Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm256_set1_pd(fr->ic->k_rf);
115     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm256_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
127     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
128     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
129     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168
169         fix0             = _mm256_setzero_pd();
170         fiy0             = _mm256_setzero_pd();
171         fiz0             = _mm256_setzero_pd();
172         fix1             = _mm256_setzero_pd();
173         fiy1             = _mm256_setzero_pd();
174         fiz1             = _mm256_setzero_pd();
175         fix2             = _mm256_setzero_pd();
176         fiy2             = _mm256_setzero_pd();
177         fiz2             = _mm256_setzero_pd();
178         fix3             = _mm256_setzero_pd();
179         fiy3             = _mm256_setzero_pd();
180         fiz3             = _mm256_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209             dx10             = _mm256_sub_pd(ix1,jx0);
210             dy10             = _mm256_sub_pd(iy1,jy0);
211             dz10             = _mm256_sub_pd(iz1,jz0);
212             dx20             = _mm256_sub_pd(ix2,jx0);
213             dy20             = _mm256_sub_pd(iy2,jy0);
214             dz20             = _mm256_sub_pd(iz2,jz0);
215             dx30             = _mm256_sub_pd(ix3,jx0);
216             dy30             = _mm256_sub_pd(iy3,jy0);
217             dz30             = _mm256_sub_pd(iz3,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
223             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
224
225             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
226             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
227             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
228             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
229
230             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
231             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
232             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
236                                                                  charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm256_setzero_pd();
243             fjy0             = _mm256_setzero_pd();
244             fjz0             = _mm256_setzero_pd();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm256_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             &c6_00,&c12_00);
258
259             /* Calculate table index by multiplying r with table scale and truncate to integer */
260             rt               = _mm256_mul_pd(r00,vftabscale);
261             vfitab           = _mm256_cvttpd_epi32(rt);
262             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
263             vfitab           = _mm_slli_epi32(vfitab,3);
264
265             /* CUBIC SPLINE TABLE DISPERSION */
266             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
267             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
268             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
269             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
270             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
271             Heps             = _mm256_mul_pd(vfeps,H);
272             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
273             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
274             vvdw6            = _mm256_mul_pd(c6_00,VV);
275             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
276             fvdw6            = _mm256_mul_pd(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
284             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
285             Heps             = _mm256_mul_pd(vfeps,H);
286             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
287             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
288             vvdw12           = _mm256_mul_pd(c12_00,VV);
289             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
290             fvdw12           = _mm256_mul_pd(c12_00,FF);
291             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
292             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjx0             = _mm256_add_pd(fjx0,tx);
310             fjy0             = _mm256_add_pd(fjy0,ty);
311             fjz0             = _mm256_add_pd(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm256_any_lt(rsq10,rcutoff2))
318             {
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm256_mul_pd(iq1,jq0);
322
323             /* REACTION-FIELD ELECTROSTATICS */
324             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
325             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
326
327             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velec            = _mm256_and_pd(velec,cutoff_mask);
331             velecsum         = _mm256_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             fscal            = _mm256_and_pd(fscal,cutoff_mask);
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm256_mul_pd(fscal,dx10);
339             ty               = _mm256_mul_pd(fscal,dy10);
340             tz               = _mm256_mul_pd(fscal,dz10);
341
342             /* Update vectorial force */
343             fix1             = _mm256_add_pd(fix1,tx);
344             fiy1             = _mm256_add_pd(fiy1,ty);
345             fiz1             = _mm256_add_pd(fiz1,tz);
346
347             fjx0             = _mm256_add_pd(fjx0,tx);
348             fjy0             = _mm256_add_pd(fjy0,ty);
349             fjz0             = _mm256_add_pd(fjz0,tz);
350
351             }
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             if (gmx_mm256_any_lt(rsq20,rcutoff2))
358             {
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq20             = _mm256_mul_pd(iq2,jq0);
362
363             /* REACTION-FIELD ELECTROSTATICS */
364             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
365             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
366
367             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm256_and_pd(velec,cutoff_mask);
