169fe4b3920c7af4ed02f0624c16b2b42970338a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          vfitab;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm256_set1_pd(fr->ic->k_rf);
129     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
130     crf              = _mm256_set1_pd(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
141     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
142     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
143     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
144
145     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146     rcutoff_scalar   = fr->rcoulomb;
147     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
148     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm256_setzero_pd();
184         fiy0             = _mm256_setzero_pd();
185         fiz0             = _mm256_setzero_pd();
186         fix1             = _mm256_setzero_pd();
187         fiy1             = _mm256_setzero_pd();
188         fiz1             = _mm256_setzero_pd();
189         fix2             = _mm256_setzero_pd();
190         fiy2             = _mm256_setzero_pd();
191         fiz2             = _mm256_setzero_pd();
192         fix3             = _mm256_setzero_pd();
193         fiy3             = _mm256_setzero_pd();
194         fiz3             = _mm256_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_pd();
198         vvdwsum          = _mm256_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_pd(ix0,jx0);
221             dy00             = _mm256_sub_pd(iy0,jy0);
222             dz00             = _mm256_sub_pd(iz0,jz0);
223             dx10             = _mm256_sub_pd(ix1,jx0);
224             dy10             = _mm256_sub_pd(iy1,jy0);
225             dz10             = _mm256_sub_pd(iz1,jz0);
226             dx20             = _mm256_sub_pd(ix2,jx0);
227             dy20             = _mm256_sub_pd(iy2,jy0);
228             dz20             = _mm256_sub_pd(iz2,jz0);
229             dx30             = _mm256_sub_pd(ix3,jx0);
230             dy30             = _mm256_sub_pd(iy3,jy0);
231             dz30             = _mm256_sub_pd(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
235             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
237             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
238
239             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
240             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
241             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
242             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
243
244             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
246             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
250                                                                  charge+jnrC+0,charge+jnrD+0);
251             vdwjidx0A        = 2*vdwtype[jnrA+0];
252             vdwjidx0B        = 2*vdwtype[jnrB+0];
253             vdwjidx0C        = 2*vdwtype[jnrC+0];
254             vdwjidx0D        = 2*vdwtype[jnrD+0];
255
256             fjx0             = _mm256_setzero_pd();
257             fjy0             = _mm256_setzero_pd();
258             fjz0             = _mm256_setzero_pd();
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             r00              = _mm256_mul_pd(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
268                                             vdwioffsetptr0+vdwjidx0B,
269                                             vdwioffsetptr0+vdwjidx0C,
270                                             vdwioffsetptr0+vdwjidx0D,
271                                             &c6_00,&c12_00);
272
273             /* Calculate table index by multiplying r with table scale and truncate to integer */
274             rt               = _mm256_mul_pd(r00,vftabscale);
275             vfitab           = _mm256_cvttpd_epi32(rt);
276             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
277             vfitab           = _mm_slli_epi32(vfitab,3);
278
279             /* CUBIC SPLINE TABLE DISPERSION */
280             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
284             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
285             Heps             = _mm256_mul_pd(vfeps,H);
286             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
287             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
288             vvdw6            = _mm256_mul_pd(c6_00,VV);
289             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
290             fvdw6            = _mm256_mul_pd(c6_00,FF);
291
292             /* CUBIC SPLINE TABLE REPULSION */
293             vfitab           = _mm_add_epi32(vfitab,ifour);
294             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
295             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
296             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
297             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
298             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
299             Heps             = _mm256_mul_pd(vfeps,H);
300             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
301             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
302             vvdw12           = _mm256_mul_pd(c12_00,VV);
303             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
304             fvdw12           = _mm256_mul_pd(c12_00,FF);
305             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
306             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
310
311             fscal            = fvdw;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx00);
315             ty               = _mm256_mul_pd(fscal,dy00);
316             tz               = _mm256_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_pd(fix0,tx);
320             fiy0             = _mm256_add_pd(fiy0,ty);
321             fiz0             = _mm256_add_pd(fiz0,tz);
322
323             fjx0             = _mm256_add_pd(fjx0,tx);
324             fjy0             = _mm256_add_pd(fjy0,ty);
325             fjz0             = _mm256_add_pd(fjz0,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm256_any_lt(rsq10,rcutoff2))
332             {
