Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm256_set1_pd(fr->ic->k_rf);
125     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
126     crf              = _mm256_set1_pd(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_vdw->data;
132     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
142     rcutoff_scalar   = fr->ic->rcoulomb;
143     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
144     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm256_setzero_pd();
180         fiy0             = _mm256_setzero_pd();
181         fiz0             = _mm256_setzero_pd();
182         fix1             = _mm256_setzero_pd();
183         fiy1             = _mm256_setzero_pd();
184         fiz1             = _mm256_setzero_pd();
185         fix2             = _mm256_setzero_pd();
186         fiy2             = _mm256_setzero_pd();
187         fiz2             = _mm256_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm256_setzero_pd();
191         vvdwsum          = _mm256_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
209                                                  x+j_coord_offsetC,x+j_coord_offsetD,
210                                                  &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm256_sub_pd(ix0,jx0);
214             dy00             = _mm256_sub_pd(iy0,jy0);
215             dz00             = _mm256_sub_pd(iz0,jz0);
216             dx10             = _mm256_sub_pd(ix1,jx0);
217             dy10             = _mm256_sub_pd(iy1,jy0);
218             dz10             = _mm256_sub_pd(iz1,jz0);
219             dx20             = _mm256_sub_pd(ix2,jx0);
220             dy20             = _mm256_sub_pd(iy2,jy0);
221             dz20             = _mm256_sub_pd(iz2,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
227
228             rinv00           = avx256_invsqrt_d(rsq00);
229             rinv10           = avx256_invsqrt_d(rsq10);
230             rinv20           = avx256_invsqrt_d(rsq20);
231
232             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
233             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
234             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
238                                                                  charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm256_setzero_pd();
245             fjy0             = _mm256_setzero_pd();
246             fjz0             = _mm256_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             if (gmx_mm256_any_lt(rsq00,rcutoff2))
253             {
254
255             r00              = _mm256_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm256_mul_pd(iq0,jq0);
259             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
260                                             vdwioffsetptr0+vdwjidx0B,
261                                             vdwioffsetptr0+vdwjidx0C,
262                                             vdwioffsetptr0+vdwjidx0D,
263                                             &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm256_mul_pd(r00,vftabscale);
267             vfitab           = _mm256_cvttpd_epi32(rt);
268             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
269             vfitab           = _mm_slli_epi32(vfitab,3);
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
273             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
274
275             /* CUBIC SPLINE TABLE DISPERSION */
276             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
279             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
280             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
281             Heps             = _mm256_mul_pd(vfeps,H);
282             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
283             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
284             vvdw6            = _mm256_mul_pd(c6_00,VV);
285             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
286             fvdw6            = _mm256_mul_pd(c6_00,FF);
287
288             /* CUBIC SPLINE TABLE REPULSION */
289             vfitab           = _mm_add_epi32(vfitab,ifour);
290             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
291             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
292             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
293             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
294             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
295             Heps             = _mm256_mul_pd(vfeps,H);
296             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
297             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
298             vvdw12           = _mm256_mul_pd(c12_00,VV);
299             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
300             fvdw12           = _mm256_mul_pd(c12_00,FF);
301             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
302             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
303
304             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velec            = _mm256_and_pd(velec,cutoff_mask);
308             velecsum         = _mm256_add_pd(velecsum,velec);
309             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
310             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
311
312             fscal            = _mm256_add_pd(felec,fvdw);
313
314             fscal            = _mm256_and_pd(fscal,cutoff_mask);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm256_mul_pd(fscal,dx00);