371             velecsum         = _mm256_add_pd(velecsum,velec);
372
373             fscal            = felec;
374
375             fscal            = _mm256_and_pd(fscal,cutoff_mask);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_pd(fscal,dx20);
379             ty               = _mm256_mul_pd(fscal,dy20);
380             tz               = _mm256_mul_pd(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm256_add_pd(fix2,tx);
384             fiy2             = _mm256_add_pd(fiy2,ty);
385             fiz2             = _mm256_add_pd(fiz2,tz);
386
387             fjx0             = _mm256_add_pd(fjx0,tx);
388             fjy0             = _mm256_add_pd(fjy0,ty);
389             fjz0             = _mm256_add_pd(fjz0,tz);
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm256_any_lt(rsq30,rcutoff2))
398             {
399
400             /* Compute parameters for interactions between i and j atoms */
401             qq30             = _mm256_mul_pd(iq3,jq0);
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
405             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
406
407             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm256_and_pd(velec,cutoff_mask);
411             velecsum         = _mm256_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm256_and_pd(fscal,cutoff_mask);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm256_mul_pd(fscal,dx30);
419             ty               = _mm256_mul_pd(fscal,dy30);
420             tz               = _mm256_mul_pd(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm256_add_pd(fix3,tx);
424             fiy3             = _mm256_add_pd(fiy3,ty);
425             fiz3             = _mm256_add_pd(fiz3,tz);
426
427             fjx0             = _mm256_add_pd(fjx0,tx);
428             fjy0             = _mm256_add_pd(fjy0,ty);
429             fjz0             = _mm256_add_pd(fjz0,tz);
430
431             }
432
433             fjptrA             = f+j_coord_offsetA;
434             fjptrB             = f+j_coord_offsetB;
435             fjptrC             = f+j_coord_offsetC;
436             fjptrD             = f+j_coord_offsetD;
437
438             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 167 flops */
441         }
442
443         if(jidx<j_index_end)
444         {
445
446             /* Get j neighbor index, and coordinate index */
447             jnrlistA         = jjnr[jidx];
448             jnrlistB         = jjnr[jidx+1];
449             jnrlistC         = jjnr[jidx+2];
450             jnrlistD         = jjnr[jidx+3];
451             /* Sign of each element will be negative for non-real atoms.
452              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
453              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
454              */
455             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
456
457             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
458             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
459             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
460
461             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
462             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
463             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
464             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
465             j_coord_offsetA  = DIM*jnrA;
466             j_coord_offsetB  = DIM*jnrB;
467             j_coord_offsetC  = DIM*jnrC;
468             j_coord_offsetD  = DIM*jnrD;
469
470             /* load j atom coordinates */
471             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
472                                                  x+j_coord_offsetC,x+j_coord_offsetD,
473                                                  &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm256_sub_pd(ix0,jx0);
477             dy00             = _mm256_sub_pd(iy0,jy0);
478             dz00             = _mm256_sub_pd(iz0,jz0);
479             dx10             = _mm256_sub_pd(ix1,jx0);
480             dy10             = _mm256_sub_pd(iy1,jy0);
481             dz10             = _mm256_sub_pd(iz1,jz0);
482             dx20             = _mm256_sub_pd(ix2,jx0);
483             dy20             = _mm256_sub_pd(iy2,jy0);
484             dz20             = _mm256_sub_pd(iz2,jz0);
485             dx30             = _mm256_sub_pd(ix3,jx0);
486             dy30             = _mm256_sub_pd(iy3,jy0);
487             dz30             = _mm256_sub_pd(iz3,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
491             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
492             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
493             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
494
495             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
496             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
497             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
498             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
499
500             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
501             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
502             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
503
504             /* Load parameters for j particles */
505             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
506                                                                  charge+jnrC+0,charge+jnrD+0);
507             vdwjidx0A        = 2*vdwtype[jnrA+0];
508             vdwjidx0B        = 2*vdwtype[jnrB+0];
509             vdwjidx0C        = 2*vdwtype[jnrC+0];
510             vdwjidx0D        = 2*vdwtype[jnrD+0];
511
512             fjx0             = _mm256_setzero_pd();
513             fjy0             = _mm256_setzero_pd();
514             fjz0             = _mm256_setzero_pd();
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r00              = _mm256_mul_pd(rsq00,rinv00);
521             r00              = _mm256_andnot_pd(dummy_mask,r00);
522
523             /* Compute parameters for interactions between i and j atoms */
524             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
525                                             vdwioffsetptr0+vdwjidx0B,
