edd9ff841764e1a2ff3f40506e59c05b1152921f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     krf              = _mm256_set1_pd(fr->ic->k_rf);
131     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
132     crf              = _mm256_set1_pd(fr->ic->c_rf);
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     vftab            = kernel_data->table_vdw->data;
138     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
143     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
144     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
148     rcutoff_scalar   = fr->rcoulomb;
149     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
150     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
184
185         fix0             = _mm256_setzero_pd();
186         fiy0             = _mm256_setzero_pd();
187         fiz0             = _mm256_setzero_pd();
188         fix1             = _mm256_setzero_pd();
189         fiy1             = _mm256_setzero_pd();
190         fiz1             = _mm256_setzero_pd();
191         fix2             = _mm256_setzero_pd();
192         fiy2             = _mm256_setzero_pd();
193         fiz2             = _mm256_setzero_pd();
194         fix3             = _mm256_setzero_pd();
195         fiy3             = _mm256_setzero_pd();
196         fiz3             = _mm256_setzero_pd();
197
198         /* Reset potential sums */
199         velecsum         = _mm256_setzero_pd();
200         vvdwsum          = _mm256_setzero_pd();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             jnrC             = jjnr[jidx+2];
210             jnrD             = jjnr[jidx+3];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_pd(ix0,jx0);
223             dy00             = _mm256_sub_pd(iy0,jy0);
224             dz00             = _mm256_sub_pd(iz0,jz0);
225             dx10             = _mm256_sub_pd(ix1,jx0);
226             dy10             = _mm256_sub_pd(iy1,jy0);
227             dz10             = _mm256_sub_pd(iz1,jz0);
228             dx20             = _mm256_sub_pd(ix2,jx0);
229             dy20             = _mm256_sub_pd(iy2,jy0);
230             dz20             = _mm256_sub_pd(iz2,jz0);
231             dx30             = _mm256_sub_pd(ix3,jx0);
232             dy30             = _mm256_sub_pd(iy3,jy0);
233             dz30             = _mm256_sub_pd(iz3,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
237             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
238             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
239             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
240
241             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
242             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
243             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
244             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
245
246             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
247             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
248             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
252                                                                  charge+jnrC+0,charge+jnrD+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257
258             fjx0             = _mm256_setzero_pd();
259             fjy0             = _mm256_setzero_pd();
260             fjz0             = _mm256_setzero_pd();
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             r00              = _mm256_mul_pd(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
270                                             vdwioffsetptr0+vdwjidx0B,
271                                             vdwioffsetptr0+vdwjidx0C,
272                                             vdwioffsetptr0+vdwjidx0D,
273                                             &c6_00,&c12_00);
274
275             /* Calculate table index by multiplying r with table scale and truncate to integer */
276             rt               = _mm256_mul_pd(r00,vftabscale);
277             vfitab           = _mm256_cvttpd_epi32(rt);
278             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
279             vfitab           = _mm_slli_epi32(vfitab,3);
280
281             /* CUBIC SPLINE TABLE DISPERSION */
282             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
284             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
285             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
286             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
287             Heps             = _mm256_mul_pd(vfeps,H);
288             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
289             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
290             vvdw6            = _mm256_mul_pd(c6_00,VV);
291             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
292             fvdw6            = _mm256_mul_pd(c6_00,FF);
293
294             /* CUBIC SPLINE TABLE REPULSION */
295             vfitab           = _mm_add_epi32(vfitab,ifour);
296             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
297             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
298             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
299             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
300             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
301             Heps             = _mm256_mul_pd(vfeps,H);
302             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
303             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
304             vvdw12           = _mm256_mul_pd(c12_00,VV);
305             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
306             fvdw12           = _mm256_mul_pd(c12_00,FF);
307             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
308             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
312
313             fscal            = fvdw;
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx00);
