Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     krf              = _mm256_set1_pd(fr->ic->k_rf);
128     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
129     crf              = _mm256_set1_pd(fr->ic->c_rf);
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_vdw->data;
135     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
140     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
141     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145     rcutoff_scalar   = fr->rcoulomb;
146     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
147     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     for(iidx=0;iidx<4*DIM;iidx++)
160     {
161         scratch[iidx] = 0.0;
162     }
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm256_setzero_pd();
183         fiy0             = _mm256_setzero_pd();
184         fiz0             = _mm256_setzero_pd();
185         fix1             = _mm256_setzero_pd();
186         fiy1             = _mm256_setzero_pd();
187         fiz1             = _mm256_setzero_pd();
188         fix2             = _mm256_setzero_pd();
189         fiy2             = _mm256_setzero_pd();
190         fiz2             = _mm256_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm256_setzero_pd();
194         vvdwsum          = _mm256_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                                  x+j_coord_offsetC,x+j_coord_offsetD,
213                                                  &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm256_sub_pd(ix0,jx0);
217             dy00             = _mm256_sub_pd(iy0,jy0);
218             dz00             = _mm256_sub_pd(iz0,jz0);
219             dx10             = _mm256_sub_pd(ix1,jx0);
220             dy10             = _mm256_sub_pd(iy1,jy0);
221             dz10             = _mm256_sub_pd(iz1,jz0);
222             dx20             = _mm256_sub_pd(ix2,jx0);
223             dy20             = _mm256_sub_pd(iy2,jy0);
224             dz20             = _mm256_sub_pd(iz2,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
228             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
229             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
230
231             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
232             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
233             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
234
235             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
236             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm256_setzero_pd();
248             fjy0             = _mm256_setzero_pd();
249             fjz0             = _mm256_setzero_pd();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             if (gmx_mm256_any_lt(rsq00,rcutoff2))
256             {
257
258             r00              = _mm256_mul_pd(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq00             = _mm256_mul_pd(iq0,jq0);
262             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
263                                             vdwioffsetptr0+vdwjidx0B,
264                                             vdwioffsetptr0+vdwjidx0C,
265                                             vdwioffsetptr0+vdwjidx0D,
266                                             &c6_00,&c12_00);
267
268             /* Calculate table index by multiplying r with table scale and truncate to integer */
269             rt               = _mm256_mul_pd(r00,vftabscale);
270             vfitab           = _mm256_cvttpd_epi32(rt);
271             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
272             vfitab           = _mm_slli_epi32(vfitab,3);
273
274             /* REACTION-FIELD ELECTROSTATICS */
275             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
276             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
277
278             /* CUBIC SPLINE TABLE DISPERSION */
279             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
280             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
281             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
282             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
283             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
284             Heps             = _mm256_mul_pd(vfeps,H);
285             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
286             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
287             vvdw6            = _mm256_mul_pd(c6_00,VV);
288             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
289             fvdw6            = _mm256_mul_pd(c6_00,FF);
290
291             /* CUBIC SPLINE TABLE REPULSION */
292             vfitab           = _mm_add_epi32(vfitab,ifour);
293             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
294             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