526                                             vdwioffsetptr0+vdwjidx0C,
527                                             vdwioffsetptr0+vdwjidx0D,
528                                             &c6_00,&c12_00);
529
530             /* Calculate table index by multiplying r with table scale and truncate to integer */
531             rt               = _mm256_mul_pd(r00,vftabscale);
532             vfitab           = _mm256_cvttpd_epi32(rt);
533             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
534             vfitab           = _mm_slli_epi32(vfitab,3);
535
536             /* CUBIC SPLINE TABLE DISPERSION */
537             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
539             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
540             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
541             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
542             Heps             = _mm256_mul_pd(vfeps,H);
543             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
544             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
545             vvdw6            = _mm256_mul_pd(c6_00,VV);
546             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
547             fvdw6            = _mm256_mul_pd(c6_00,FF);
548
549             /* CUBIC SPLINE TABLE REPULSION */
550             vfitab           = _mm_add_epi32(vfitab,ifour);
551             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
552             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
553             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
554             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
555             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
556             Heps             = _mm256_mul_pd(vfeps,H);
557             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
558             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
559             vvdw12           = _mm256_mul_pd(c12_00,VV);
560             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
561             fvdw12           = _mm256_mul_pd(c12_00,FF);
562             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
563             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
567             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
568
569             fscal            = fvdw;
570
571             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_pd(fscal,dx00);
575             ty               = _mm256_mul_pd(fscal,dy00);
576             tz               = _mm256_mul_pd(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm256_add_pd(fix0,tx);
580             fiy0             = _mm256_add_pd(fiy0,ty);
581             fiz0             = _mm256_add_pd(fiz0,tz);
582
583             fjx0             = _mm256_add_pd(fjx0,tx);
584             fjy0             = _mm256_add_pd(fjy0,ty);
585             fjz0             = _mm256_add_pd(fjz0,tz);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             if (gmx_mm256_any_lt(rsq10,rcutoff2))
592             {
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq10             = _mm256_mul_pd(iq1,jq0);
596
597             /* REACTION-FIELD ELECTROSTATICS */
598             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
599             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
600
601             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm256_and_pd(velec,cutoff_mask);
605             velec            = _mm256_andnot_pd(dummy_mask,velec);
606             velecsum         = _mm256_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm256_and_pd(fscal,cutoff_mask);
611
612             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm256_mul_pd(fscal,dx10);
616             ty               = _mm256_mul_pd(fscal,dy10);
617             tz               = _mm256_mul_pd(fscal,dz10);
618
619             /* Update vectorial force */
620             fix1             = _mm256_add_pd(fix1,tx);
621             fiy1             = _mm256_add_pd(fiy1,ty);
622             fiz1             = _mm256_add_pd(fiz1,tz);
623
624             fjx0             = _mm256_add_pd(fjx0,tx);
625             fjy0             = _mm256_add_pd(fjy0,ty);
626             fjz0             = _mm256_add_pd(fjz0,tz);
627
628             }
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             if (gmx_mm256_any_lt(rsq20,rcutoff2))
635             {
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq20             = _mm256_mul_pd(iq2,jq0);
639
640             /* REACTION-FIELD ELECTROSTATICS */
641             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
642             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
643
644             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
645
646             /* Update potential sum for this i atom from the interaction with this j atom. */
647             velec            = _mm256_and_pd(velec,cutoff_mask);
648             velec            = _mm256_andnot_pd(dummy_mask,velec);
649             velecsum         = _mm256_add_pd(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm256_and_pd(fscal,cutoff_mask);
654
655             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm256_mul_pd(fscal,dx20);
659             ty               = _mm256_mul_pd(fscal,dy20);
660             tz               = _mm256_mul_pd(fscal,dz20);
661
662             /* Update vectorial force */
663             fix2             = _mm256_add_pd(fix2,tx);
664             fiy2             = _mm256_add_pd(fiy2,ty);
665             fiz2             = _mm256_add_pd(fiz2,tz);
666
667             fjx0             = _mm256_add_pd(fjx0,tx);
668             fjy0             = _mm256_add_pd(fjy0,ty);
669             fjz0             = _mm256_add_pd(fjz0,tz);
670
671             }
672
673             /**************************
674              * CALCULATE INTERACTIONS *
675              **************************/
676
677             if (gmx_mm256_any_lt(rsq30,rcutoff2))
678             {
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq30             = _mm256_mul_pd(iq3,jq0);
682
683             /* REACTION-FIELD ELECTROSTATICS */
684             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
685             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