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq10             = _mm256_mul_pd(iq1,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
339             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
340
341             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm256_and_pd(velec,cutoff_mask);
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm256_and_pd(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx10);
353             ty               = _mm256_mul_pd(fscal,dy10);
354             tz               = _mm256_mul_pd(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm256_add_pd(fix1,tx);
358             fiy1             = _mm256_add_pd(fiy1,ty);
359             fiz1             = _mm256_add_pd(fiz1,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm256_any_lt(rsq20,rcutoff2))
372             {
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm256_mul_pd(iq2,jq0);
376
377             /* REACTION-FIELD ELECTROSTATICS */
378             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
379             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
380
381             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm256_and_pd(velec,cutoff_mask);
385             velecsum         = _mm256_add_pd(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm256_and_pd(fscal,cutoff_mask);
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm256_mul_pd(fscal,dx20);
393             ty               = _mm256_mul_pd(fscal,dy20);
394             tz               = _mm256_mul_pd(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm256_add_pd(fix2,tx);
398             fiy2             = _mm256_add_pd(fiy2,ty);
399             fiz2             = _mm256_add_pd(fiz2,tz);
400
401             fjx0             = _mm256_add_pd(fjx0,tx);
402             fjy0             = _mm256_add_pd(fjy0,ty);
403             fjz0             = _mm256_add_pd(fjz0,tz);
404
405             }
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm256_any_lt(rsq30,rcutoff2))
412             {
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq30             = _mm256_mul_pd(iq3,jq0);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
419             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
420
421             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm256_and_pd(velec,cutoff_mask);
425             velecsum         = _mm256_add_pd(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm256_and_pd(fscal,cutoff_mask);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm256_mul_pd(fscal,dx30);
433             ty               = _mm256_mul_pd(fscal,dy30);
434             tz               = _mm256_mul_pd(fscal,dz30);
435
436             /* Update vectorial force */
437             fix3             = _mm256_add_pd(fix3,tx);
438             fiy3             = _mm256_add_pd(fiy3,ty);
439             fiz3             = _mm256_add_pd(fiz3,tz);
440
441             fjx0             = _mm256_add_pd(fjx0,tx);
442             fjy0             = _mm256_add_pd(fjy0,ty);
443             fjz0             = _mm256_add_pd(fjz0,tz);
444
445             }
446
447             fjptrA             = f+j_coord_offsetA;
448             fjptrB             = f+j_coord_offsetB;
449             fjptrC             = f+j_coord_offsetC;
450             fjptrD             = f+j_coord_offsetD;
451
452             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
453
454             /* Inner loop uses 167 flops */
455         }
456
457         if(jidx<j_index_end)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrlistA         = jjnr[jidx];
462             jnrlistB         = jjnr[jidx+1];
463             jnrlistC         = jjnr[jidx+2];
464             jnrlistD         = jjnr[jidx+3];
465             /* Sign of each element will be negative for non-real atoms.
466              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
467              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
468              */
469             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
470
471             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
472             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
473             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
474
475             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
476             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
477             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
478             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481             j_coord_offsetC  = DIM*jnrC;
482             j_coord_offsetD  = DIM*jnrD;
483
484             /* load j atom coordinates */
485             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
486                                                  x+j_coord_offsetC,x+j_coord_offsetD,
487                                                  &jx0,&jy0,&jz0);
488
489             /* Calculate displacement vector */
490             dx00             = _mm256_sub_pd(ix0,jx0);
491             dy00             = _mm256_sub_pd(iy0,jy0);
492             dz00             = _mm256_sub_pd(iz0,jz0);
493             dx10             = _mm256_sub_pd(ix1,jx0);
494             dy10             = _mm256_sub_pd(iy1,jy0);
495             dz10             = _mm256_sub_pd(iz1,jz0);
496             dx20             = _mm256_sub_pd(ix2,jx0);
497             dy20             = _mm256_sub_pd(iy2,jy0);
498             dz20             = _mm256_sub_pd(iz2,jz0);
499             dx30             = _mm256_sub_pd(ix3,jx0);
500             dy30             = _mm256_sub_pd(iy3,jy0);
501             dz30             = _mm256_sub_pd(iz3,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
505             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
506             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
507             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
508
509             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
510             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
511             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
512             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
513
514             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