295             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
296             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
297             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
298             Heps             = _mm256_mul_pd(vfeps,H);
299             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
300             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
301             vvdw12           = _mm256_mul_pd(c12_00,VV);
302             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
303             fvdw12           = _mm256_mul_pd(c12_00,FF);
304             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
305             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
306
307             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_pd(velec,cutoff_mask);
311             velecsum         = _mm256_add_pd(velecsum,velec);
312             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
313             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
314
315             fscal            = _mm256_add_pd(felec,fvdw);
316
317             fscal            = _mm256_and_pd(fscal,cutoff_mask);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_pd(fscal,dx00);
321             ty               = _mm256_mul_pd(fscal,dy00);
322             tz               = _mm256_mul_pd(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm256_add_pd(fix0,tx);
326             fiy0             = _mm256_add_pd(fiy0,ty);
327             fiz0             = _mm256_add_pd(fiz0,tz);
328
329             fjx0             = _mm256_add_pd(fjx0,tx);
330             fjy0             = _mm256_add_pd(fjy0,ty);
331             fjz0             = _mm256_add_pd(fjz0,tz);
332
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm256_any_lt(rsq10,rcutoff2))
340             {
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm256_mul_pd(iq1,jq0);
344
345             /* REACTION-FIELD ELECTROSTATICS */
346             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
347             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
348
349             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm256_and_pd(velec,cutoff_mask);
353             velecsum         = _mm256_add_pd(velecsum,velec);
354
355             fscal            = felec;
356
357             fscal            = _mm256_and_pd(fscal,cutoff_mask);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm256_mul_pd(fscal,dx10);
361             ty               = _mm256_mul_pd(fscal,dy10);
362             tz               = _mm256_mul_pd(fscal,dz10);
363
364             /* Update vectorial force */
365             fix1             = _mm256_add_pd(fix1,tx);
366             fiy1             = _mm256_add_pd(fiy1,ty);
367             fiz1             = _mm256_add_pd(fiz1,tz);
368
369             fjx0             = _mm256_add_pd(fjx0,tx);
370             fjy0             = _mm256_add_pd(fjy0,ty);
371             fjz0             = _mm256_add_pd(fjz0,tz);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm256_any_lt(rsq20,rcutoff2))
380             {
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq20             = _mm256_mul_pd(iq2,jq0);
384
385             /* REACTION-FIELD ELECTROSTATICS */
386             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
387             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
388
389             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm256_and_pd(velec,cutoff_mask);
393             velecsum         = _mm256_add_pd(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm256_and_pd(fscal,cutoff_mask);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm256_mul_pd(fscal,dx20);
401             ty               = _mm256_mul_pd(fscal,dy20);
402             tz               = _mm256_mul_pd(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm256_add_pd(fix2,tx);
406             fiy2             = _mm256_add_pd(fiy2,ty);
407             fiz2             = _mm256_add_pd(fiz2,tz);
408
409             fjx0             = _mm256_add_pd(fjx0,tx);
410             fjy0             = _mm256_add_pd(fjy0,ty);
411             fjz0             = _mm256_add_pd(fjz0,tz);
412
413             }
414
415             fjptrA             = f+j_coord_offsetA;
416             fjptrB             = f+j_coord_offsetB;
417             fjptrC             = f+j_coord_offsetC;
418             fjptrD             = f+j_coord_offsetD;
419
420             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
421
422             /* Inner loop uses 147 flops */
423         }
424
425         if(jidx<j_index_end)
426         {
427
428             /* Get j neighbor index, and coordinate index */
429             jnrlistA         = jjnr[jidx];
430             jnrlistB         = jjnr[jidx+1];
431             jnrlistC         = jjnr[jidx+2];
432             jnrlistD         = jjnr[jidx+3];
433             /* Sign of each element will be negative for non-real atoms.