686
687             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
688
689             /* Update potential sum for this i atom from the interaction with this j atom. */
690             velec            = _mm256_and_pd(velec,cutoff_mask);
691             velec            = _mm256_andnot_pd(dummy_mask,velec);
692             velecsum         = _mm256_add_pd(velecsum,velec);
693
694             fscal            = felec;
695
696             fscal            = _mm256_and_pd(fscal,cutoff_mask);
697
698             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm256_mul_pd(fscal,dx30);
702             ty               = _mm256_mul_pd(fscal,dy30);
703             tz               = _mm256_mul_pd(fscal,dz30);
704
705             /* Update vectorial force */
706             fix3             = _mm256_add_pd(fix3,tx);
707             fiy3             = _mm256_add_pd(fiy3,ty);
708             fiz3             = _mm256_add_pd(fiz3,tz);
709
710             fjx0             = _mm256_add_pd(fjx0,tx);
711             fjy0             = _mm256_add_pd(fjy0,ty);
712             fjz0             = _mm256_add_pd(fjz0,tz);
713
714             }
715
716             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
717             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
718             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
719             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
720
721             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
722
723             /* Inner loop uses 168 flops */
724         }
725
726         /* End of innermost loop */
727
728         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
729                                                  f+i_coord_offset,fshift+i_shift_offset);
730
731         ggid                        = gid[iidx];
732         /* Update potential energies */
733         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
734         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
735
736         /* Increment number of inner iterations */
737         inneriter                  += j_index_end - j_index_start;
738
739         /* Outer loop uses 26 flops */
740     }
741
742     /* Increment number of outer iterations */
743     outeriter        += nri;
744
745     /* Update outer/inner flops */
746
747     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
748 }
749 /*
750  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
751  * Electrostatics interaction: ReactionField
752  * VdW interaction:            CubicSplineTable
753  * Geometry:                   Water4-Particle
754  * Calculate force/pot:        Force
755  */
756 void
757 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
758                     (t_nblist * gmx_restrict                nlist,
759                      rvec * gmx_restrict                    xx,
760                      rvec * gmx_restrict                    ff,
761                      t_forcerec * gmx_restrict              fr,
762                      t_mdatoms * gmx_restrict               mdatoms,
763                      nb_kernel_data_t * gmx_restrict        kernel_data,
764                      t_nrnb * gmx_restrict                  nrnb)
765 {
766     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
767      * just 0 for non-waters.
768      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
769      * jnr indices corresponding to data put in the four positions in the SIMD register.
770      */
771     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
772     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
773     int              jnrA,jnrB,jnrC,jnrD;
774     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
775     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
776     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
777     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
778     real             rcutoff_scalar;
779     real             *shiftvec,*fshift,*x,*f;
780     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
781     real             scratch[4*DIM];
782     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
783     real *           vdwioffsetptr0;
784     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
785     real *           vdwioffsetptr1;
786     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
787     real *           vdwioffsetptr2;
788     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
789     real *           vdwioffsetptr3;
790     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
791     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
792     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
793     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
794     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
795     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
796     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
797     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
798     real             *charge;
799     int              nvdwtype;
800     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
801     int              *vdwtype;
802     real             *vdwparam;
803     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
804     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
805     __m128i          vfitab;
806     __m128i          ifour       = _mm_set1_epi32(4);
807     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
808     real             *vftab;
809     __m256d          dummy_mask,cutoff_mask;
810     __m128           tmpmask0,tmpmask1;
811     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
812     __m256d          one     = _mm256_set1_pd(1.0);
813     __m256d          two     = _mm256_set1_pd(2.0);
814     x                = xx[0];
815     f                = ff[0];
816
817     nri              = nlist->nri;
818     iinr             = nlist->iinr;
819     jindex           = nlist->jindex;
820     jjnr             = nlist->jjnr;
821     shiftidx         = nlist->shift;
822     gid              = nlist->gid;
823     shiftvec         = fr->shift_vec[0];
824     fshift           = fr->fshift[0];
825     facel            = _mm256_set1_pd(fr->epsfac);
826     charge           = mdatoms->chargeA;