318             ty               = _mm256_mul_pd(fscal,dy00);
319             tz               = _mm256_mul_pd(fscal,dz00);
320
321             /* Update vectorial force */
322             fix0             = _mm256_add_pd(fix0,tx);
323             fiy0             = _mm256_add_pd(fiy0,ty);
324             fiz0             = _mm256_add_pd(fiz0,tz);
325
326             fjx0             = _mm256_add_pd(fjx0,tx);
327             fjy0             = _mm256_add_pd(fjy0,ty);
328             fjz0             = _mm256_add_pd(fjz0,tz);
329
330             }
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             if (gmx_mm256_any_lt(rsq10,rcutoff2))
337             {
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq10             = _mm256_mul_pd(iq1,jq0);
341
342             /* REACTION-FIELD ELECTROSTATICS */
343             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
344             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
345
346             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm256_and_pd(velec,cutoff_mask);
350             velecsum         = _mm256_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _mm256_and_pd(fscal,cutoff_mask);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm256_mul_pd(fscal,dx10);
358             ty               = _mm256_mul_pd(fscal,dy10);
359             tz               = _mm256_mul_pd(fscal,dz10);
360
361             /* Update vectorial force */
362             fix1             = _mm256_add_pd(fix1,tx);
363             fiy1             = _mm256_add_pd(fiy1,ty);
364             fiz1             = _mm256_add_pd(fiz1,tz);
365
366             fjx0             = _mm256_add_pd(fjx0,tx);
367             fjy0             = _mm256_add_pd(fjy0,ty);
368             fjz0             = _mm256_add_pd(fjz0,tz);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm256_any_lt(rsq20,rcutoff2))
377             {
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq20             = _mm256_mul_pd(iq2,jq0);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
384             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
385
386             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm256_and_pd(velec,cutoff_mask);
390             velecsum         = _mm256_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             fscal            = _mm256_and_pd(fscal,cutoff_mask);
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm256_mul_pd(fscal,dx20);
398             ty               = _mm256_mul_pd(fscal,dy20);
399             tz               = _mm256_mul_pd(fscal,dz20);
400
401             /* Update vectorial force */
402             fix2             = _mm256_add_pd(fix2,tx);
403             fiy2             = _mm256_add_pd(fiy2,ty);
404             fiz2             = _mm256_add_pd(fiz2,tz);
405
406             fjx0             = _mm256_add_pd(fjx0,tx);
407             fjy0             = _mm256_add_pd(fjy0,ty);
408             fjz0             = _mm256_add_pd(fjz0,tz);
409
410             }
411
412             fjptrA             = f+j_coord_offsetA;
413             fjptrB             = f+j_coord_offsetB;
414             fjptrC             = f+j_coord_offsetC;
415             fjptrD             = f+j_coord_offsetD;
416
417             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 147 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             /* Sign of each element will be negative for non-real atoms.
431              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
433              */
434             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435
436             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
437             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
438             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
439
440             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
441             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
442             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
443             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
444             j_coord_offsetA  = DIM*jnrA;
445             j_coord_offsetB  = DIM*jnrB;
446             j_coord_offsetC  = DIM*jnrC;
447             j_coord_offsetD  = DIM*jnrD;
448
449             /* load j atom coordinates */
450             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
451                                                  x+j_coord_offsetC,x+j_coord_offsetD,
452                                                  &jx0,&jy0,&jz0);
453
454             /* Calculate displacement vector */
455             dx00             = _mm256_sub_pd(ix0,jx0);
456             dy00             = _mm256_sub_pd(iy0,jy0);
457             dz00             = _mm256_sub_pd(iz0,jz0);
458             dx10             = _mm256_sub_pd(ix1,jx0);
459             dy10             = _mm256_sub_pd(iy1,jy0);
460             dz10             = _mm256_sub_pd(iz1,jz0);
461             dx20             = _mm256_sub_pd(ix2,jx0);
462             dy20             = _mm256_sub_pd(iy2,jy0);
463             dz20             = _mm256_sub_pd(iz2,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
467             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
468             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
469
470             rinv00           = avx256_invsqrt_d(rsq00);
471             rinv10           = avx256_invsqrt_d(rsq10);
472             rinv20           = avx256_invsqrt_d(rsq20);
473
474             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
475             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