434              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
435              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
436              */
437             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
438
439             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
440             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
441             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
442
443             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
444             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
445             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
446             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
447             j_coord_offsetA  = DIM*jnrA;
448             j_coord_offsetB  = DIM*jnrB;
449             j_coord_offsetC  = DIM*jnrC;
450             j_coord_offsetD  = DIM*jnrD;
451
452             /* load j atom coordinates */
453             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
454                                                  x+j_coord_offsetC,x+j_coord_offsetD,
455                                                  &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm256_sub_pd(ix0,jx0);
459             dy00             = _mm256_sub_pd(iy0,jy0);
460             dz00             = _mm256_sub_pd(iz0,jz0);
461             dx10             = _mm256_sub_pd(ix1,jx0);
462             dy10             = _mm256_sub_pd(iy1,jy0);
463             dz10             = _mm256_sub_pd(iz1,jz0);
464             dx20             = _mm256_sub_pd(ix2,jx0);
465             dy20             = _mm256_sub_pd(iy2,jy0);
466             dz20             = _mm256_sub_pd(iz2,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
470             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
471             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
472
473             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
474             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
475             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
476
477             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
478             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
479             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
480
481             /* Load parameters for j particles */
482             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
483                                                                  charge+jnrC+0,charge+jnrD+0);
484             vdwjidx0A        = 2*vdwtype[jnrA+0];
485             vdwjidx0B        = 2*vdwtype[jnrB+0];
486             vdwjidx0C        = 2*vdwtype[jnrC+0];
487             vdwjidx0D        = 2*vdwtype[jnrD+0];
488
489             fjx0             = _mm256_setzero_pd();
490             fjy0             = _mm256_setzero_pd();
491             fjz0             = _mm256_setzero_pd();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_mm256_any_lt(rsq00,rcutoff2))
498             {
499
500             r00              = _mm256_mul_pd(rsq00,rinv00);
501             r00              = _mm256_andnot_pd(dummy_mask,r00);
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq00             = _mm256_mul_pd(iq0,jq0);
505             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
506                                             vdwioffsetptr0+vdwjidx0B,
507                                             vdwioffsetptr0+vdwjidx0C,
508                                             vdwioffsetptr0+vdwjidx0D,
509                                             &c6_00,&c12_00);
510
511             /* Calculate table index by multiplying r with table scale and truncate to integer */
512             rt               = _mm256_mul_pd(r00,vftabscale);
513             vfitab           = _mm256_cvttpd_epi32(rt);
514             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
515             vfitab           = _mm_slli_epi32(vfitab,3);
516
517             /* REACTION-FIELD ELECTROSTATICS */
518             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
519             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
520
521             /* CUBIC SPLINE TABLE DISPERSION */
522             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
523             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
524             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
525             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
526             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
527             Heps             = _mm256_mul_pd(vfeps,H);
528             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
529             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
530             vvdw6            = _mm256_mul_pd(c6_00,VV);
531             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
532             fvdw6            = _mm256_mul_pd(c6_00,FF);
533
534             /* CUBIC SPLINE TABLE REPULSION */
535             vfitab           = _mm_add_epi32(vfitab,ifour);
536             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
537             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
538             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
539             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
540             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
541             Heps             = _mm256_mul_pd(vfeps,H);
542             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
543             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
544             vvdw12           = _mm256_mul_pd(c12_00,VV);
545             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
546             fvdw12           = _mm256_mul_pd(c12_00,FF);
547             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
548             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
549
550             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm256_and_pd(velec,cutoff_mask);
554             velec            = _mm256_andnot_pd(dummy_mask,velec);
555             velecsum         = _mm256_add_pd(velecsum,velec);