827     krf              = _mm256_set1_pd(fr->ic->k_rf);
828     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
829     crf              = _mm256_set1_pd(fr->ic->c_rf);
830     nvdwtype         = fr->ntype;
831     vdwparam         = fr->nbfp;
832     vdwtype          = mdatoms->typeA;
833
834     vftab            = kernel_data->table_vdw->data;
835     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
836
837     /* Setup water-specific parameters */
838     inr              = nlist->iinr[0];
839     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
840     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
841     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
842     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
843
844     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
845     rcutoff_scalar   = fr->rcoulomb;
846     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
847     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
848
849     /* Avoid stupid compiler warnings */
850     jnrA = jnrB = jnrC = jnrD = 0;
851     j_coord_offsetA = 0;
852     j_coord_offsetB = 0;
853     j_coord_offsetC = 0;
854     j_coord_offsetD = 0;
855
856     outeriter        = 0;
857     inneriter        = 0;
858
859     for(iidx=0;iidx<4*DIM;iidx++)
860     {
861         scratch[iidx] = 0.0;
862     }
863
864     /* Start outer loop over neighborlists */
865     for(iidx=0; iidx<nri; iidx++)
866     {
867         /* Load shift vector for this list */
868         i_shift_offset   = DIM*shiftidx[iidx];
869
870         /* Load limits for loop over neighbors */
871         j_index_start    = jindex[iidx];
872         j_index_end      = jindex[iidx+1];
873
874         /* Get outer coordinate index */
875         inr              = iinr[iidx];
876         i_coord_offset   = DIM*inr;
877
878         /* Load i particle coords and add shift vector */
879         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
880                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
881
882         fix0             = _mm256_setzero_pd();
883         fiy0             = _mm256_setzero_pd();
884         fiz0             = _mm256_setzero_pd();
885         fix1             = _mm256_setzero_pd();
886         fiy1             = _mm256_setzero_pd();
887         fiz1             = _mm256_setzero_pd();
888         fix2             = _mm256_setzero_pd();
889         fiy2             = _mm256_setzero_pd();
890         fiz2             = _mm256_setzero_pd();
891         fix3             = _mm256_setzero_pd();
892         fiy3             = _mm256_setzero_pd();
893         fiz3             = _mm256_setzero_pd();
894
895         /* Start inner kernel loop */
896         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
897         {
898
899             /* Get j neighbor index, and coordinate index */
900             jnrA             = jjnr[jidx];
901             jnrB             = jjnr[jidx+1];
902             jnrC             = jjnr[jidx+2];
903             jnrD             = jjnr[jidx+3];
904             j_coord_offsetA  = DIM*jnrA;
905             j_coord_offsetB  = DIM*jnrB;
906             j_coord_offsetC  = DIM*jnrC;
907             j_coord_offsetD  = DIM*jnrD;
908
909             /* load j atom coordinates */
910             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
911                                                  x+j_coord_offsetC,x+j_coord_offsetD,
912                                                  &jx0,&jy0,&jz0);
913
914             /* Calculate displacement vector */
915             dx00             = _mm256_sub_pd(ix0,jx0);
916             dy00             = _mm256_sub_pd(iy0,jy0);
917             dz00             = _mm256_sub_pd(iz0,jz0);
918             dx10             = _mm256_sub_pd(ix1,jx0);
919             dy10             = _mm256_sub_pd(iy1,jy0);
920             dz10             = _mm256_sub_pd(iz1,jz0);
921             dx20             = _mm256_sub_pd(ix2,jx0);
922             dy20             = _mm256_sub_pd(iy2,jy0);
923             dz20             = _mm256_sub_pd(iz2,jz0);
924             dx30             = _mm256_sub_pd(ix3,jx0);
925             dy30             = _mm256_sub_pd(iy3,jy0);
926             dz30             = _mm256_sub_pd(iz3,jz0);
927
928             /* Calculate squared distance and things based on it */
929             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
930             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
931             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
932             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
933
934             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
935             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
936             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
937             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
938
939             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
940             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
941             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
942
943             /* Load parameters for j particles */
944             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
945                                                                  charge+jnrC+0,charge+jnrD+0);
946             vdwjidx0A        = 2*vdwtype[jnrA+0];
947             vdwjidx0B        = 2*vdwtype[jnrB+0];
948             vdwjidx0C        = 2*vdwtype[jnrC+0];
949             vdwjidx0D        = 2*vdwtype[jnrD+0];
950
951             fjx0             = _mm256_setzero_pd();
952             fjy0             = _mm256_setzero_pd();
953             fjz0             = _mm256_setzero_pd();
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r00              = _mm256_mul_pd(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
963                                             vdwioffsetptr0+vdwjidx0B,
964                                             vdwioffsetptr0+vdwjidx0C,
965                                             vdwioffsetptr0+vdwjidx0D,
966                                             &c6_00,&c12_00);
967
968             /* Calculate table index by multiplying r with table scale and truncate to integer */
969             rt               = _mm256_mul_pd(r00,vftabscale);