476             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
477
478             /* Load parameters for j particles */
479             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
480                                                                  charge+jnrC+0,charge+jnrD+0);
481             vdwjidx0A        = 2*vdwtype[jnrA+0];
482             vdwjidx0B        = 2*vdwtype[jnrB+0];
483             vdwjidx0C        = 2*vdwtype[jnrC+0];
484             vdwjidx0D        = 2*vdwtype[jnrD+0];
485
486             fjx0             = _mm256_setzero_pd();
487             fjy0             = _mm256_setzero_pd();
488             fjz0             = _mm256_setzero_pd();
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm256_any_lt(rsq00,rcutoff2))
495             {
496
497             r00              = _mm256_mul_pd(rsq00,rinv00);
498             r00              = _mm256_andnot_pd(dummy_mask,r00);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq00             = _mm256_mul_pd(iq0,jq0);
502             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
503                                             vdwioffsetptr0+vdwjidx0B,
504                                             vdwioffsetptr0+vdwjidx0C,
505                                             vdwioffsetptr0+vdwjidx0D,
506                                             &c6_00,&c12_00);
507
508             /* Calculate table index by multiplying r with table scale and truncate to integer */
509             rt               = _mm256_mul_pd(r00,vftabscale);
510             vfitab           = _mm256_cvttpd_epi32(rt);
511             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
512             vfitab           = _mm_slli_epi32(vfitab,3);
513
514             /* REACTION-FIELD ELECTROSTATICS */
515             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
516             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
517
518             /* CUBIC SPLINE TABLE DISPERSION */
519             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
520             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
521             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
522             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
523             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
524             Heps             = _mm256_mul_pd(vfeps,H);
525             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
526             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
527             vvdw6            = _mm256_mul_pd(c6_00,VV);
528             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
529             fvdw6            = _mm256_mul_pd(c6_00,FF);
530
531             /* CUBIC SPLINE TABLE REPULSION */
532             vfitab           = _mm_add_epi32(vfitab,ifour);
533             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
534             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
535             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
536             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
537             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
538             Heps             = _mm256_mul_pd(vfeps,H);
539             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
540             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
541             vvdw12           = _mm256_mul_pd(c12_00,VV);
542             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
543             fvdw12           = _mm256_mul_pd(c12_00,FF);
544             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
545             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
546
547             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm256_and_pd(velec,cutoff_mask);
551             velec            = _mm256_andnot_pd(dummy_mask,velec);
552             velecsum         = _mm256_add_pd(velecsum,velec);
553             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
554             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
555             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
556
557             fscal            = _mm256_add_pd(felec,fvdw);
558
559             fscal            = _mm256_and_pd(fscal,cutoff_mask);
560
561             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm256_mul_pd(fscal,dx00);
565             ty               = _mm256_mul_pd(fscal,dy00);
566             tz               = _mm256_mul_pd(fscal,dz00);
567
568             /* Update vectorial force */
569             fix0             = _mm256_add_pd(fix0,tx);
570             fiy0             = _mm256_add_pd(fiy0,ty);
571             fiz0             = _mm256_add_pd(fiz0,tz);
572
573             fjx0             = _mm256_add_pd(fjx0,tx);
574             fjy0             = _mm256_add_pd(fjy0,ty);
575             fjz0             = _mm256_add_pd(fjz0,tz);
576
577             }
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm256_any_lt(rsq10,rcutoff2))
584             {
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq10             = _mm256_mul_pd(iq1,jq0);
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
591             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
592
593             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm256_and_pd(velec,cutoff_mask);
597             velec            = _mm256_andnot_pd(dummy_mask,velec);
598             velecsum         = _mm256_add_pd(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm256_and_pd(fscal,cutoff_mask);
603
604             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm256_mul_pd(fscal,dx10);