556             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
557             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
558             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
559
560             fscal            = _mm256_add_pd(felec,fvdw);
561
562             fscal            = _mm256_and_pd(fscal,cutoff_mask);
563
564             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm256_mul_pd(fscal,dx00);
568             ty               = _mm256_mul_pd(fscal,dy00);
569             tz               = _mm256_mul_pd(fscal,dz00);
570
571             /* Update vectorial force */
572             fix0             = _mm256_add_pd(fix0,tx);
573             fiy0             = _mm256_add_pd(fiy0,ty);
574             fiz0             = _mm256_add_pd(fiz0,tz);
575
576             fjx0             = _mm256_add_pd(fjx0,tx);
577             fjy0             = _mm256_add_pd(fjy0,ty);
578             fjz0             = _mm256_add_pd(fjz0,tz);
579
580             }
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (gmx_mm256_any_lt(rsq10,rcutoff2))
587             {
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq10             = _mm256_mul_pd(iq1,jq0);
591
592             /* REACTION-FIELD ELECTROSTATICS */
593             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
594             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
595
596             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm256_and_pd(velec,cutoff_mask);
600             velec            = _mm256_andnot_pd(dummy_mask,velec);
601             velecsum         = _mm256_add_pd(velecsum,velec);
602
603             fscal            = felec;
604
605             fscal            = _mm256_and_pd(fscal,cutoff_mask);
606
607             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm256_mul_pd(fscal,dx10);
611             ty               = _mm256_mul_pd(fscal,dy10);
612             tz               = _mm256_mul_pd(fscal,dz10);
613
614             /* Update vectorial force */
615             fix1             = _mm256_add_pd(fix1,tx);
616             fiy1             = _mm256_add_pd(fiy1,ty);
617             fiz1             = _mm256_add_pd(fiz1,tz);
618
619             fjx0             = _mm256_add_pd(fjx0,tx);
620             fjy0             = _mm256_add_pd(fjy0,ty);
621             fjz0             = _mm256_add_pd(fjz0,tz);
622
623             }
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             if (gmx_mm256_any_lt(rsq20,rcutoff2))
630             {
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq20             = _mm256_mul_pd(iq2,jq0);
634
635             /* REACTION-FIELD ELECTROSTATICS */
636             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
637             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
638
639             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm256_and_pd(velec,cutoff_mask);
643             velec            = _mm256_andnot_pd(dummy_mask,velec);
644             velecsum         = _mm256_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm256_and_pd(fscal,cutoff_mask);
649
650             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm256_mul_pd(fscal,dx20);
654             ty               = _mm256_mul_pd(fscal,dy20);
655             tz               = _mm256_mul_pd(fscal,dz20);
656
657             /* Update vectorial force */
658             fix2             = _mm256_add_pd(fix2,tx);
659             fiy2             = _mm256_add_pd(fiy2,ty);
660             fiz2             = _mm256_add_pd(fiz2,tz);
661
662             fjx0             = _mm256_add_pd(fjx0,tx);
663             fjy0             = _mm256_add_pd(fjy0,ty);
664             fjz0             = _mm256_add_pd(fjz0,tz);
665
666             }
667
668             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
669             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
670             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
671             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
672
673             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
674
675             /* Inner loop uses 148 flops */
676         }
677
678         /* End of innermost loop */
679
680         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
681                                                  f+i_coord_offset,fshift+i_shift_offset);
682
683         ggid                        = gid[iidx];
684         /* Update potential energies */
685         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
686         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
687
688         /* Increment number of inner iterations */
689         inneriter                  += j_index_end - j_index_start;
690
691         /* Outer loop uses 20 flops */
692     }
693
694     /* Increment number of outer iterations */
695     outeriter        += nri;
696
697     /* Update outer/inner flops */
698
699     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
700 }
701 /*
702  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
703  * Electrostatics interaction: ReactionField
704  * VdW interaction:            CubicSplineTable
705  * Geometry:                   Water3-Particle
706  * Calculate force/pot:        Force
707  */
708 void
709 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
710                     (t_nblist                    * gmx_restrict       nlist,
711                      rvec                        * gmx_restrict          xx,
712                      rvec                        * gmx_restrict          ff,
713                      t_forcerec                  * gmx_restrict          fr,
714                      t_mdatoms                   * gmx_restrict     mdatoms,
715                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
716                      t_nrnb                      * gmx_restrict        nrnb)
717 {
718     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
719      * just 0 for non-waters.
720      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
721      * jnr indices corresponding to data put in the four positions in the SIMD register.