317             ty               = _mm256_mul_pd(fscal,dy00);
318             tz               = _mm256_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm256_add_pd(fix0,tx);
322             fiy0             = _mm256_add_pd(fiy0,ty);
323             fiz0             = _mm256_add_pd(fiz0,tz);
324
325             fjx0             = _mm256_add_pd(fjx0,tx);
326             fjy0             = _mm256_add_pd(fjy0,ty);
327             fjz0             = _mm256_add_pd(fjz0,tz);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm256_any_lt(rsq10,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq10             = _mm256_mul_pd(iq1,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
341             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
342
343             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm256_and_pd(velec,cutoff_mask);
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm256_and_pd(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_pd(fscal,dx10);
355             ty               = _mm256_mul_pd(fscal,dy10);
356             tz               = _mm256_mul_pd(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm256_add_pd(fix1,tx);
360             fiy1             = _mm256_add_pd(fiy1,ty);
361             fiz1             = _mm256_add_pd(fiz1,tz);
362
363             fjx0             = _mm256_add_pd(fjx0,tx);
364             fjy0             = _mm256_add_pd(fjy0,ty);
365             fjz0             = _mm256_add_pd(fjz0,tz);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm256_any_lt(rsq20,rcutoff2))
374             {
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm256_mul_pd(iq2,jq0);
378
379             /* REACTION-FIELD ELECTROSTATICS */
380             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
381             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
382
383             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm256_and_pd(velec,cutoff_mask);
387             velecsum         = _mm256_add_pd(velecsum,velec);
388
389             fscal            = felec;
390
391             fscal            = _mm256_and_pd(fscal,cutoff_mask);
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm256_mul_pd(fscal,dx20);
395             ty               = _mm256_mul_pd(fscal,dy20);
396             tz               = _mm256_mul_pd(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm256_add_pd(fix2,tx);
400             fiy2             = _mm256_add_pd(fiy2,ty);
401             fiz2             = _mm256_add_pd(fiz2,tz);
402
403             fjx0             = _mm256_add_pd(fjx0,tx);
404             fjy0             = _mm256_add_pd(fjy0,ty);
405             fjz0             = _mm256_add_pd(fjz0,tz);
406
407             }
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             if (gmx_mm256_any_lt(rsq30,rcutoff2))
414             {
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq30             = _mm256_mul_pd(iq3,jq0);
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
421             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
422
423             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm256_and_pd(velec,cutoff_mask);
427             velecsum         = _mm256_add_pd(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm256_and_pd(fscal,cutoff_mask);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_pd(fscal,dx30);
435             ty               = _mm256_mul_pd(fscal,dy30);
436             tz               = _mm256_mul_pd(fscal,dz30);
437
438             /* Update vectorial force */
439             fix3             = _mm256_add_pd(fix3,tx);
440             fiy3             = _mm256_add_pd(fiy3,ty);
441             fiz3             = _mm256_add_pd(fiz3,tz);
442
443             fjx0             = _mm256_add_pd(fjx0,tx);
444             fjy0             = _mm256_add_pd(fjy0,ty);
445             fjz0             = _mm256_add_pd(fjz0,tz);
446
447             }
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453
454             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
455
456             /* Inner loop uses 167 flops */
457         }
458
459         if(jidx<j_index_end)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrlistA         = jjnr[jidx];
464             jnrlistB         = jjnr[jidx+1];
465             jnrlistC         = jjnr[jidx+2];
466             jnrlistD         = jjnr[jidx+3];
467             /* Sign of each element will be negative for non-real atoms.
468              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
469              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
470              */
471             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
472
473             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
474             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
475             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
476
477             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
478             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
479             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
480             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
481             j_coord_offsetA  = DIM*jnrA;
482             j_coord_offsetB  = DIM*jnrB;
483             j_coord_offsetC  = DIM*jnrC;
484             j_coord_offsetD  = DIM*jnrD;
485
486             /* load j atom coordinates */
487             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
488                                                  x+j_coord_offsetC,x+j_coord_offsetD,
489                                                  &jx0,&jy0,&jz0);
490
491             /* Calculate displacement vector */
492             dx00             = _mm256_sub_pd(ix0,jx0);
493             dy00             = _mm256_sub_pd(iy0,jy0);
494             dz00             = _mm256_sub_pd(iz0,jz0);
495             dx10             = _mm256_sub_pd(ix1,jx0);
496             dy10             = _mm256_sub_pd(iy1,jy0);
497             dz10             = _mm256_sub_pd(iz1,jz0);