515             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
516             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
517
518             /* Load parameters for j particles */
519             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
520                                                                  charge+jnrC+0,charge+jnrD+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523             vdwjidx0C        = 2*vdwtype[jnrC+0];
524             vdwjidx0D        = 2*vdwtype[jnrD+0];
525
526             fjx0             = _mm256_setzero_pd();
527             fjy0             = _mm256_setzero_pd();
528             fjz0             = _mm256_setzero_pd();
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm256_mul_pd(rsq00,rinv00);
535             r00              = _mm256_andnot_pd(dummy_mask,r00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
539                                             vdwioffsetptr0+vdwjidx0B,
540                                             vdwioffsetptr0+vdwjidx0C,
541                                             vdwioffsetptr0+vdwjidx0D,
542                                             &c6_00,&c12_00);
543
544             /* Calculate table index by multiplying r with table scale and truncate to integer */
545             rt               = _mm256_mul_pd(r00,vftabscale);
546             vfitab           = _mm256_cvttpd_epi32(rt);
547             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
548             vfitab           = _mm_slli_epi32(vfitab,3);
549
550             /* CUBIC SPLINE TABLE DISPERSION */
551             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
552             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
553             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
554             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
555             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
556             Heps             = _mm256_mul_pd(vfeps,H);
557             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
558             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
559             vvdw6            = _mm256_mul_pd(c6_00,VV);
560             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
561             fvdw6            = _mm256_mul_pd(c6_00,FF);
562
563             /* CUBIC SPLINE TABLE REPULSION */
564             vfitab           = _mm_add_epi32(vfitab,ifour);
565             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
566             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
567             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
568             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
569             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
570             Heps             = _mm256_mul_pd(vfeps,H);
571             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
572             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
573             vvdw12           = _mm256_mul_pd(c12_00,VV);
574             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
575             fvdw12           = _mm256_mul_pd(c12_00,FF);
576             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
577             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
581             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
582
583             fscal            = fvdw;
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx00);
589             ty               = _mm256_mul_pd(fscal,dy00);
590             tz               = _mm256_mul_pd(fscal,dz00);
591
592             /* Update vectorial force */
593             fix0             = _mm256_add_pd(fix0,tx);
594             fiy0             = _mm256_add_pd(fiy0,ty);
595             fiz0             = _mm256_add_pd(fiz0,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm256_any_lt(rsq10,rcutoff2))
606             {
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq10             = _mm256_mul_pd(iq1,jq0);
610
611             /* REACTION-FIELD ELECTROSTATICS */
612             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
613             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
614
615             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm256_and_pd(velec,cutoff_mask);
619             velec            = _mm256_andnot_pd(dummy_mask,velec);
620             velecsum         = _mm256_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm256_and_pd(fscal,cutoff_mask);
625
626             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm256_mul_pd(fscal,dx10);
630             ty               = _mm256_mul_pd(fscal,dy10);
631             tz               = _mm256_mul_pd(fscal,dz10);
632
633             /* Update vectorial force */
634             fix1             = _mm256_add_pd(fix1,tx);
635             fiy1             = _mm256_add_pd(fiy1,ty);
636             fiz1             = _mm256_add_pd(fiz1,tz);
637
638             fjx0             = _mm256_add_pd(fjx0,tx);
639             fjy0             = _mm256_add_pd(fjy0,ty);
640             fjz0             = _mm256_add_pd(fjz0,tz);
641
642             }
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             if (gmx_mm256_any_lt(rsq20,rcutoff2))
649             {
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq20             = _mm256_mul_pd(iq2,jq0);
653
654             /* REACTION-FIELD ELECTROSTATICS */
655             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
656             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
657
658             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _mm256_and_pd(velec,cutoff_mask);
662             velec            = _mm256_andnot_pd(dummy_mask,velec);
663             velecsum         = _mm256_add_pd(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _mm256_and_pd(fscal,cutoff_mask);
668
669             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm256_mul_pd(fscal,dx20);
673             ty               = _mm256_mul_pd(fscal,dy20);
674             tz               = _mm256_mul_pd(fscal,dz20);
675
676             /* Update vectorial force */
677             fix2             = _mm256_add_pd(fix2,tx);
678             fiy2             = _mm256_add_pd(fiy2,ty);
679             fiz2             = _mm256_add_pd(fiz2,tz);