722      */
723     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
724     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
725     int              jnrA,jnrB,jnrC,jnrD;
726     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
727     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
728     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
729     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
730     real             rcutoff_scalar;
731     real             *shiftvec,*fshift,*x,*f;
732     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
733     real             scratch[4*DIM];
734     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     real *           vdwioffsetptr0;
736     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     real *           vdwioffsetptr1;
738     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     real *           vdwioffsetptr2;
740     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
742     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
743     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
744     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
745     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
746     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
747     real             *charge;
748     int              nvdwtype;
749     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750     int              *vdwtype;
751     real             *vdwparam;
752     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
753     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
754     __m128i          vfitab;
755     __m128i          ifour       = _mm_set1_epi32(4);
756     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
757     real             *vftab;
758     __m256d          dummy_mask,cutoff_mask;
759     __m128           tmpmask0,tmpmask1;
760     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
761     __m256d          one     = _mm256_set1_pd(1.0);
762     __m256d          two     = _mm256_set1_pd(2.0);
763     x                = xx[0];
764     f                = ff[0];
765
766     nri              = nlist->nri;
767     iinr             = nlist->iinr;
768     jindex           = nlist->jindex;
769     jjnr             = nlist->jjnr;
770     shiftidx         = nlist->shift;
771     gid              = nlist->gid;
772     shiftvec         = fr->shift_vec[0];
773     fshift           = fr->fshift[0];
774     facel            = _mm256_set1_pd(fr->epsfac);
775     charge           = mdatoms->chargeA;
776     krf              = _mm256_set1_pd(fr->ic->k_rf);
777     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
778     crf              = _mm256_set1_pd(fr->ic->c_rf);
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782
783     vftab            = kernel_data->table_vdw->data;
784     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
789     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
790     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
791     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
792
793     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
794     rcutoff_scalar   = fr->rcoulomb;
795     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
796     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
797
798     /* Avoid stupid compiler warnings */
799     jnrA = jnrB = jnrC = jnrD = 0;
800     j_coord_offsetA = 0;
801     j_coord_offsetB = 0;
802     j_coord_offsetC = 0;
803     j_coord_offsetD = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     for(iidx=0;iidx<4*DIM;iidx++)
809     {
810         scratch[iidx] = 0.0;
811     }
812
813     /* Start outer loop over neighborlists */
814     for(iidx=0; iidx<nri; iidx++)
815     {
816         /* Load shift vector for this list */
817         i_shift_offset   = DIM*shiftidx[iidx];
818
819         /* Load limits for loop over neighbors */
820         j_index_start    = jindex[iidx];
821         j_index_end      = jindex[iidx+1];
822
823         /* Get outer coordinate index */
824         inr              = iinr[iidx];
825         i_coord_offset   = DIM*inr;
826
827         /* Load i particle coords and add shift vector */
828         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
829                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
830
831         fix0             = _mm256_setzero_pd();
832         fiy0             = _mm256_setzero_pd();
833         fiz0             = _mm256_setzero_pd();
834         fix1             = _mm256_setzero_pd();
835         fiy1             = _mm256_setzero_pd();
836         fiz1             = _mm256_setzero_pd();
837         fix2             = _mm256_setzero_pd();
838         fiy2             = _mm256_setzero_pd();
839         fiz2             = _mm256_setzero_pd();
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
843         {
844
845             /* Get j neighbor index, and coordinate index */
846             jnrA             = jjnr[jidx];
847             jnrB             = jjnr[jidx+1];
848             jnrC             = jjnr[jidx+2];
849             jnrD             = jjnr[jidx+3];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852             j_coord_offsetC  = DIM*jnrC;
853             j_coord_offsetD  = DIM*jnrD;
854
855             /* load j atom coordinates */
856             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
857                                                  x+j_coord_offsetC,x+j_coord_offsetD,
858                                                  &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx00             = _mm256_sub_pd(ix0,jx0);
862             dy00             = _mm256_sub_pd(iy0,jy0);
863             dz00             = _mm256_sub_pd(iz0,jz0);
864             dx10             = _mm256_sub_pd(ix1,jx0);
865             dy10             = _mm256_sub_pd(iy1,jy0);
866             dz10             = _mm256_sub_pd(iz1,jz0);
867             dx20             = _mm256_sub_pd(ix2,jx0);
868             dy20             = _mm256_sub_pd(iy2,jy0);
869             dz20             = _mm256_sub_pd(iz2,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
873             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
874             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
875
876             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
877             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
878             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
879
880             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
881             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
882             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
886                                                                  charge+jnrC+0,charge+jnrD+0);