608             ty               = _mm256_mul_pd(fscal,dy10);
609             tz               = _mm256_mul_pd(fscal,dz10);
610
611             /* Update vectorial force */
612             fix1             = _mm256_add_pd(fix1,tx);
613             fiy1             = _mm256_add_pd(fiy1,ty);
614             fiz1             = _mm256_add_pd(fiz1,tz);
615
616             fjx0             = _mm256_add_pd(fjx0,tx);
617             fjy0             = _mm256_add_pd(fjy0,ty);
618             fjz0             = _mm256_add_pd(fjz0,tz);
619
620             }
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm256_any_lt(rsq20,rcutoff2))
627             {
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq20             = _mm256_mul_pd(iq2,jq0);
631
632             /* REACTION-FIELD ELECTROSTATICS */
633             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
634             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
635
636             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velec            = _mm256_and_pd(velec,cutoff_mask);
640             velec            = _mm256_andnot_pd(dummy_mask,velec);
641             velecsum         = _mm256_add_pd(velecsum,velec);
642
643             fscal            = felec;
644
645             fscal            = _mm256_and_pd(fscal,cutoff_mask);
646
647             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm256_mul_pd(fscal,dx20);
651             ty               = _mm256_mul_pd(fscal,dy20);
652             tz               = _mm256_mul_pd(fscal,dz20);
653
654             /* Update vectorial force */
655             fix2             = _mm256_add_pd(fix2,tx);
656             fiy2             = _mm256_add_pd(fiy2,ty);
657             fiz2             = _mm256_add_pd(fiz2,tz);
658
659             fjx0             = _mm256_add_pd(fjx0,tx);
660             fjy0             = _mm256_add_pd(fjy0,ty);
661             fjz0             = _mm256_add_pd(fjz0,tz);
662
663             }
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669
670             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 148 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
678                                                  f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 20 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
700  * Electrostatics interaction: ReactionField
701  * VdW interaction:            CubicSplineTable
702  * Geometry:                   Water3-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
707                     (t_nblist                    * gmx_restrict       nlist,
708                      rvec                        * gmx_restrict          xx,
709                      rvec                        * gmx_restrict          ff,
710                      struct t_forcerec           * gmx_restrict          fr,
711                      t_mdatoms                   * gmx_restrict     mdatoms,
712                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
713                      t_nrnb                      * gmx_restrict        nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
716      * just 0 for non-waters.
717      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB,jnrC,jnrD;
723     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
724     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
725     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
726     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
727     real             rcutoff_scalar;
728     real             *shiftvec,*fshift,*x,*f;
729     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
730     real             scratch[4*DIM];
731     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
732     real *           vdwioffsetptr0;
733     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
734     real *           vdwioffsetptr1;
735     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
736     real *           vdwioffsetptr2;
737     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
738     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
739     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
740     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
741     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
742     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
743     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
744     real             *charge;
745     int              nvdwtype;
746     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
747     int              *vdwtype;
748     real             *vdwparam;
749     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
750     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
751     __m128i          vfitab;
752     __m128i          ifour       = _mm_set1_epi32(4);
753     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
754     real             *vftab;
755     __m256d          dummy_mask,cutoff_mask;
756     __m128           tmpmask0,tmpmask1;
757     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
758     __m256d          one     = _mm256_set1_pd(1.0);
759     __m256d          two     = _mm256_set1_pd(2.0);
760     x                = xx[0];
761     f                = ff[0];
762
763     nri              = nlist->nri;
764     iinr             = nlist->iinr;
765     jindex           = nlist->jindex;
766     jjnr             = nlist->jjnr;
767     shiftidx         = nlist->shift;
768     gid              = nlist->gid;
769     shiftvec         = fr->shift_vec[0];
770     fshift           = fr->fshift[0];