680
681             fjx0             = _mm256_add_pd(fjx0,tx);
682             fjy0             = _mm256_add_pd(fjy0,ty);
683             fjz0             = _mm256_add_pd(fjz0,tz);
684
685             }
686
687             /**************************
688              * CALCULATE INTERACTIONS *
689              **************************/
690
691             if (gmx_mm256_any_lt(rsq30,rcutoff2))
692             {
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq30             = _mm256_mul_pd(iq3,jq0);
696
697             /* REACTION-FIELD ELECTROSTATICS */
698             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
699             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
700
701             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
702
703             /* Update potential sum for this i atom from the interaction with this j atom. */
704             velec            = _mm256_and_pd(velec,cutoff_mask);
705             velec            = _mm256_andnot_pd(dummy_mask,velec);
706             velecsum         = _mm256_add_pd(velecsum,velec);
707
708             fscal            = felec;
709
710             fscal            = _mm256_and_pd(fscal,cutoff_mask);
711
712             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm256_mul_pd(fscal,dx30);
716             ty               = _mm256_mul_pd(fscal,dy30);
717             tz               = _mm256_mul_pd(fscal,dz30);
718
719             /* Update vectorial force */
720             fix3             = _mm256_add_pd(fix3,tx);
721             fiy3             = _mm256_add_pd(fiy3,ty);
722             fiz3             = _mm256_add_pd(fiz3,tz);
723
724             fjx0             = _mm256_add_pd(fjx0,tx);
725             fjy0             = _mm256_add_pd(fjy0,ty);
726             fjz0             = _mm256_add_pd(fjz0,tz);
727
728             }
729
730             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
731             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
732             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
733             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
734
735             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
736
737             /* Inner loop uses 168 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
743                                                  f+i_coord_offset,fshift+i_shift_offset);
744
745         ggid                        = gid[iidx];
746         /* Update potential energies */
747         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
748         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 26 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
762 }
763 /*
764  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
765  * Electrostatics interaction: ReactionField
766  * VdW interaction:            CubicSplineTable
767  * Geometry:                   Water4-Particle
768  * Calculate force/pot:        Force
769  */
770 void
771 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_256_double
772                     (t_nblist                    * gmx_restrict       nlist,
773                      rvec                        * gmx_restrict          xx,
774                      rvec                        * gmx_restrict          ff,
775                      t_forcerec                  * gmx_restrict          fr,
776                      t_mdatoms                   * gmx_restrict     mdatoms,
777                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
778                      t_nrnb                      * gmx_restrict        nrnb)
779 {
780     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
781      * just 0 for non-waters.
782      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
783      * jnr indices corresponding to data put in the four positions in the SIMD register.
784      */
785     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
786     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
787     int              jnrA,jnrB,jnrC,jnrD;
788     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
789     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
792     real             rcutoff_scalar;
793     real             *shiftvec,*fshift,*x,*f;
794     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
795     real             scratch[4*DIM];
796     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
797     real *           vdwioffsetptr0;
798     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
799     real *           vdwioffsetptr1;
800     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
801     real *           vdwioffsetptr2;
802     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
803     real *           vdwioffsetptr3;
804     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
805     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
806     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
807     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
808     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
809     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
810     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
811     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
812     real             *charge;
813     int              nvdwtype;
814     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
815     int              *vdwtype;
816     real             *vdwparam;
817     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
818     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
819     __m128i          vfitab;
820     __m128i          ifour       = _mm_set1_epi32(4);
821     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
822     real             *vftab;
823     __m256d          dummy_mask,cutoff_mask;
824     __m128           tmpmask0,tmpmask1;
825     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
826     __m256d          one     = _mm256_set1_pd(1.0);
827     __m256d          two     = _mm256_set1_pd(2.0);
828     x                = xx[0];
829     f                = ff[0];
830
831     nri              = nlist->nri;
832     iinr             = nlist->iinr;
833     jindex           = nlist->jindex;
834     jjnr             = nlist->jjnr;
835     shiftidx         = nlist->shift;