887             vdwjidx0A        = 2*vdwtype[jnrA+0];
888             vdwjidx0B        = 2*vdwtype[jnrB+0];
889             vdwjidx0C        = 2*vdwtype[jnrC+0];
890             vdwjidx0D        = 2*vdwtype[jnrD+0];
891
892             fjx0             = _mm256_setzero_pd();
893             fjy0             = _mm256_setzero_pd();
894             fjz0             = _mm256_setzero_pd();
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             if (gmx_mm256_any_lt(rsq00,rcutoff2))
901             {
902
903             r00              = _mm256_mul_pd(rsq00,rinv00);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq00             = _mm256_mul_pd(iq0,jq0);
907             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
908                                             vdwioffsetptr0+vdwjidx0B,
909                                             vdwioffsetptr0+vdwjidx0C,
910                                             vdwioffsetptr0+vdwjidx0D,
911                                             &c6_00,&c12_00);
912
913             /* Calculate table index by multiplying r with table scale and truncate to integer */
914             rt               = _mm256_mul_pd(r00,vftabscale);
915             vfitab           = _mm256_cvttpd_epi32(rt);
916             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
917             vfitab           = _mm_slli_epi32(vfitab,3);
918
919             /* REACTION-FIELD ELECTROSTATICS */
920             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
921
922             /* CUBIC SPLINE TABLE DISPERSION */
923             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
924             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
925             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
926             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
927             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
928             Heps             = _mm256_mul_pd(vfeps,H);
929             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
930             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
931             fvdw6            = _mm256_mul_pd(c6_00,FF);
932
933             /* CUBIC SPLINE TABLE REPULSION */
934             vfitab           = _mm_add_epi32(vfitab,ifour);
935             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
936             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
937             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
938             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
939             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
940             Heps             = _mm256_mul_pd(vfeps,H);
941             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
942             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
943             fvdw12           = _mm256_mul_pd(c12_00,FF);
944             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
945
946             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
947
948             fscal            = _mm256_add_pd(felec,fvdw);
949
950             fscal            = _mm256_and_pd(fscal,cutoff_mask);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm256_mul_pd(fscal,dx00);
954             ty               = _mm256_mul_pd(fscal,dy00);
955             tz               = _mm256_mul_pd(fscal,dz00);
956
957             /* Update vectorial force */
958             fix0             = _mm256_add_pd(fix0,tx);
959             fiy0             = _mm256_add_pd(fiy0,ty);
960             fiz0             = _mm256_add_pd(fiz0,tz);
961
962             fjx0             = _mm256_add_pd(fjx0,tx);
963             fjy0             = _mm256_add_pd(fjy0,ty);
964             fjz0             = _mm256_add_pd(fjz0,tz);
965
966             }
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             if (gmx_mm256_any_lt(rsq10,rcutoff2))
973             {
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq10             = _mm256_mul_pd(iq1,jq0);
977
978             /* REACTION-FIELD ELECTROSTATICS */
979             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
980
981             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
982
983             fscal            = felec;
984
985             fscal            = _mm256_and_pd(fscal,cutoff_mask);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm256_mul_pd(fscal,dx10);
989             ty               = _mm256_mul_pd(fscal,dy10);
990             tz               = _mm256_mul_pd(fscal,dz10);
991
992             /* Update vectorial force */
993             fix1             = _mm256_add_pd(fix1,tx);
994             fiy1             = _mm256_add_pd(fiy1,ty);
995             fiz1             = _mm256_add_pd(fiz1,tz);
996
997             fjx0             = _mm256_add_pd(fjx0,tx);
998             fjy0             = _mm256_add_pd(fjy0,ty);
999             fjz0             = _mm256_add_pd(fjz0,tz);
1000
1001             }
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1008             {
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq20             = _mm256_mul_pd(iq2,jq0);
1012
1013             /* REACTION-FIELD ELECTROSTATICS */
1014             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1015
1016             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1017
1018             fscal            = felec;
1019
1020             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm256_mul_pd(fscal,dx20);
1024             ty               = _mm256_mul_pd(fscal,dy20);
1025             tz               = _mm256_mul_pd(fscal,dz20);
1026
1027             /* Update vectorial force */
1028             fix2             = _mm256_add_pd(fix2,tx);
1029             fiy2             = _mm256_add_pd(fiy2,ty);
1030             fiz2             = _mm256_add_pd(fiz2,tz);
1031
1032             fjx0             = _mm256_add_pd(fjx0,tx);
1033             fjy0             = _mm256_add_pd(fjy0,ty);
1034             fjz0             = _mm256_add_pd(fjz0,tz);
1035
1036             }
1037
1038             fjptrA             = f+j_coord_offsetA;
1039             fjptrB             = f+j_coord_offsetB;
1040             fjptrC             = f+j_coord_offsetC;
1041             fjptrD             = f+j_coord_offsetD;
1042
1043             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1044
1045             /* Inner loop uses 120 flops */
1046         }
1047
1048         if(jidx<j_index_end)
1049         {
1050
1051             /* Get j neighbor index, and coordinate index */
1052             jnrlistA         = jjnr[jidx];
1053             jnrlistB         = jjnr[jidx+1];
1054             jnrlistC         = jjnr[jidx+2];
1055             jnrlistD         = jjnr[jidx+3];
1056             /* Sign of each element will be negative for non-real atoms.