771     facel            = _mm256_set1_pd(fr->ic->epsfac);
772     charge           = mdatoms->chargeA;
773     krf              = _mm256_set1_pd(fr->ic->k_rf);
774     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
775     crf              = _mm256_set1_pd(fr->ic->c_rf);
776     nvdwtype         = fr->ntype;
777     vdwparam         = fr->nbfp;
778     vdwtype          = mdatoms->typeA;
779
780     vftab            = kernel_data->table_vdw->data;
781     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
782
783     /* Setup water-specific parameters */
784     inr              = nlist->iinr[0];
785     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
786     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
787     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
788     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
789
790     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
791     rcutoff_scalar   = fr->ic->rcoulomb;
792     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
793     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
794
795     /* Avoid stupid compiler warnings */
796     jnrA = jnrB = jnrC = jnrD = 0;
797     j_coord_offsetA = 0;
798     j_coord_offsetB = 0;
799     j_coord_offsetC = 0;
800     j_coord_offsetD = 0;
801
802     outeriter        = 0;
803     inneriter        = 0;
804
805     for(iidx=0;iidx<4*DIM;iidx++)
806     {
807         scratch[iidx] = 0.0;
808     }
809
810     /* Start outer loop over neighborlists */
811     for(iidx=0; iidx<nri; iidx++)
812     {
813         /* Load shift vector for this list */
814         i_shift_offset   = DIM*shiftidx[iidx];
815
816         /* Load limits for loop over neighbors */
817         j_index_start    = jindex[iidx];
818         j_index_end      = jindex[iidx+1];
819
820         /* Get outer coordinate index */
821         inr              = iinr[iidx];
822         i_coord_offset   = DIM*inr;
823
824         /* Load i particle coords and add shift vector */
825         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
826                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
827
828         fix0             = _mm256_setzero_pd();
829         fiy0             = _mm256_setzero_pd();
830         fiz0             = _mm256_setzero_pd();
831         fix1             = _mm256_setzero_pd();
832         fiy1             = _mm256_setzero_pd();
833         fiz1             = _mm256_setzero_pd();
834         fix2             = _mm256_setzero_pd();
835         fiy2             = _mm256_setzero_pd();
836         fiz2             = _mm256_setzero_pd();
837
838         /* Start inner kernel loop */
839         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
840         {
841
842             /* Get j neighbor index, and coordinate index */
843             jnrA             = jjnr[jidx];
844             jnrB             = jjnr[jidx+1];
845             jnrC             = jjnr[jidx+2];
846             jnrD             = jjnr[jidx+3];
847             j_coord_offsetA  = DIM*jnrA;
848             j_coord_offsetB  = DIM*jnrB;
849             j_coord_offsetC  = DIM*jnrC;
850             j_coord_offsetD  = DIM*jnrD;
851
852             /* load j atom coordinates */
853             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
854                                                  x+j_coord_offsetC,x+j_coord_offsetD,
855                                                  &jx0,&jy0,&jz0);
856
857             /* Calculate displacement vector */
858             dx00             = _mm256_sub_pd(ix0,jx0);
859             dy00             = _mm256_sub_pd(iy0,jy0);
860             dz00             = _mm256_sub_pd(iz0,jz0);
861             dx10             = _mm256_sub_pd(ix1,jx0);
862             dy10             = _mm256_sub_pd(iy1,jy0);
863             dz10             = _mm256_sub_pd(iz1,jz0);
864             dx20             = _mm256_sub_pd(ix2,jx0);
865             dy20             = _mm256_sub_pd(iy2,jy0);
866             dz20             = _mm256_sub_pd(iz2,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
870             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
872
873             rinv00           = avx256_invsqrt_d(rsq00);
874             rinv10           = avx256_invsqrt_d(rsq10);
875             rinv20           = avx256_invsqrt_d(rsq20);
876
877             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
878             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
883                                                                  charge+jnrC+0,charge+jnrD+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886             vdwjidx0C        = 2*vdwtype[jnrC+0];
887             vdwjidx0D        = 2*vdwtype[jnrD+0];
888
889             fjx0             = _mm256_setzero_pd();
890             fjy0             = _mm256_setzero_pd();
891             fjz0             = _mm256_setzero_pd();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             if (gmx_mm256_any_lt(rsq00,rcutoff2))
898             {
899
900             r00              = _mm256_mul_pd(rsq00,rinv00);
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm256_mul_pd(iq0,jq0);
904             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
905                                             vdwioffsetptr0+vdwjidx0B,
906                                             vdwioffsetptr0+vdwjidx0C,
907                                             vdwioffsetptr0+vdwjidx0D,
908                                             &c6_00,&c12_00);
909
910             /* Calculate table index by multiplying r with table scale and truncate to integer */