836     gid              = nlist->gid;
837     shiftvec         = fr->shift_vec[0];
838     fshift           = fr->fshift[0];
839     facel            = _mm256_set1_pd(fr->epsfac);
840     charge           = mdatoms->chargeA;
841     krf              = _mm256_set1_pd(fr->ic->k_rf);
842     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
843     crf              = _mm256_set1_pd(fr->ic->c_rf);
844     nvdwtype         = fr->ntype;
845     vdwparam         = fr->nbfp;
846     vdwtype          = mdatoms->typeA;
847
848     vftab            = kernel_data->table_vdw->data;
849     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
850
851     /* Setup water-specific parameters */
852     inr              = nlist->iinr[0];
853     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
854     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
855     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
856     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
857
858     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
859     rcutoff_scalar   = fr->rcoulomb;
860     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
861     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
862
863     /* Avoid stupid compiler warnings */
864     jnrA = jnrB = jnrC = jnrD = 0;
865     j_coord_offsetA = 0;
866     j_coord_offsetB = 0;
867     j_coord_offsetC = 0;
868     j_coord_offsetD = 0;
869
870     outeriter        = 0;
871     inneriter        = 0;
872
873     for(iidx=0;iidx<4*DIM;iidx++)
874     {
875         scratch[iidx] = 0.0;
876     }
877
878     /* Start outer loop over neighborlists */
879     for(iidx=0; iidx<nri; iidx++)
880     {
881         /* Load shift vector for this list */
882         i_shift_offset   = DIM*shiftidx[iidx];
883
884         /* Load limits for loop over neighbors */
885         j_index_start    = jindex[iidx];
886         j_index_end      = jindex[iidx+1];
887
888         /* Get outer coordinate index */
889         inr              = iinr[iidx];
890         i_coord_offset   = DIM*inr;
891
892         /* Load i particle coords and add shift vector */
893         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
894                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
895
896         fix0             = _mm256_setzero_pd();
897         fiy0             = _mm256_setzero_pd();
898         fiz0             = _mm256_setzero_pd();
899         fix1             = _mm256_setzero_pd();
900         fiy1             = _mm256_setzero_pd();
901         fiz1             = _mm256_setzero_pd();
902         fix2             = _mm256_setzero_pd();
903         fiy2             = _mm256_setzero_pd();
904         fiz2             = _mm256_setzero_pd();
905         fix3             = _mm256_setzero_pd();
906         fiy3             = _mm256_setzero_pd();
907         fiz3             = _mm256_setzero_pd();
908
909         /* Start inner kernel loop */
910         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
911         {
912
913             /* Get j neighbor index, and coordinate index */
914             jnrA             = jjnr[jidx];
915             jnrB             = jjnr[jidx+1];
916             jnrC             = jjnr[jidx+2];
917             jnrD             = jjnr[jidx+3];
918             j_coord_offsetA  = DIM*jnrA;
919             j_coord_offsetB  = DIM*jnrB;
920             j_coord_offsetC  = DIM*jnrC;
921             j_coord_offsetD  = DIM*jnrD;
922
923             /* load j atom coordinates */
924             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
925                                                  x+j_coord_offsetC,x+j_coord_offsetD,
926                                                  &jx0,&jy0,&jz0);
927
928             /* Calculate displacement vector */
929             dx00             = _mm256_sub_pd(ix0,jx0);
930             dy00             = _mm256_sub_pd(iy0,jy0);
931             dz00             = _mm256_sub_pd(iz0,jz0);
932             dx10             = _mm256_sub_pd(ix1,jx0);
933             dy10             = _mm256_sub_pd(iy1,jy0);
934             dz10             = _mm256_sub_pd(iz1,jz0);
935             dx20             = _mm256_sub_pd(ix2,jx0);
936             dy20             = _mm256_sub_pd(iy2,jy0);
937             dz20             = _mm256_sub_pd(iz2,jz0);
938             dx30             = _mm256_sub_pd(ix3,jx0);
939             dy30             = _mm256_sub_pd(iy3,jy0);
940             dz30             = _mm256_sub_pd(iz3,jz0);
941
942             /* Calculate squared distance and things based on it */
943             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
944             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
945             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
946             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
947
948             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
949             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
950             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
951             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
952
953             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
954             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
955             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
959                                                                  charge+jnrC+0,charge+jnrD+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961             vdwjidx0B        = 2*vdwtype[jnrB+0];
962             vdwjidx0C        = 2*vdwtype[jnrC+0];
963             vdwjidx0D        = 2*vdwtype[jnrD+0];
964
965             fjx0             = _mm256_setzero_pd();
966             fjy0             = _mm256_setzero_pd();
967             fjz0             = _mm256_setzero_pd();
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r00              = _mm256_mul_pd(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
977                                             vdwioffsetptr0+vdwjidx0B,
978                                             vdwioffsetptr0+vdwjidx0C,
979                                             vdwioffsetptr0+vdwjidx0D,
980                                             &c6_00,&c12_00);
