* Inner loop uses 54 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrlistA         = jjnr[jidx];
279             jnrlistB         = jjnr[jidx+1];
280             jnrlistC         = jjnr[jidx+2];
281             jnrlistD         = jjnr[jidx+3];
282             /* Sign of each element will be negative for non-real atoms.
283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
285              */
286             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287
288             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
289             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
290             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
291
292             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
293             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
294             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
295             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300
301             /* load j atom coordinates */
302             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
303                                                  x+j_coord_offsetC,x+j_coord_offsetD,
304                                                  &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm256_sub_pd(ix0,jx0);
308             dy00             = _mm256_sub_pd(iy0,jy0);
309             dz00             = _mm256_sub_pd(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
313
314             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
315
316             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
320                                                                  charge+jnrC+0,charge+jnrD+0);
321             vdwjidx0A        = 2*vdwtype[jnrA+0];
322             vdwjidx0B        = 2*vdwtype[jnrB+0];
323             vdwjidx0C        = 2*vdwtype[jnrC+0];
324             vdwjidx0D        = 2*vdwtype[jnrD+0];
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm256_any_lt(rsq00,rcutoff2))
331             {
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq00             = _mm256_mul_pd(iq0,jq0);
335             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
336                                             vdwioffsetptr0+vdwjidx0B,
337                                             vdwioffsetptr0+vdwjidx0C,
338                                             vdwioffsetptr0+vdwjidx0D,
339                                             &c6_00,&c12_00);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
343             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
344
345             /* LENNARD-JONES DISPERSION/REPULSION */
346
347             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
348             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
349             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
350             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
351                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
352             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
353
354             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm256_and_pd(velec,cutoff_mask);
358             velec            = _mm256_andnot_pd(dummy_mask,velec);
359             velecsum         = _mm256_add_pd(velecsum,velec);
360             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
361             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
362             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
363
364             fscal            = _mm256_add_pd(felec,fvdw);
365
366             fscal            = _mm256_and_pd(fscal,cutoff_mask);
367
368             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm256_mul_pd(fscal,dx00);
372             ty               = _mm256_mul_pd(fscal,dy00);
373             tz               = _mm256_mul_pd(fscal,dz00);
374
375             /* Update vectorial force */
376             fix0             = _mm256_add_pd(fix0,tx);
377             fiy0             = _mm256_add_pd(fiy0,ty);
378             fiz0             = _mm256_add_pd(fiz0,tz);
379
380             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
381             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
382             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
383             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
384             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
385
386             }
387
388             /* Inner loop uses 54 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
394                                                  f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
399         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
400
401         /* Increment number of inner iterations */
402         inneriter                  += j_index_end - j_index_start;
403
404         /* Outer loop uses 9 flops */
405     }
406
407     /* Increment number of outer iterations */
408     outeriter        += nri;
409
410     /* Update outer/inner flops */
411
412     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
413 }
414 /*
415  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
416  * Electrostatics interaction: ReactionField
417  * VdW interaction:            LennardJones
418  * Geometry:                   Particle-Particle
419  * Calculate force/pot:        Force
420  */
421 void
422 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
423                     (t_nblist                    * gmx_restrict       nlist,
424                      rvec                        * gmx_restrict          xx,
425                      rvec                        * gmx_restrict          ff,
426                      t_forcerec                  * gmx_restrict          fr,
427                      t_mdatoms                   * gmx_restrict     mdatoms,
428                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
429                      t_nrnb                      * gmx_restrict        nrnb)
430 {
431     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
432      * just 0 for non-waters.
433      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
434      * jnr indices corresponding to data put in the four positions in the SIMD register.