498             dx20             = _mm256_sub_pd(ix2,jx0);
499             dy20             = _mm256_sub_pd(iy2,jy0);
500             dz20             = _mm256_sub_pd(iz2,jz0);
501             dx30             = _mm256_sub_pd(ix3,jx0);
502             dy30             = _mm256_sub_pd(iy3,jy0);
503             dz30             = _mm256_sub_pd(iz3,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
507             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
508             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
509             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
510
511             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
512             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
513             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
514             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
515
516             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
517             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
518             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
519
520             /* Load parameters for j particles */
521             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
522                                                                  charge+jnrC+0,charge+jnrD+0);
523             vdwjidx0A        = 2*vdwtype[jnrA+0];
524             vdwjidx0B        = 2*vdwtype[jnrB+0];
525             vdwjidx0C        = 2*vdwtype[jnrC+0];
526             vdwjidx0D        = 2*vdwtype[jnrD+0];
527
528             fjx0             = _mm256_setzero_pd();
529             fjy0             = _mm256_setzero_pd();
530             fjz0             = _mm256_setzero_pd();
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r00              = _mm256_mul_pd(rsq00,rinv00);
537             r00              = _mm256_andnot_pd(dummy_mask,r00);
538
539             /* Compute parameters for interactions between i and j atoms */
540             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
541                                             vdwioffsetptr0+vdwjidx0B,
542                                             vdwioffsetptr0+vdwjidx0C,
543                                             vdwioffsetptr0+vdwjidx0D,
544                                             &c6_00,&c12_00);
545
546             /* Calculate table index by multiplying r with table scale and truncate to integer */
547             rt               = _mm256_mul_pd(r00,vftabscale);
548             vfitab           = _mm256_cvttpd_epi32(rt);
549             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
550             vfitab           = _mm_slli_epi32(vfitab,3);
551
552             /* CUBIC SPLINE TABLE DISPERSION */
553             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
554             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
555             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
556             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
557             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
558             Heps             = _mm256_mul_pd(vfeps,H);
559             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
560             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
561             vvdw6            = _mm256_mul_pd(c6_00,VV);
562             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
563             fvdw6            = _mm256_mul_pd(c6_00,FF);
564
565             /* CUBIC SPLINE TABLE REPULSION */
566             vfitab           = _mm_add_epi32(vfitab,ifour);
567             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
568             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
569             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
570             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
571             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
572             Heps             = _mm256_mul_pd(vfeps,H);
573             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
574             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
575             vvdw12           = _mm256_mul_pd(c12_00,VV);
576             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
577             fvdw12           = _mm256_mul_pd(c12_00,FF);
578             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
579             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
583             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
584
585             fscal            = fvdw;
586
587             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_pd(fscal,dx00);
591             ty               = _mm256_mul_pd(fscal,dy00);
592             tz               = _mm256_mul_pd(fscal,dz00);
593
594             /* Update vectorial force */
595             fix0             = _mm256_add_pd(fix0,tx);
596             fiy0             = _mm256_add_pd(fiy0,ty);
597             fiz0             = _mm256_add_pd(fiz0,tz);
598
599             fjx0             = _mm256_add_pd(fjx0,tx);
600             fjy0             = _mm256_add_pd(fjy0,ty);
601             fjz0             = _mm256_add_pd(fjz0,tz);
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             if (gmx_mm256_any_lt(rsq10,rcutoff2))
608             {
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq10             = _mm256_mul_pd(iq1,jq0);
612
613             /* REACTION-FIELD ELECTROSTATICS */
614             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
615             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
616
617             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm256_and_pd(velec,cutoff_mask);
621             velec            = _mm256_andnot_pd(dummy_mask,velec);
622             velecsum         = _mm256_add_pd(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm256_and_pd(fscal,cutoff_mask);
627
628             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm256_mul_pd(fscal,dx10);