970             vfitab           = _mm256_cvttpd_epi32(rt);
971             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
972             vfitab           = _mm_slli_epi32(vfitab,3);
973
974             /* CUBIC SPLINE TABLE DISPERSION */
975             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
976             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
977             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
978             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
979             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
980             Heps             = _mm256_mul_pd(vfeps,H);
981             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
982             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
983             fvdw6            = _mm256_mul_pd(c6_00,FF);
984
985             /* CUBIC SPLINE TABLE REPULSION */
986             vfitab           = _mm_add_epi32(vfitab,ifour);
987             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
988             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
989             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
990             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
991             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
992             Heps             = _mm256_mul_pd(vfeps,H);
993             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
994             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
995             fvdw12           = _mm256_mul_pd(c12_00,FF);
996             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
997
998             fscal            = fvdw;
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_pd(fscal,dx00);
1002             ty               = _mm256_mul_pd(fscal,dy00);
1003             tz               = _mm256_mul_pd(fscal,dz00);
1004
1005             /* Update vectorial force */
1006             fix0             = _mm256_add_pd(fix0,tx);
1007             fiy0             = _mm256_add_pd(fiy0,ty);
1008             fiz0             = _mm256_add_pd(fiz0,tz);
1009
1010             fjx0             = _mm256_add_pd(fjx0,tx);
1011             fjy0             = _mm256_add_pd(fjy0,ty);
1012             fjz0             = _mm256_add_pd(fjz0,tz);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1019             {
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq10             = _mm256_mul_pd(iq1,jq0);
1023
1024             /* REACTION-FIELD ELECTROSTATICS */
1025             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1026
1027             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_pd(fscal,dx10);
1035             ty               = _mm256_mul_pd(fscal,dy10);
1036             tz               = _mm256_mul_pd(fscal,dz10);
1037
1038             /* Update vectorial force */
1039             fix1             = _mm256_add_pd(fix1,tx);
1040             fiy1             = _mm256_add_pd(fiy1,ty);
1041             fiz1             = _mm256_add_pd(fiz1,tz);
1042
1043             fjx0             = _mm256_add_pd(fjx0,tx);
1044             fjy0             = _mm256_add_pd(fjy0,ty);
1045             fjz0             = _mm256_add_pd(fjz0,tz);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1054             {
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq20             = _mm256_mul_pd(iq2,jq0);
1058
1059             /* REACTION-FIELD ELECTROSTATICS */
1060             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1061
1062             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm256_mul_pd(fscal,dx20);
1070             ty               = _mm256_mul_pd(fscal,dy20);
1071             tz               = _mm256_mul_pd(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm256_add_pd(fix2,tx);
1075             fiy2             = _mm256_add_pd(fiy2,ty);
1076             fiz2             = _mm256_add_pd(fiz2,tz);
1077
1078             fjx0             = _mm256_add_pd(fjx0,tx);
1079             fjy0             = _mm256_add_pd(fjy0,ty);
1080             fjz0             = _mm256_add_pd(fjz0,tz);
1081
1082             }
1083
1084             /**************************
1085              * CALCULATE INTERACTIONS *
1086              **************************/
1087
1088             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1089             {
1090
1091             /* Compute parameters for interactions between i and j atoms */
1092             qq30             = _mm256_mul_pd(iq3,jq0);
1093
1094             /* REACTION-FIELD ELECTROSTATICS */
1095             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1096
1097             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1098
1099             fscal            = felec;
1100
1101             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1102
1103             /* Calculate temporary vectorial force */
1104             tx               = _mm256_mul_pd(fscal,dx30);
1105             ty               = _mm256_mul_pd(fscal,dy30);
1106             tz               = _mm256_mul_pd(fscal,dz30);
1107
1108             /* Update vectorial force */
1109             fix3             = _mm256_add_pd(fix3,tx);
1110             fiy3             = _mm256_add_pd(fiy3,ty);
1111             fiz3             = _mm256_add_pd(fiz3,tz);
1112
1113             fjx0             = _mm256_add_pd(fjx0,tx);
1114             fjy0             = _mm256_add_pd(fjy0,ty);
1115             fjz0             = _mm256_add_pd(fjz0,tz);
1116
1117             }
1118
1119             fjptrA             = f+j_coord_offsetA;
1120             fjptrB             = f+j_coord_offsetB;
1121             fjptrC             = f+j_coord_offsetC;
1122             fjptrD             = f+j_coord_offsetD;
1123
1124             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1125
1126             /* Inner loop uses 141 flops */
1127         }
1128
1129         if(jidx<j_index_end)
1130         {
1131
1132             /* Get j neighbor index, and coordinate index */
1133             jnrlistA         = jjnr[jidx];
1134             jnrlistB         = jjnr[jidx+1];
1135             jnrlistC         = jjnr[jidx+2];
1136             jnrlistD         = jjnr[jidx+3];
1137             /* Sign of each element will be negative for non-real atoms.