435      */
436     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
437     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
438     int              jnrA,jnrB,jnrC,jnrD;
439     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
440     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
441     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
442     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
443     real             rcutoff_scalar;
444     real             *shiftvec,*fshift,*x,*f;
445     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
446     real             scratch[4*DIM];
447     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
448     real *           vdwioffsetptr0;
449     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
451     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
454     real             *charge;
455     int              nvdwtype;
456     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
457     int              *vdwtype;
458     real             *vdwparam;
459     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
460     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
461     __m256d          dummy_mask,cutoff_mask;
462     __m128           tmpmask0,tmpmask1;
463     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
464     __m256d          one     = _mm256_set1_pd(1.0);
465     __m256d          two     = _mm256_set1_pd(2.0);
466     x                = xx[0];
467     f                = ff[0];
468
469     nri              = nlist->nri;
470     iinr             = nlist->iinr;
471     jindex           = nlist->jindex;
472     jjnr             = nlist->jjnr;
473     shiftidx         = nlist->shift;
474     gid              = nlist->gid;
475     shiftvec         = fr->shift_vec[0];
476     fshift           = fr->fshift[0];
477     facel            = _mm256_set1_pd(fr->epsfac);
478     charge           = mdatoms->chargeA;
479     krf              = _mm256_set1_pd(fr->ic->k_rf);
480     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
481     crf              = _mm256_set1_pd(fr->ic->c_rf);
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485
486     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
487     rcutoff_scalar   = fr->rcoulomb;
488     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
489     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
490
491     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
492     rvdw             = _mm256_set1_pd(fr->rvdw);
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = jnrC = jnrD = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498     j_coord_offsetC = 0;
499     j_coord_offsetD = 0;
500
501     outeriter        = 0;
502     inneriter        = 0;
503
504     for(iidx=0;iidx<4*DIM;iidx++)
505     {
506         scratch[iidx] = 0.0;
507     }
508
509     /* Start outer loop over neighborlists */
510     for(iidx=0; iidx<nri; iidx++)
511     {
512         /* Load shift vector for this list */
513         i_shift_offset   = DIM*shiftidx[iidx];
514
515         /* Load limits for loop over neighbors */
516         j_index_start    = jindex[iidx];
517         j_index_end      = jindex[iidx+1];
518
519         /* Get outer coordinate index */
520         inr              = iinr[iidx];
521         i_coord_offset   = DIM*inr;
522
523         /* Load i particle coords and add shift vector */
524         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
525
526         fix0             = _mm256_setzero_pd();
527         fiy0             = _mm256_setzero_pd();
528         fiz0             = _mm256_setzero_pd();
529
530         /* Load parameters for i particles */
531         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
532         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
533
534         /* Start inner kernel loop */
535         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
536         {
537
538             /* Get j neighbor index, and coordinate index */
539             jnrA             = jjnr[jidx];
540             jnrB             = jjnr[jidx+1];
541             jnrC             = jjnr[jidx+2];
542             jnrD             = jjnr[jidx+3];
543             j_coord_offsetA  = DIM*jnrA;
544             j_coord_offsetB  = DIM*jnrB;
545             j_coord_offsetC  = DIM*jnrC;
546             j_coord_offsetD  = DIM*jnrD;
547
548             /* load j atom coordinates */
549             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
550                                                  x+j_coord_offsetC,x+j_coord_offsetD,
551                                                  &jx0,&jy0,&jz0);
552
553             /* Calculate displacement vector */
554             dx00             = _mm256_sub_pd(ix0,jx0);
555             dy00             = _mm256_sub_pd(iy0,jy0);
556             dz00             = _mm256_sub_pd(iz0,jz0);
557
558             /* Calculate squared distance and things based on it */
559             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
560
561             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
562
563             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
564
565             /* Load parameters for j particles */
566             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
567                                                                  charge+jnrC+0,charge+jnrD+0);
568             vdwjidx0A        = 2*vdwtype[jnrA+0];
569             vdwjidx0B        = 2*vdwtype[jnrB+0];
570             vdwjidx0C        = 2*vdwtype[jnrC+0];
571             vdwjidx0D        = 2*vdwtype[jnrD+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm256_any_lt(rsq00,rcutoff2))
578             {
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq00             = _mm256_mul_pd(iq0,jq0);
582             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
583                                             vdwioffsetptr0+vdwjidx0B,
584                                             vdwioffsetptr0+vdwjidx0C,
585                                             vdwioffsetptr0+vdwjidx0D,
586                                             &c6_00,&c12_00);
587
588             /* REACTION-FIELD ELECTROSTATICS */
589             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
590
591             /* LENNARD-JONES DISPERSION/REPULSION */
592
593             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
594             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
595
596             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
597
598             fscal            = _mm256_add_pd(felec,fvdw);
599
600             fscal            = _mm256_and_pd(fscal,cutoff_mask);
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm256_mul_pd(fscal,dx00);
604             ty               = _mm256_mul_pd(fscal,dy00);
605             tz               = _mm256_mul_pd(fscal,dz00);
606
607             /* Update vectorial force */
608             fix0             = _mm256_add_pd(fix0,tx);
609             fiy0             = _mm256_add_pd(fiy0,ty);
610             fiz0             = _mm256_add_pd(fiz0,tz);
611
612             fjptrA             = f+j_coord_offsetA;
613             fjptrB             = f+j_coord_offsetB;
614             fjptrC             = f+j_coord_offsetC;
615             fjptrD             = f+j_coord_offsetD;
616             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
617
618             }
619
620             /* Inner loop uses 37 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             /* Get j neighbor index, and coordinate index */
627             jnrlistA         = jjnr[jidx];
628             jnrlistB         = jjnr[jidx+1];
629             jnrlistC         = jjnr[jidx+2];
630             jnrlistD         = jjnr[jidx+3];
631             /* Sign of each element will be negative for non-real atoms.