632             ty               = _mm256_mul_pd(fscal,dy10);
633             tz               = _mm256_mul_pd(fscal,dz10);
634
635             /* Update vectorial force */
636             fix1             = _mm256_add_pd(fix1,tx);
637             fiy1             = _mm256_add_pd(fiy1,ty);
638             fiz1             = _mm256_add_pd(fiz1,tz);
639
640             fjx0             = _mm256_add_pd(fjx0,tx);
641             fjy0             = _mm256_add_pd(fjy0,ty);
642             fjz0             = _mm256_add_pd(fjz0,tz);
643
644             }
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             if (gmx_mm256_any_lt(rsq20,rcutoff2))
651             {
652
653             /* Compute parameters for interactions between i and j atoms */
654             qq20             = _mm256_mul_pd(iq2,jq0);
655
656             /* REACTION-FIELD ELECTROSTATICS */
657             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
658             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
659
660             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm256_and_pd(velec,cutoff_mask);
664             velec            = _mm256_andnot_pd(dummy_mask,velec);
665             velecsum         = _mm256_add_pd(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm256_and_pd(fscal,cutoff_mask);
670
671             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
672
673             /* Calculate temporary vectorial force */
674             tx               = _mm256_mul_pd(fscal,dx20);
675             ty               = _mm256_mul_pd(fscal,dy20);
676             tz               = _mm256_mul_pd(fscal,dz20);
677
678             /* Update vectorial force */
679             fix2             = _mm256_add_pd(fix2,tx);
680             fiy2             = _mm256_add_pd(fiy2,ty);
681             fiz2             = _mm256_add_pd(fiz2,tz);
682
683             fjx0             = _mm256_add_pd(fjx0,tx);
684             fjy0             = _mm256_add_pd(fjy0,ty);
685             fjz0             = _mm256_add_pd(fjz0,tz);
686
687             }
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             if (gmx_mm256_any_lt(rsq30,rcutoff2))
694             {
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq30             = _mm256_mul_pd(iq3,jq0);
698
699             /* REACTION-FIELD ELECTROSTATICS */
700             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
701             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
702
703             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
704
705             /* Update potential sum for this i atom from the interaction with this j atom. */
706             velec            = _mm256_and_pd(velec,cutoff_mask);
707             velec            = _mm256_andnot_pd(dummy_mask,velec);
708             velecsum         = _mm256_add_pd(velecsum,velec);
709
710             fscal            = felec;
711
712             fscal            = _mm256_and_pd(fscal,cutoff_mask);
713
714             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
715
716             /* Calculate temporary vectorial force */
717             tx               = _mm256_mul_pd(fscal,dx30);
718             ty               = _mm256_mul_pd(fscal,dy30);
719             tz               = _mm256_mul_pd(fscal,dz30);
720
721             /* Update vectorial force */
722             fix3             = _mm256_add_pd(fix3,tx);
723             fiy3             = _mm256_add_pd(fiy3,ty);
724             fiz3             = _mm256_add_pd(fiz3,tz);
725
726             fjx0             = _mm256_add_pd(fjx0,tx);
727             fjy0             = _mm256_add_pd(fjy0,ty);
728             fjz0             = _mm256_add_pd(fjz0,tz);
729
730             }
731
732             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
733             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
734             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
735             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
736
737             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
738
739             /* Inner loop uses 168 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
745                                                  f+i_coord_offset,fshift+i_shift_offset);
746
747         ggid                        = gid[iidx];
748         /* Update potential energies */
749         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
750         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
751
752         /* Increment number of inner iterations */
753         inneriter                  += j_index_end - j_index_start;
754
755         /* Outer loop uses 26 flops */
756     }
757
758     /* Increment number of outer iterations */
759     outeriter        += nri;
760
761     /* Update outer/inner flops */
762
763     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
764 }
765 /*
766  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
767  * Electrostatics interaction: ReactionField
768  * VdW interaction:            CubicSplineTable
769  * Geometry:                   Water4-Particle
770  * Calculate force/pot:        Force
771  */
772 void
773 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
774                     (t_nblist                    * gmx_restrict       nlist,
775                      rvec                        * gmx_restrict          xx,
776                      rvec                        * gmx_restrict          ff,
777                      t_forcerec                  * gmx_restrict          fr,
778                      t_mdatoms                   * gmx_restrict     mdatoms,
779                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
780                      t_nrnb                      * gmx_restrict        nrnb)
781 {
782     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
783      * just 0 for non-waters.
784      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
785      * jnr indices corresponding to data put in the four positions in the SIMD register.