1057              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1058              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1059              */
1060             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1061
1062             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1063             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1064             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1065
1066             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1067             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1068             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1069             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1070             j_coord_offsetA  = DIM*jnrA;
1071             j_coord_offsetB  = DIM*jnrB;
1072             j_coord_offsetC  = DIM*jnrC;
1073             j_coord_offsetD  = DIM*jnrD;
1074
1075             /* load j atom coordinates */
1076             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1077                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1078                                                  &jx0,&jy0,&jz0);
1079
1080             /* Calculate displacement vector */
1081             dx00             = _mm256_sub_pd(ix0,jx0);
1082             dy00             = _mm256_sub_pd(iy0,jy0);
1083             dz00             = _mm256_sub_pd(iz0,jz0);
1084             dx10             = _mm256_sub_pd(ix1,jx0);
1085             dy10             = _mm256_sub_pd(iy1,jy0);
1086             dz10             = _mm256_sub_pd(iz1,jz0);
1087             dx20             = _mm256_sub_pd(ix2,jx0);
1088             dy20             = _mm256_sub_pd(iy2,jy0);
1089             dz20             = _mm256_sub_pd(iz2,jz0);
1090
1091             /* Calculate squared distance and things based on it */
1092             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1093             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1094             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1095
1096             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1097             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1098             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1099
1100             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1101             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1102             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1103
1104             /* Load parameters for j particles */
1105             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1106                                                                  charge+jnrC+0,charge+jnrD+0);
1107             vdwjidx0A        = 2*vdwtype[jnrA+0];
1108             vdwjidx0B        = 2*vdwtype[jnrB+0];
1109             vdwjidx0C        = 2*vdwtype[jnrC+0];
1110             vdwjidx0D        = 2*vdwtype[jnrD+0];
1111
1112             fjx0             = _mm256_setzero_pd();
1113             fjy0             = _mm256_setzero_pd();
1114             fjz0             = _mm256_setzero_pd();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1121             {
1122
1123             r00              = _mm256_mul_pd(rsq00,rinv00);
1124             r00              = _mm256_andnot_pd(dummy_mask,r00);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq00             = _mm256_mul_pd(iq0,jq0);
1128             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1129                                             vdwioffsetptr0+vdwjidx0B,
1130                                             vdwioffsetptr0+vdwjidx0C,
1131                                             vdwioffsetptr0+vdwjidx0D,
1132                                             &c6_00,&c12_00);
1133
1134             /* Calculate table index by multiplying r with table scale and truncate to integer */
1135             rt               = _mm256_mul_pd(r00,vftabscale);
1136             vfitab           = _mm256_cvttpd_epi32(rt);
1137             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1138             vfitab           = _mm_slli_epi32(vfitab,3);
1139
1140             /* REACTION-FIELD ELECTROSTATICS */
1141             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1142
1143             /* CUBIC SPLINE TABLE DISPERSION */
1144             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1145             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1146             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1147             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1148             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1149             Heps             = _mm256_mul_pd(vfeps,H);
1150             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1151             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1152             fvdw6            = _mm256_mul_pd(c6_00,FF);
1153
1154             /* CUBIC SPLINE TABLE REPULSION */
1155             vfitab           = _mm_add_epi32(vfitab,ifour);