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = _mm256_mul_pd(r00,vftabscale);
984             vfitab           = _mm256_cvttpd_epi32(rt);
985             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
986             vfitab           = _mm_slli_epi32(vfitab,3);
987
988             /* CUBIC SPLINE TABLE DISPERSION */
989             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
990             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
991             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
992             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
993             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
994             Heps             = _mm256_mul_pd(vfeps,H);
995             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
996             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
997             fvdw6            = _mm256_mul_pd(c6_00,FF);
998
999             /* CUBIC SPLINE TABLE REPULSION */
1000             vfitab           = _mm_add_epi32(vfitab,ifour);
1001             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1002             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1003             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1004             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1005             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1006             Heps             = _mm256_mul_pd(vfeps,H);
1007             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1008             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1009             fvdw12           = _mm256_mul_pd(c12_00,FF);
1010             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1011
1012             fscal            = fvdw;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_pd(fscal,dx00);
1016             ty               = _mm256_mul_pd(fscal,dy00);
1017             tz               = _mm256_mul_pd(fscal,dz00);
1018
1019             /* Update vectorial force */
1020             fix0             = _mm256_add_pd(fix0,tx);
1021             fiy0             = _mm256_add_pd(fiy0,ty);
1022             fiz0             = _mm256_add_pd(fiz0,tz);
1023
1024             fjx0             = _mm256_add_pd(fjx0,tx);
1025             fjy0             = _mm256_add_pd(fjy0,ty);
1026             fjz0             = _mm256_add_pd(fjz0,tz);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1033             {
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq10             = _mm256_mul_pd(iq1,jq0);
1037
1038             /* REACTION-FIELD ELECTROSTATICS */
1039             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1040
1041             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1042
1043             fscal            = felec;
1044
1045             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1046
1047             /* Calculate temporary vectorial force */
1048             tx               = _mm256_mul_pd(fscal,dx10);
1049             ty               = _mm256_mul_pd(fscal,dy10);
1050             tz               = _mm256_mul_pd(fscal,dz10);
1051
1052             /* Update vectorial force */
1053             fix1             = _mm256_add_pd(fix1,tx);
1054             fiy1             = _mm256_add_pd(fiy1,ty);
1055             fiz1             = _mm256_add_pd(fiz1,tz);
1056
1057             fjx0             = _mm256_add_pd(fjx0,tx);
1058             fjy0             = _mm256_add_pd(fjy0,ty);
1059             fjz0             = _mm256_add_pd(fjz0,tz);
1060
1061             }
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1068             {
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq20             = _mm256_mul_pd(iq2,jq0);
1072
1073             /* REACTION-FIELD ELECTROSTATICS */
1074             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1075
1076             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm256_mul_pd(fscal,dx20);
1084             ty               = _mm256_mul_pd(fscal,dy20);
1085             tz               = _mm256_mul_pd(fscal,dz20);
1086
1087             /* Update vectorial force */
1088             fix2             = _mm256_add_pd(fix2,tx);
1089             fiy2             = _mm256_add_pd(fiy2,ty);
1090             fiz2             = _mm256_add_pd(fiz2,tz);
1091
1092             fjx0             = _mm256_add_pd(fjx0,tx);
1093             fjy0             = _mm256_add_pd(fjy0,ty);
1094             fjz0             = _mm256_add_pd(fjz0,tz);
1095
1096             }
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1103             {
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq30             = _mm256_mul_pd(iq3,jq0);
1107
1108             /* REACTION-FIELD ELECTROSTATICS */
1109             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1110
1111             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1112
1113             fscal            = felec;
1114
1115             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm256_mul_pd(fscal,dx30);
1119             ty               = _mm256_mul_pd(fscal,dy30);
1120             tz               = _mm256_mul_pd(fscal,dz30);
1121
1122             /* Update vectorial force */
1123             fix3             = _mm256_add_pd(fix3,tx);
1124             fiy3             = _mm256_add_pd(fiy3,ty);
1125             fiz3             = _mm256_add_pd(fiz3,tz);
1126
1127             fjx0             = _mm256_add_pd(fjx0,tx);
1128             fjy0             = _mm256_add_pd(fjy0,ty);
1129             fjz0             = _mm256_add_pd(fjz0,tz);
1130
1131             }
1132
1133             fjptrA             = f+j_coord_offsetA;
1134             fjptrB             = f+j_coord_offsetB;
1135             fjptrC             = f+j_coord_offsetC;
1136             fjptrD             = f+j_coord_offsetD;
1137
1138             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 141 flops */
1141         }
1142
1143         if(jidx<j_index_end)
1144         {
1145
1146             /* Get j neighbor index, and coordinate index */
1147             jnrlistA         = jjnr[jidx];
1148             jnrlistB         = jjnr[jidx+1];
1149             jnrlistC         = jjnr[jidx+2];
1150             jnrlistD         = jjnr[jidx+3];
1151             /* Sign of each element will be negative for non-real atoms.