786      */
787     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
788     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
789     int              jnrA,jnrB,jnrC,jnrD;
790     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
791     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
792     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
793     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
794     real             rcutoff_scalar;
795     real             *shiftvec,*fshift,*x,*f;
796     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
797     real             scratch[4*DIM];
798     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
799     real *           vdwioffsetptr0;
800     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
801     real *           vdwioffsetptr1;
802     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
803     real *           vdwioffsetptr2;
804     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
805     real *           vdwioffsetptr3;
806     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
807     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
808     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
809     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
810     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
811     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
812     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
813     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
814     real             *charge;
815     int              nvdwtype;
816     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
817     int              *vdwtype;
818     real             *vdwparam;
819     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
820     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
821     __m128i          vfitab;
822     __m128i          ifour       = _mm_set1_epi32(4);
823     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
824     real             *vftab;
825     __m256d          dummy_mask,cutoff_mask;
826     __m128           tmpmask0,tmpmask1;
827     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
828     __m256d          one     = _mm256_set1_pd(1.0);
829     __m256d          two     = _mm256_set1_pd(2.0);
830     x                = xx[0];
831     f                = ff[0];
832
833     nri              = nlist->nri;
834     iinr             = nlist->iinr;
835     jindex           = nlist->jindex;
836     jjnr             = nlist->jjnr;
837     shiftidx         = nlist->shift;
838     gid              = nlist->gid;
839     shiftvec         = fr->shift_vec[0];
840     fshift           = fr->fshift[0];
841     facel            = _mm256_set1_pd(fr->epsfac);
842     charge           = mdatoms->chargeA;
843     krf              = _mm256_set1_pd(fr->ic->k_rf);
844     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
845     crf              = _mm256_set1_pd(fr->ic->c_rf);
846     nvdwtype         = fr->ntype;
847     vdwparam         = fr->nbfp;
848     vdwtype          = mdatoms->typeA;
849
850     vftab            = kernel_data->table_vdw->data;
851     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
852
853     /* Setup water-specific parameters */
854     inr              = nlist->iinr[0];
855     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
856     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
857     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
858     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
859
860     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
861     rcutoff_scalar   = fr->rcoulomb;
862     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
863     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
864
865     /* Avoid stupid compiler warnings */
866     jnrA = jnrB = jnrC = jnrD = 0;
867     j_coord_offsetA = 0;
868     j_coord_offsetB = 0;
869     j_coord_offsetC = 0;
870     j_coord_offsetD = 0;
871
872     outeriter        = 0;
873     inneriter        = 0;
874
875     for(iidx=0;iidx<4*DIM;iidx++)
876     {
877         scratch[iidx] = 0.0;
878     }
879
880     /* Start outer loop over neighborlists */
881     for(iidx=0; iidx<nri; iidx++)
882     {
883         /* Load shift vector for this list */
884         i_shift_offset   = DIM*shiftidx[iidx];
885
886         /* Load limits for loop over neighbors */
887         j_index_start    = jindex[iidx];
888         j_index_end      = jindex[iidx+1];
889
890         /* Get outer coordinate index */
891         inr              = iinr[iidx];
892         i_coord_offset   = DIM*inr;
893
894         /* Load i particle coords and add shift vector */
895         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
896                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
897
898         fix0             = _mm256_setzero_pd();
899         fiy0             = _mm256_setzero_pd();
900         fiz0             = _mm256_setzero_pd();
901         fix1             = _mm256_setzero_pd();
902         fiy1             = _mm256_setzero_pd();
903         fiz1             = _mm256_setzero_pd();
904         fix2             = _mm256_setzero_pd();
905         fiy2             = _mm256_setzero_pd();
906         fiz2             = _mm256_setzero_pd();
907         fix3             = _mm256_setzero_pd();
908         fiy3             = _mm256_setzero_pd();
909         fiz3             = _mm256_setzero_pd();
910
911         /* Start inner kernel loop */
912         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
913         {
914
915             /* Get j neighbor index, and coordinate index */
916             jnrA             = jjnr[jidx];
917             jnrB             = jjnr[jidx+1];
918             jnrC             = jjnr[jidx+2];
919             jnrD             = jjnr[jidx+3];
920             j_coord_offsetA  = DIM*jnrA;
921             j_coord_offsetB  = DIM*jnrB;
922             j_coord_offsetC  = DIM*jnrC;
923             j_coord_offsetD  = DIM*jnrD;
924
925             /* load j atom coordinates */
926             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
927                                                  x+j_coord_offsetC,x+j_coord_offsetD,
928                                                  &jx0,&jy0,&jz0);
929
930             /* Calculate displacement vector */
931             dx00             = _mm256_sub_pd(ix0,jx0);
932             dy00             = _mm256_sub_pd(iy0,jy0);
933             dz00             = _mm256_sub_pd(iz0,jz0);
934             dx10             = _mm256_sub_pd(ix1,jx0);
935             dy10             = _mm256_sub_pd(iy1,jy0);
936             dz10             = _mm256_sub_pd(iz1,jz0);
937             dx20             = _mm256_sub_pd(ix2,jx0);
938             dy20             = _mm256_sub_pd(iy2,jy0);
939             dz20             = _mm256_sub_pd(iz2,jz0);
940             dx30             = _mm256_sub_pd(ix3,jx0);
941             dy30             = _mm256_sub_pd(iy3,jy0);
942             dz30             = _mm256_sub_pd(iz3,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
946             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
947             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
948             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