1156             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1157             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1158             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1159             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1160             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1161             Heps             = _mm256_mul_pd(vfeps,H);
1162             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1163             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1164             fvdw12           = _mm256_mul_pd(c12_00,FF);
1165             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1166
1167             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1168
1169             fscal            = _mm256_add_pd(felec,fvdw);
1170
1171             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1172
1173             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1174
1175             /* Calculate temporary vectorial force */
1176             tx               = _mm256_mul_pd(fscal,dx00);
1177             ty               = _mm256_mul_pd(fscal,dy00);
1178             tz               = _mm256_mul_pd(fscal,dz00);
1179
1180             /* Update vectorial force */
1181             fix0             = _mm256_add_pd(fix0,tx);
1182             fiy0             = _mm256_add_pd(fiy0,ty);
1183             fiz0             = _mm256_add_pd(fiz0,tz);
1184
1185             fjx0             = _mm256_add_pd(fjx0,tx);
1186             fjy0             = _mm256_add_pd(fjy0,ty);
1187             fjz0             = _mm256_add_pd(fjz0,tz);
1188
1189             }
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1196             {
1197
1198             /* Compute parameters for interactions between i and j atoms */
1199             qq10             = _mm256_mul_pd(iq1,jq0);
1200
1201             /* REACTION-FIELD ELECTROSTATICS */
1202             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1203
1204             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1205
1206             fscal            = felec;
1207
1208             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1209
1210             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1211
1212             /* Calculate temporary vectorial force */
1213             tx               = _mm256_mul_pd(fscal,dx10);
1214             ty               = _mm256_mul_pd(fscal,dy10);
1215             tz               = _mm256_mul_pd(fscal,dz10);
1216
1217             /* Update vectorial force */
1218             fix1             = _mm256_add_pd(fix1,tx);
1219             fiy1             = _mm256_add_pd(fiy1,ty);
1220             fiz1             = _mm256_add_pd(fiz1,tz);
1221
1222             fjx0             = _mm256_add_pd(fjx0,tx);
1223             fjy0             = _mm256_add_pd(fjy0,ty);
1224             fjz0             = _mm256_add_pd(fjz0,tz);
1225
1226             }
1227
1228             /**************************
1229              * CALCULATE INTERACTIONS *
1230              **************************/
1231
1232             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1233             {
1234
1235             /* Compute parameters for interactions between i and j atoms */
1236             qq20             = _mm256_mul_pd(iq2,jq0);
1237
1238             /* REACTION-FIELD ELECTROSTATICS */
1239             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1240
1241             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1242
1243             fscal            = felec;
1244
1245             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1246
1247             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1248
1249             /* Calculate temporary vectorial force */
1250             tx               = _mm256_mul_pd(fscal,dx20);
1251             ty               = _mm256_mul_pd(fscal,dy20);
1252             tz               = _mm256_mul_pd(fscal,dz20);
1253
1254             /* Update vectorial force */
1255             fix2             = _mm256_add_pd(fix2,tx);
1256             fiy2             = _mm256_add_pd(fiy2,ty);
1257             fiz2             = _mm256_add_pd(fiz2,tz);
1258
1259             fjx0             = _mm256_add_pd(fjx0,tx);
1260             fjy0             = _mm256_add_pd(fjy0,ty);
1261             fjz0             = _mm256_add_pd(fjz0,tz);
1262
1263             }
1264
1265             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1266             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1267             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1268             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1269
1270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1271
1272             /* Inner loop uses 121 flops */
1273         }
1274
1275         /* End of innermost loop */
1276
1277         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1278                                                  f+i_coord_offset,fshift+i_shift_offset);
1279
1280         /* Increment number of inner iterations */
1281         inneriter                  += j_index_end - j_index_start;
1282
1283         /* Outer loop uses 18 flops */
1284     }
1285
1286     /* Increment number of outer iterations */
1287     outeriter        += nri;
1288
1289     /* Update outer/inner flops */
1290
1291     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1292 }