911             rt               = _mm256_mul_pd(r00,vftabscale);
912             vfitab           = _mm256_cvttpd_epi32(rt);
913             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
914             vfitab           = _mm_slli_epi32(vfitab,3);
915
916             /* REACTION-FIELD ELECTROSTATICS */
917             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
918
919             /* CUBIC SPLINE TABLE DISPERSION */
920             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
921             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
922             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
923             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
924             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
925             Heps             = _mm256_mul_pd(vfeps,H);
926             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
927             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
928             fvdw6            = _mm256_mul_pd(c6_00,FF);
929
930             /* CUBIC SPLINE TABLE REPULSION */
931             vfitab           = _mm_add_epi32(vfitab,ifour);
932             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
933             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
934             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
935             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
936             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
937             Heps             = _mm256_mul_pd(vfeps,H);
938             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
939             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
940             fvdw12           = _mm256_mul_pd(c12_00,FF);
941             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
942
943             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
944
945             fscal            = _mm256_add_pd(felec,fvdw);
946
947             fscal            = _mm256_and_pd(fscal,cutoff_mask);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm256_mul_pd(fscal,dx00);
951             ty               = _mm256_mul_pd(fscal,dy00);
952             tz               = _mm256_mul_pd(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm256_add_pd(fix0,tx);
956             fiy0             = _mm256_add_pd(fiy0,ty);
957             fiz0             = _mm256_add_pd(fiz0,tz);
958
959             fjx0             = _mm256_add_pd(fjx0,tx);
960             fjy0             = _mm256_add_pd(fjy0,ty);
961             fjz0             = _mm256_add_pd(fjz0,tz);
962
963             }
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm256_any_lt(rsq10,rcutoff2))
970             {
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq10             = _mm256_mul_pd(iq1,jq0);
974
975             /* REACTION-FIELD ELECTROSTATICS */
976             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
977
978             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
979
980             fscal            = felec;
981
982             fscal            = _mm256_and_pd(fscal,cutoff_mask);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm256_mul_pd(fscal,dx10);
986             ty               = _mm256_mul_pd(fscal,dy10);
987             tz               = _mm256_mul_pd(fscal,dz10);
988
989             /* Update vectorial force */
990             fix1             = _mm256_add_pd(fix1,tx);
991             fiy1             = _mm256_add_pd(fiy1,ty);
992             fiz1             = _mm256_add_pd(fiz1,tz);
993
994             fjx0             = _mm256_add_pd(fjx0,tx);
995             fjy0             = _mm256_add_pd(fjy0,ty);
996             fjz0             = _mm256_add_pd(fjz0,tz);
997
998             }
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1005             {
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq20             = _mm256_mul_pd(iq2,jq0);
1009
1010             /* REACTION-FIELD ELECTROSTATICS */
1011             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1012
1013             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1014
1015             fscal            = felec;
1016
1017             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm256_mul_pd(fscal,dx20);
1021             ty               = _mm256_mul_pd(fscal,dy20);
1022             tz               = _mm256_mul_pd(fscal,dz20);
1023
1024             /* Update vectorial force */
1025             fix2             = _mm256_add_pd(fix2,tx);
1026             fiy2             = _mm256_add_pd(fiy2,ty);
1027             fiz2             = _mm256_add_pd(fiz2,tz);
1028
1029             fjx0             = _mm256_add_pd(fjx0,tx);
1030             fjy0             = _mm256_add_pd(fjy0,ty);
1031             fjz0             = _mm256_add_pd(fjz0,tz);
1032
1033             }
1034
1035             fjptrA             = f+j_coord_offsetA;
1036             fjptrB             = f+j_coord_offsetB;
1037             fjptrC             = f+j_coord_offsetC;
1038             fjptrD             = f+j_coord_offsetD;
1039
1040             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1041
1042             /* Inner loop uses 120 flops */
1043         }
1044
1045         if(jidx<j_index_end)
1046         {
1047
1048             /* Get j neighbor index, and coordinate index */
1049             jnrlistA         = jjnr[jidx];
1050             jnrlistB         = jjnr[jidx+1];
1051             jnrlistC         = jjnr[jidx+2];
1052             jnrlistD         = jjnr[jidx+3];
1053             /* Sign of each element will be negative for non-real atoms.