949
950             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
951             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
952             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
953             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
954
955             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
956             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
957             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
961                                                                  charge+jnrC+0,charge+jnrD+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966
967             fjx0             = _mm256_setzero_pd();
968             fjy0             = _mm256_setzero_pd();
969             fjz0             = _mm256_setzero_pd();
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r00              = _mm256_mul_pd(rsq00,rinv00);
976
977             /* Compute parameters for interactions between i and j atoms */
978             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
979                                             vdwioffsetptr0+vdwjidx0B,
980                                             vdwioffsetptr0+vdwjidx0C,
981                                             vdwioffsetptr0+vdwjidx0D,
982                                             &c6_00,&c12_00);
983
984             /* Calculate table index by multiplying r with table scale and truncate to integer */
985             rt               = _mm256_mul_pd(r00,vftabscale);
986             vfitab           = _mm256_cvttpd_epi32(rt);
987             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
988             vfitab           = _mm_slli_epi32(vfitab,3);
989
990             /* CUBIC SPLINE TABLE DISPERSION */
991             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
992             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
993             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
994             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
995             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
996             Heps             = _mm256_mul_pd(vfeps,H);
997             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
998             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
999             fvdw6            = _mm256_mul_pd(c6_00,FF);
1000
1001             /* CUBIC SPLINE TABLE REPULSION */
1002             vfitab           = _mm_add_epi32(vfitab,ifour);
1003             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1004             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1005             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1006             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1007             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1008             Heps             = _mm256_mul_pd(vfeps,H);
1009             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1010             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1011             fvdw12           = _mm256_mul_pd(c12_00,FF);
1012             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1013
1014             fscal            = fvdw;
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm256_mul_pd(fscal,dx00);
1018             ty               = _mm256_mul_pd(fscal,dy00);
1019             tz               = _mm256_mul_pd(fscal,dz00);
1020
1021             /* Update vectorial force */
1022             fix0             = _mm256_add_pd(fix0,tx);
1023             fiy0             = _mm256_add_pd(fiy0,ty);
1024             fiz0             = _mm256_add_pd(fiz0,tz);
1025
1026             fjx0             = _mm256_add_pd(fjx0,tx);
1027             fjy0             = _mm256_add_pd(fjy0,ty);
1028             fjz0             = _mm256_add_pd(fjz0,tz);
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1035             {
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm256_mul_pd(iq1,jq0);
1039
1040             /* REACTION-FIELD ELECTROSTATICS */
1041             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1042
1043             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm256_mul_pd(fscal,dx10);
1051             ty               = _mm256_mul_pd(fscal,dy10);
1052             tz               = _mm256_mul_pd(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm256_add_pd(fix1,tx);
1056             fiy1             = _mm256_add_pd(fiy1,ty);
1057             fiz1             = _mm256_add_pd(fiz1,tz);
1058
1059             fjx0             = _mm256_add_pd(fjx0,tx);
1060             fjy0             = _mm256_add_pd(fjy0,ty);
1061             fjz0             = _mm256_add_pd(fjz0,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1070             {
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq20             = _mm256_mul_pd(iq2,jq0);
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1077
1078             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm256_mul_pd(fscal,dx20);
1086             ty               = _mm256_mul_pd(fscal,dy20);
1087             tz               = _mm256_mul_pd(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm256_add_pd(fix2,tx);
1091             fiy2             = _mm256_add_pd(fiy2,ty);
1092             fiz2             = _mm256_add_pd(fiz2,tz);
1093
1094             fjx0             = _mm256_add_pd(fjx0,tx);
1095             fjy0             = _mm256_add_pd(fjy0,ty);
1096             fjz0             = _mm256_add_pd(fjz0,tz);
1097
1098             }
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1105             {
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             qq30             = _mm256_mul_pd(iq3,jq0);
1109
1110             /* REACTION-FIELD ELECTROSTATICS */
1111             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1112
1113             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm256_mul_pd(fscal,dx30);
1121             ty               = _mm256_mul_pd(fscal,dy30);
1122             tz               = _mm256_mul_pd(fscal,dz30);
1123
1124             /* Update vectorial force */
1125             fix3             = _mm256_add_pd(fix3,tx);
1126             fiy3             = _mm256_add_pd(fiy3,ty);
1127             fiz3             = _mm256_add_pd(fiz3,tz);
1128
1129             fjx0             = _mm256_add_pd(fjx0,tx);
1130             fjy0             = _mm256_add_pd(fjy0,ty);
1131             fjz0             = _mm256_add_pd(fjz0,tz);
1132
1133             }
1134
1135             fjptrA             = f+j_coord_offsetA;
1136             fjptrB             = f+j_coord_offsetB;
1137             fjptrC             = f+j_coord_offsetC;
1138             fjptrD             = f+j_coord_offsetD;
1139
1140             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1141
1142             /* Inner loop uses 141 flops */
1143         }
1144
1145         if(jidx<j_index_end)
1146         {
1147
1148             /* Get j neighbor index, and coordinate index */
1149             jnrlistA         = jjnr[jidx];
1150             jnrlistB         = jjnr[jidx+1];
1151             jnrlistC         = jjnr[jidx+2];
1152             jnrlistD         = jjnr[jidx+3];
1153             /* Sign of each element will be negative for non-real atoms.