1152              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1153              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1154              */
1155             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1156
1157             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1158             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1159             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1160
1161             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1162             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1163             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1164             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1165             j_coord_offsetA  = DIM*jnrA;
1166             j_coord_offsetB  = DIM*jnrB;
1167             j_coord_offsetC  = DIM*jnrC;
1168             j_coord_offsetD  = DIM*jnrD;
1169
1170             /* load j atom coordinates */
1171             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1172                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1173                                                  &jx0,&jy0,&jz0);
1174
1175             /* Calculate displacement vector */
1176             dx00             = _mm256_sub_pd(ix0,jx0);
1177             dy00             = _mm256_sub_pd(iy0,jy0);
1178             dz00             = _mm256_sub_pd(iz0,jz0);
1179             dx10             = _mm256_sub_pd(ix1,jx0);
1180             dy10             = _mm256_sub_pd(iy1,jy0);
1181             dz10             = _mm256_sub_pd(iz1,jz0);
1182             dx20             = _mm256_sub_pd(ix2,jx0);
1183             dy20             = _mm256_sub_pd(iy2,jy0);
1184             dz20             = _mm256_sub_pd(iz2,jz0);
1185             dx30             = _mm256_sub_pd(ix3,jx0);
1186             dy30             = _mm256_sub_pd(iy3,jy0);
1187             dz30             = _mm256_sub_pd(iz3,jz0);
1188
1189             /* Calculate squared distance and things based on it */
1190             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1191             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1192             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1193             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1194
1195             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1196             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1197             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1198             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1199
1200             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1201             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1202             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1203
1204             /* Load parameters for j particles */
1205             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1206                                                                  charge+jnrC+0,charge+jnrD+0);
1207             vdwjidx0A        = 2*vdwtype[jnrA+0];
1208             vdwjidx0B        = 2*vdwtype[jnrB+0];
1209             vdwjidx0C        = 2*vdwtype[jnrC+0];
1210             vdwjidx0D        = 2*vdwtype[jnrD+0];
1211
1212             fjx0             = _mm256_setzero_pd();
1213             fjy0             = _mm256_setzero_pd();
1214             fjz0             = _mm256_setzero_pd();
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             r00              = _mm256_mul_pd(rsq00,rinv00);
1221             r00              = _mm256_andnot_pd(dummy_mask,r00);
1222
1223             /* Compute parameters for interactions between i and j atoms */
1224             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1225                                             vdwioffsetptr0+vdwjidx0B,
1226                                             vdwioffsetptr0+vdwjidx0C,
1227                                             vdwioffsetptr0+vdwjidx0D,
1228                                             &c6_00,&c12_00);
1229
1230             /* Calculate table index by multiplying r with table scale and truncate to integer */
1231             rt               = _mm256_mul_pd(r00,vftabscale);
1232             vfitab           = _mm256_cvttpd_epi32(rt);
1233             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1234             vfitab           = _mm_slli_epi32(vfitab,3);
1235
1236             /* CUBIC SPLINE TABLE DISPERSION */
1237             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1238             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1239             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1240             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1241             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1242             Heps             = _mm256_mul_pd(vfeps,H);
1243             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1244             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1245             fvdw6            = _mm256_mul_pd(c6_00,FF);
1246
1247             /* CUBIC SPLINE TABLE REPULSION */
1248             vfitab           = _mm_add_epi32(vfitab,ifour);
1249             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1250             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1251             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1252             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1253             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1254             Heps             = _mm256_mul_pd(vfeps,H);
1255             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1256             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1257             fvdw12           = _mm256_mul_pd(c12_00,FF);
1258             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1259