1054              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1055              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1056              */
1057             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1058
1059             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1060             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1061             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1062
1063             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1064             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1065             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1066             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1067             j_coord_offsetA  = DIM*jnrA;
1068             j_coord_offsetB  = DIM*jnrB;
1069             j_coord_offsetC  = DIM*jnrC;
1070             j_coord_offsetD  = DIM*jnrD;
1071
1072             /* load j atom coordinates */
1073             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1074                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1075                                                  &jx0,&jy0,&jz0);
1076
1077             /* Calculate displacement vector */
1078             dx00             = _mm256_sub_pd(ix0,jx0);
1079             dy00             = _mm256_sub_pd(iy0,jy0);
1080             dz00             = _mm256_sub_pd(iz0,jz0);
1081             dx10             = _mm256_sub_pd(ix1,jx0);
1082             dy10             = _mm256_sub_pd(iy1,jy0);
1083             dz10             = _mm256_sub_pd(iz1,jz0);
1084             dx20             = _mm256_sub_pd(ix2,jx0);
1085             dy20             = _mm256_sub_pd(iy2,jy0);
1086             dz20             = _mm256_sub_pd(iz2,jz0);
1087
1088             /* Calculate squared distance and things based on it */
1089             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1090             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1091             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1092
1093             rinv00           = avx256_invsqrt_d(rsq00);
1094             rinv10           = avx256_invsqrt_d(rsq10);
1095             rinv20           = avx256_invsqrt_d(rsq20);
1096
1097             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1098             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1099             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1100
1101             /* Load parameters for j particles */
1102             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1103                                                                  charge+jnrC+0,charge+jnrD+0);
1104             vdwjidx0A        = 2*vdwtype[jnrA+0];
1105             vdwjidx0B        = 2*vdwtype[jnrB+0];
1106             vdwjidx0C        = 2*vdwtype[jnrC+0];
1107             vdwjidx0D        = 2*vdwtype[jnrD+0];
1108
1109             fjx0             = _mm256_setzero_pd();
1110             fjy0             = _mm256_setzero_pd();
1111             fjz0             = _mm256_setzero_pd();
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1118             {
1119
1120             r00              = _mm256_mul_pd(rsq00,rinv00);
1121             r00              = _mm256_andnot_pd(dummy_mask,r00);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq00             = _mm256_mul_pd(iq0,jq0);
1125             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1126                                             vdwioffsetptr0+vdwjidx0B,
1127                                             vdwioffsetptr0+vdwjidx0C,
1128                                             vdwioffsetptr0+vdwjidx0D,
1129                                             &c6_00,&c12_00);
1130
1131             /* Calculate table index by multiplying r with table scale and truncate to integer */
1132             rt               = _mm256_mul_pd(r00,vftabscale);
1133             vfitab           = _mm256_cvttpd_epi32(rt);
1134             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1135             vfitab           = _mm_slli_epi32(vfitab,3);
1136
1137             /* REACTION-FIELD ELECTROSTATICS */
1138             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1139
1140             /* CUBIC SPLINE TABLE DISPERSION */
1141             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1142             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1143             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1144             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1145             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1146             Heps             = _mm256_mul_pd(vfeps,H);
1147             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1148             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1149             fvdw6            = _mm256_mul_pd(c6_00,FF);
1150
1151             /* CUBIC SPLINE TABLE REPULSION */
1152             vfitab           = _mm_add_epi32(vfitab,ifour);