1154              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1155              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1156              */
1157             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1158
1159             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1160             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1161             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1162
1163             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1164             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1165             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1166             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1167             j_coord_offsetA  = DIM*jnrA;
1168             j_coord_offsetB  = DIM*jnrB;
1169             j_coord_offsetC  = DIM*jnrC;
1170             j_coord_offsetD  = DIM*jnrD;
1171
1172             /* load j atom coordinates */
1173             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1174                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1175                                                  &jx0,&jy0,&jz0);
1176
1177             /* Calculate displacement vector */
1178             dx00             = _mm256_sub_pd(ix0,jx0);
1179             dy00             = _mm256_sub_pd(iy0,jy0);
1180             dz00             = _mm256_sub_pd(iz0,jz0);
1181             dx10             = _mm256_sub_pd(ix1,jx0);
1182             dy10             = _mm256_sub_pd(iy1,jy0);
1183             dz10             = _mm256_sub_pd(iz1,jz0);
1184             dx20             = _mm256_sub_pd(ix2,jx0);
1185             dy20             = _mm256_sub_pd(iy2,jy0);
1186             dz20             = _mm256_sub_pd(iz2,jz0);
1187             dx30             = _mm256_sub_pd(ix3,jx0);
1188             dy30             = _mm256_sub_pd(iy3,jy0);
1189             dz30             = _mm256_sub_pd(iz3,jz0);
1190
1191             /* Calculate squared distance and things based on it */
1192             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1193             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1194             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1195             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1196
1197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1198             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1199             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1200             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1201
1202             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1203             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1204             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1205
1206             /* Load parameters for j particles */
1207             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1208                                                                  charge+jnrC+0,charge+jnrD+0);
1209             vdwjidx0A        = 2*vdwtype[jnrA+0];
1210             vdwjidx0B        = 2*vdwtype[jnrB+0];
1211             vdwjidx0C        = 2*vdwtype[jnrC+0];
1212             vdwjidx0D        = 2*vdwtype[jnrD+0];
1213
1214             fjx0             = _mm256_setzero_pd();
1215             fjy0             = _mm256_setzero_pd();
1216             fjz0             = _mm256_setzero_pd();
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r00              = _mm256_mul_pd(rsq00,rinv00);
1223             r00              = _mm256_andnot_pd(dummy_mask,r00);
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1227                                             vdwioffsetptr0+vdwjidx0B,
1228                                             vdwioffsetptr0+vdwjidx0C,
1229                                             vdwioffsetptr0+vdwjidx0D,
1230                                             &c6_00,&c12_00);
1231
1232             /* Calculate table index by multiplying r with table scale and truncate to integer */
1233             rt               = _mm256_mul_pd(r00,vftabscale);
1234             vfitab           = _mm256_cvttpd_epi32(rt);
1235             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1236             vfitab           = _mm_slli_epi32(vfitab,3);
1237
1238             /* CUBIC SPLINE TABLE DISPERSION */
1239             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1240             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1241             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1242             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1243             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1244             Heps             = _mm256_mul_pd(vfeps,H);
1245             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1246             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1247             fvdw6            = _mm256_mul_pd(c6_00,FF);
1248
1249             /* CUBIC SPLINE TABLE REPULSION */
1250             vfitab           = _mm_add_epi32(vfitab,ifour);
1251             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1252             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1253             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1254             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1255             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1256             Heps             = _mm256_mul_pd(vfeps,H);
1257             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1258             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1259             fvdw12           = _mm256_mul_pd(c12_00,FF);
1260             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1261
1262             fscal            = fvdw;
1263
1264             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1265
1266             /* Calculate temporary vectorial force */
1267             tx               = _mm256_mul_pd(fscal,dx00);