632              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
633              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
634              */
635             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
636
637             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
638             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
639             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
640
641             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
642             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
643             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
644             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
645             j_coord_offsetA  = DIM*jnrA;
646             j_coord_offsetB  = DIM*jnrB;
647             j_coord_offsetC  = DIM*jnrC;
648             j_coord_offsetD  = DIM*jnrD;
649
650             /* load j atom coordinates */
651             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
652                                                  x+j_coord_offsetC,x+j_coord_offsetD,
653                                                  &jx0,&jy0,&jz0);
654
655             /* Calculate displacement vector */
656             dx00             = _mm256_sub_pd(ix0,jx0);
657             dy00             = _mm256_sub_pd(iy0,jy0);
658             dz00             = _mm256_sub_pd(iz0,jz0);
659
660             /* Calculate squared distance and things based on it */
661             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
662
663             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
664
665             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
666
667             /* Load parameters for j particles */
668             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
669                                                                  charge+jnrC+0,charge+jnrD+0);
670             vdwjidx0A        = 2*vdwtype[jnrA+0];
671             vdwjidx0B        = 2*vdwtype[jnrB+0];
672             vdwjidx0C        = 2*vdwtype[jnrC+0];
673             vdwjidx0D        = 2*vdwtype[jnrD+0];
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm256_any_lt(rsq00,rcutoff2))
680             {
681
682             /* Compute parameters for interactions between i and j atoms */
683             qq00             = _mm256_mul_pd(iq0,jq0);
684             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
685                                             vdwioffsetptr0+vdwjidx0B,
686                                             vdwioffsetptr0+vdwjidx0C,
687                                             vdwioffsetptr0+vdwjidx0D,
688                                             &c6_00,&c12_00);
689
690             /* REACTION-FIELD ELECTROSTATICS */
691             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
692
693             /* LENNARD-JONES DISPERSION/REPULSION */
694
695             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
696             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
697
698             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
699
700             fscal            = _mm256_add_pd(felec,fvdw);
701
702             fscal            = _mm256_and_pd(fscal,cutoff_mask);
703
704             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm256_mul_pd(fscal,dx00);
708             ty               = _mm256_mul_pd(fscal,dy00);
709             tz               = _mm256_mul_pd(fscal,dz00);
710
711             /* Update vectorial force */
712             fix0             = _mm256_add_pd(fix0,tx);
713             fiy0             = _mm256_add_pd(fiy0,ty);
714             fiz0             = _mm256_add_pd(fiz0,tz);
715
716             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
717             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
718             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
719             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
720             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
721
722             }
723
724             /* Inner loop uses 37 flops */
725         }
726
727         /* End of innermost loop */
728
729         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
730                                                  f+i_coord_offset,fshift+i_shift_offset);
731
732         /* Increment number of inner iterations */
733         inneriter                  += j_index_end - j_index_start;
734
735         /* Outer loop uses 7 flops */
736     }
737
738     /* Increment number of outer iterations */
739     outeriter        += nri;
740
741     /* Update outer/inner flops */
742
743     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
744 }