1153             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1154             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1155             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1156             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1157             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1158             Heps             = _mm256_mul_pd(vfeps,H);
1159             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1160             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1161             fvdw12           = _mm256_mul_pd(c12_00,FF);
1162             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1163
1164             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1165
1166             fscal            = _mm256_add_pd(felec,fvdw);
1167
1168             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1169
1170             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1171
1172             /* Calculate temporary vectorial force */
1173             tx               = _mm256_mul_pd(fscal,dx00);
1174             ty               = _mm256_mul_pd(fscal,dy00);
1175             tz               = _mm256_mul_pd(fscal,dz00);
1176
1177             /* Update vectorial force */
1178             fix0             = _mm256_add_pd(fix0,tx);
1179             fiy0             = _mm256_add_pd(fiy0,ty);
1180             fiz0             = _mm256_add_pd(fiz0,tz);
1181
1182             fjx0             = _mm256_add_pd(fjx0,tx);
1183             fjy0             = _mm256_add_pd(fjy0,ty);
1184             fjz0             = _mm256_add_pd(fjz0,tz);
1185
1186             }
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1193             {
1194
1195             /* Compute parameters for interactions between i and j atoms */
1196             qq10             = _mm256_mul_pd(iq1,jq0);
1197
1198             /* REACTION-FIELD ELECTROSTATICS */
1199             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1200
1201             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1202
1203             fscal            = felec;
1204
1205             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1206
1207             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1208
1209             /* Calculate temporary vectorial force */
1210             tx               = _mm256_mul_pd(fscal,dx10);
1211             ty               = _mm256_mul_pd(fscal,dy10);
1212             tz               = _mm256_mul_pd(fscal,dz10);
1213
1214             /* Update vectorial force */
1215             fix1             = _mm256_add_pd(fix1,tx);
1216             fiy1             = _mm256_add_pd(fiy1,ty);
1217             fiz1             = _mm256_add_pd(fiz1,tz);
1218
1219             fjx0             = _mm256_add_pd(fjx0,tx);
1220             fjy0             = _mm256_add_pd(fjy0,ty);
1221             fjz0             = _mm256_add_pd(fjz0,tz);
1222
1223             }
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1230             {
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq20             = _mm256_mul_pd(iq2,jq0);
1234
1235             /* REACTION-FIELD ELECTROSTATICS */
1236             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1237
1238             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1239
1240             fscal            = felec;
1241
1242             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1243
1244             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1245
1246             /* Calculate temporary vectorial force */
1247             tx               = _mm256_mul_pd(fscal,dx20);
1248             ty               = _mm256_mul_pd(fscal,dy20);
1249             tz               = _mm256_mul_pd(fscal,dz20);
1250
1251             /* Update vectorial force */
1252             fix2             = _mm256_add_pd(fix2,tx);
1253             fiy2             = _mm256_add_pd(fiy2,ty);
1254             fiz2             = _mm256_add_pd(fiz2,tz);
1255
1256             fjx0             = _mm256_add_pd(fjx0,tx);
1257             fjy0             = _mm256_add_pd(fjy0,ty);
1258             fjz0             = _mm256_add_pd(fjz0,tz);
1259
1260             }
1261
1262             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1263             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1264             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1265             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1266
1267             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1268
1269             /* Inner loop uses 121 flops */
1270         }
1271
1272         /* End of innermost loop */
1273
1274         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1275                                                  f+i_coord_offset,fshift+i_shift_offset);
1276
1277         /* Increment number of inner iterations */
1278         inneriter                  += j_index_end - j_index_start;
1279
1280         /* Outer loop uses 18 flops */
1281     }
1282
1283     /* Increment number of outer iterations */
1284     outeriter        += nri;
1285
1286     /* Update outer/inner flops */
1287
1288     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1289 }