1260             fscal            = fvdw;
1261
1262             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1263
1264             /* Calculate temporary vectorial force */
1265             tx               = _mm256_mul_pd(fscal,dx00);
1266             ty               = _mm256_mul_pd(fscal,dy00);
1267             tz               = _mm256_mul_pd(fscal,dz00);
1268
1269             /* Update vectorial force */
1270             fix0             = _mm256_add_pd(fix0,tx);
1271             fiy0             = _mm256_add_pd(fiy0,ty);
1272             fiz0             = _mm256_add_pd(fiz0,tz);
1273
1274             fjx0             = _mm256_add_pd(fjx0,tx);
1275             fjy0             = _mm256_add_pd(fjy0,ty);
1276             fjz0             = _mm256_add_pd(fjz0,tz);
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1283             {
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq10             = _mm256_mul_pd(iq1,jq0);
1287
1288             /* REACTION-FIELD ELECTROSTATICS */
1289             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1290
1291             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1292
1293             fscal            = felec;
1294
1295             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1296
1297             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm256_mul_pd(fscal,dx10);
1301             ty               = _mm256_mul_pd(fscal,dy10);
1302             tz               = _mm256_mul_pd(fscal,dz10);
1303
1304             /* Update vectorial force */
1305             fix1             = _mm256_add_pd(fix1,tx);
1306             fiy1             = _mm256_add_pd(fiy1,ty);
1307             fiz1             = _mm256_add_pd(fiz1,tz);
1308
1309             fjx0             = _mm256_add_pd(fjx0,tx);
1310             fjy0             = _mm256_add_pd(fjy0,ty);
1311             fjz0             = _mm256_add_pd(fjz0,tz);
1312
1313             }
1314
1315             /**************************
1316              * CALCULATE INTERACTIONS *
1317              **************************/
1318
1319             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1320             {
1321
1322             /* Compute parameters for interactions between i and j atoms */
1323             qq20             = _mm256_mul_pd(iq2,jq0);
1324
1325             /* REACTION-FIELD ELECTROSTATICS */
1326             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1327
1328             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1329
1330             fscal            = felec;
1331
1332             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1333
1334             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1335
1336             /* Calculate temporary vectorial force */
1337             tx               = _mm256_mul_pd(fscal,dx20);
1338             ty               = _mm256_mul_pd(fscal,dy20);
1339             tz               = _mm256_mul_pd(fscal,dz20);
1340
1341             /* Update vectorial force */
1342             fix2             = _mm256_add_pd(fix2,tx);
1343             fiy2             = _mm256_add_pd(fiy2,ty);
1344             fiz2             = _mm256_add_pd(fiz2,tz);
1345
1346             fjx0             = _mm256_add_pd(fjx0,tx);
1347             fjy0             = _mm256_add_pd(fjy0,ty);
1348             fjz0             = _mm256_add_pd(fjz0,tz);
1349
1350             }
1351
1352             /**************************
1353              * CALCULATE INTERACTIONS *
1354              **************************/
1355
1356             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1357             {
1358
1359             /* Compute parameters for interactions between i and j atoms */
1360             qq30             = _mm256_mul_pd(iq3,jq0);
1361
1362             /* REACTION-FIELD ELECTROSTATICS */
1363             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1364
1365             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1366
1367             fscal            = felec;
1368
1369             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1370
1371             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1372
1373             /* Calculate temporary vectorial force */
1374             tx               = _mm256_mul_pd(fscal,dx30);
1375             ty               = _mm256_mul_pd(fscal,dy30);
1376             tz               = _mm256_mul_pd(fscal,dz30);
1377
1378             /* Update vectorial force */
1379             fix3             = _mm256_add_pd(fix3,tx);
1380             fiy3             = _mm256_add_pd(fiy3,ty);
1381             fiz3             = _mm256_add_pd(fiz3,tz);
1382
1383             fjx0             = _mm256_add_pd(fjx0,tx);
1384             fjy0             = _mm256_add_pd(fjy0,ty);
1385             fjz0             = _mm256_add_pd(fjz0,tz);
1386
1387             }
1388
1389             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1390             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1391             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1392             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1393
1394             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1395
1396             /* Inner loop uses 142 flops */
1397         }
1398
1399         /* End of innermost loop */
1400
1401         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1402                                                  f+i_coord_offset,fshift+i_shift_offset);
1403
1404         /* Increment number of inner iterations */
1405         inneriter                  += j_index_end - j_index_start;
1406
1407         /* Outer loop uses 24 flops */
1408     }
1409
1410     /* Increment number of outer iterations */
1411     outeriter        += nri;
1412
1413     /* Update outer/inner flops */
1414
1415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1416 }