1138              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1139              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1140              */
1141             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1142
1143             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1144             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1145             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1146
1147             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1148             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1149             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1150             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1151             j_coord_offsetA  = DIM*jnrA;
1152             j_coord_offsetB  = DIM*jnrB;
1153             j_coord_offsetC  = DIM*jnrC;
1154             j_coord_offsetD  = DIM*jnrD;
1155
1156             /* load j atom coordinates */
1157             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1158                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1159                                                  &jx0,&jy0,&jz0);
1160
1161             /* Calculate displacement vector */
1162             dx00             = _mm256_sub_pd(ix0,jx0);
1163             dy00             = _mm256_sub_pd(iy0,jy0);
1164             dz00             = _mm256_sub_pd(iz0,jz0);
1165             dx10             = _mm256_sub_pd(ix1,jx0);
1166             dy10             = _mm256_sub_pd(iy1,jy0);
1167             dz10             = _mm256_sub_pd(iz1,jz0);
1168             dx20             = _mm256_sub_pd(ix2,jx0);
1169             dy20             = _mm256_sub_pd(iy2,jy0);
1170             dz20             = _mm256_sub_pd(iz2,jz0);
1171             dx30             = _mm256_sub_pd(ix3,jx0);
1172             dy30             = _mm256_sub_pd(iy3,jy0);
1173             dz30             = _mm256_sub_pd(iz3,jz0);
1174
1175             /* Calculate squared distance and things based on it */
1176             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1177             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1178             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1179             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1180
1181             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1182             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1183             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1184             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1185
1186             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1187             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1188             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1192                                                                  charge+jnrC+0,charge+jnrD+0);
1193             vdwjidx0A        = 2*vdwtype[jnrA+0];
1194             vdwjidx0B        = 2*vdwtype[jnrB+0];
1195             vdwjidx0C        = 2*vdwtype[jnrC+0];
1196             vdwjidx0D        = 2*vdwtype[jnrD+0];
1197
1198             fjx0             = _mm256_setzero_pd();
1199             fjy0             = _mm256_setzero_pd();
1200             fjz0             = _mm256_setzero_pd();
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             r00              = _mm256_mul_pd(rsq00,rinv00);
1207             r00              = _mm256_andnot_pd(dummy_mask,r00);
1208
1209             /* Compute parameters for interactions between i and j atoms */
1210             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1211                                             vdwioffsetptr0+vdwjidx0B,
1212                                             vdwioffsetptr0+vdwjidx0C,
1213                                             vdwioffsetptr0+vdwjidx0D,
1214                                             &c6_00,&c12_00);
1215
1216             /* Calculate table index by multiplying r with table scale and truncate to integer */
1217             rt               = _mm256_mul_pd(r00,vftabscale);
1218             vfitab           = _mm256_cvttpd_epi32(rt);
1219             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1220             vfitab           = _mm_slli_epi32(vfitab,3);
1221
1222             /* CUBIC SPLINE TABLE DISPERSION */
1223             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1224             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1225             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1226             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1227             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1228             Heps             = _mm256_mul_pd(vfeps,H);
1229             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1230             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1231             fvdw6            = _mm256_mul_pd(c6_00,FF);
1232
1233             /* CUBIC SPLINE TABLE REPULSION */
1234             vfitab           = _mm_add_epi32(vfitab,ifour);