1268             ty               = _mm256_mul_pd(fscal,dy00);
1269             tz               = _mm256_mul_pd(fscal,dz00);
1270
1271             /* Update vectorial force */
1272             fix0             = _mm256_add_pd(fix0,tx);
1273             fiy0             = _mm256_add_pd(fiy0,ty);
1274             fiz0             = _mm256_add_pd(fiz0,tz);
1275
1276             fjx0             = _mm256_add_pd(fjx0,tx);
1277             fjy0             = _mm256_add_pd(fjy0,ty);
1278             fjz0             = _mm256_add_pd(fjz0,tz);
1279
1280             /**************************
1281              * CALCULATE INTERACTIONS *
1282              **************************/
1283
1284             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1285             {
1286
1287             /* Compute parameters for interactions between i and j atoms */
1288             qq10             = _mm256_mul_pd(iq1,jq0);
1289
1290             /* REACTION-FIELD ELECTROSTATICS */
1291             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1292
1293             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1294
1295             fscal            = felec;
1296
1297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1298
1299             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1300
1301             /* Calculate temporary vectorial force */
1302             tx               = _mm256_mul_pd(fscal,dx10);
1303             ty               = _mm256_mul_pd(fscal,dy10);
1304             tz               = _mm256_mul_pd(fscal,dz10);
1305
1306             /* Update vectorial force */
1307             fix1             = _mm256_add_pd(fix1,tx);
1308             fiy1             = _mm256_add_pd(fiy1,ty);
1309             fiz1             = _mm256_add_pd(fiz1,tz);
1310
1311             fjx0             = _mm256_add_pd(fjx0,tx);
1312             fjy0             = _mm256_add_pd(fjy0,ty);
1313             fjz0             = _mm256_add_pd(fjz0,tz);
1314
1315             }
1316
1317             /**************************
1318              * CALCULATE INTERACTIONS *
1319              **************************/
1320
1321             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1322             {
1323
1324             /* Compute parameters for interactions between i and j atoms */
1325             qq20             = _mm256_mul_pd(iq2,jq0);
1326
1327             /* REACTION-FIELD ELECTROSTATICS */
1328             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1329
1330             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1331
1332             fscal            = felec;
1333
1334             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1335
1336             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1337
1338             /* Calculate temporary vectorial force */
1339             tx               = _mm256_mul_pd(fscal,dx20);
1340             ty               = _mm256_mul_pd(fscal,dy20);
1341             tz               = _mm256_mul_pd(fscal,dz20);
1342
1343             /* Update vectorial force */
1344             fix2             = _mm256_add_pd(fix2,tx);
1345             fiy2             = _mm256_add_pd(fiy2,ty);
1346             fiz2             = _mm256_add_pd(fiz2,tz);
1347
1348             fjx0             = _mm256_add_pd(fjx0,tx);
1349             fjy0             = _mm256_add_pd(fjy0,ty);
1350             fjz0             = _mm256_add_pd(fjz0,tz);
1351
1352             }
1353
1354             /**************************
1355              * CALCULATE INTERACTIONS *
1356              **************************/
1357
1358             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1359             {
1360
1361             /* Compute parameters for interactions between i and j atoms */
1362             qq30             = _mm256_mul_pd(iq3,jq0);
1363
1364             /* REACTION-FIELD ELECTROSTATICS */
1365             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1366
1367             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1368
1369             fscal            = felec;
1370
1371             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1372
1373             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1374
1375             /* Calculate temporary vectorial force */
1376             tx               = _mm256_mul_pd(fscal,dx30);
1377             ty               = _mm256_mul_pd(fscal,dy30);
1378             tz               = _mm256_mul_pd(fscal,dz30);
1379
1380             /* Update vectorial force */
1381             fix3             = _mm256_add_pd(fix3,tx);
1382             fiy3             = _mm256_add_pd(fiy3,ty);
1383             fiz3             = _mm256_add_pd(fiz3,tz);
1384
1385             fjx0             = _mm256_add_pd(fjx0,tx);
1386             fjy0             = _mm256_add_pd(fjy0,ty);
1387             fjz0             = _mm256_add_pd(fjz0,tz);
1388
1389             }
1390
1391             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1392             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1393             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1394             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1395
1396             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1397
1398             /* Inner loop uses 142 flops */
1399         }
1400
1401         /* End of innermost loop */
1402
1403         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1404                                                  f+i_coord_offset,fshift+i_shift_offset);
1405
1406         /* Increment number of inner iterations */
1407         inneriter                  += j_index_end - j_index_start;
1408
1409         /* Outer loop uses 24 flops */
1410     }
1411
1412     /* Increment number of outer iterations */
1413     outeriter        += nri;
1414
1415     /* Update outer/inner flops */
1416
1417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1418 }