1235             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1236             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1237             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1238             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1239             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1240             Heps             = _mm256_mul_pd(vfeps,H);
1241             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1242             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1243             fvdw12           = _mm256_mul_pd(c12_00,FF);
1244             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1245
1246             fscal            = fvdw;
1247
1248             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm256_mul_pd(fscal,dx00);
1252             ty               = _mm256_mul_pd(fscal,dy00);
1253             tz               = _mm256_mul_pd(fscal,dz00);
1254
1255             /* Update vectorial force */
1256             fix0             = _mm256_add_pd(fix0,tx);
1257             fiy0             = _mm256_add_pd(fiy0,ty);
1258             fiz0             = _mm256_add_pd(fiz0,tz);
1259
1260             fjx0             = _mm256_add_pd(fjx0,tx);
1261             fjy0             = _mm256_add_pd(fjy0,ty);
1262             fjz0             = _mm256_add_pd(fjz0,tz);
1263
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1269             {
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm256_mul_pd(iq1,jq0);
1273
1274             /* REACTION-FIELD ELECTROSTATICS */
1275             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1276
1277             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1282
1283             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm256_mul_pd(fscal,dx10);
1287             ty               = _mm256_mul_pd(fscal,dy10);
1288             tz               = _mm256_mul_pd(fscal,dz10);
1289
1290             /* Update vectorial force */
1291             fix1             = _mm256_add_pd(fix1,tx);
1292             fiy1             = _mm256_add_pd(fiy1,ty);
1293             fiz1             = _mm256_add_pd(fiz1,tz);
1294
1295             fjx0             = _mm256_add_pd(fjx0,tx);
1296             fjy0             = _mm256_add_pd(fjy0,ty);
1297             fjz0             = _mm256_add_pd(fjz0,tz);
1298
1299             }
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1306             {
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq20             = _mm256_mul_pd(iq2,jq0);
1310
1311             /* REACTION-FIELD ELECTROSTATICS */
1312             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1313
1314             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1315
1316             fscal            = felec;
1317
1318             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1319
1320             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1321
1322             /* Calculate temporary vectorial force */
1323             tx               = _mm256_mul_pd(fscal,dx20);
1324             ty               = _mm256_mul_pd(fscal,dy20);
1325             tz               = _mm256_mul_pd(fscal,dz20);
1326
1327             /* Update vectorial force */
1328             fix2             = _mm256_add_pd(fix2,tx);
1329             fiy2             = _mm256_add_pd(fiy2,ty);
1330             fiz2             = _mm256_add_pd(fiz2,tz);
1331
1332             fjx0             = _mm256_add_pd(fjx0,tx);
1333             fjy0             = _mm256_add_pd(fjy0,ty);
1334             fjz0             = _mm256_add_pd(fjz0,tz);
1335
1336             }
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1343             {
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq30             = _mm256_mul_pd(iq3,jq0);
1347
1348             /* REACTION-FIELD ELECTROSTATICS */
1349             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1350
1351             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1356
1357             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm256_mul_pd(fscal,dx30);
1361             ty               = _mm256_mul_pd(fscal,dy30);
1362             tz               = _mm256_mul_pd(fscal,dz30);
1363
1364             /* Update vectorial force */
1365             fix3             = _mm256_add_pd(fix3,tx);
1366             fiy3             = _mm256_add_pd(fiy3,ty);
1367             fiz3             = _mm256_add_pd(fiz3,tz);
1368
1369             fjx0             = _mm256_add_pd(fjx0,tx);
1370             fjy0             = _mm256_add_pd(fjy0,ty);
1371             fjz0             = _mm256_add_pd(fjz0,tz);
1372
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382             /* Inner loop uses 142 flops */
1383         }
1384
1385         /* End of innermost loop */
1386
1387         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1388                                                  f+i_coord_offset,fshift+i_shift_offset);
1389
1390         /* Increment number of inner iterations */
1391         inneriter                  += j_index_end - j_index_start;
1392
1393         /* Outer loop uses 24 flops */
1394     }
1395
1396     /* Increment number of outer iterations */
1397     outeriter        += nri;
1398
1399     /* Update outer/inner flops */
1400
1401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1402 }