80225b3acd066b8f03439ad0131e96b47df10fe9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm256_set1_pd(fr->ic->k_rf);
126     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm256_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
138     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
139     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
140     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm256_setzero_pd();
181         fiy0             = _mm256_setzero_pd();
182         fiz0             = _mm256_setzero_pd();
183         fix1             = _mm256_setzero_pd();
184         fiy1             = _mm256_setzero_pd();
185         fiz1             = _mm256_setzero_pd();
186         fix2             = _mm256_setzero_pd();
187         fiy2             = _mm256_setzero_pd();
188         fiz2             = _mm256_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217             dx10             = _mm256_sub_pd(ix1,jx0);
218             dy10             = _mm256_sub_pd(iy1,jy0);
219             dz10             = _mm256_sub_pd(iz1,jz0);
220             dx20             = _mm256_sub_pd(ix2,jx0);
221             dy20             = _mm256_sub_pd(iy2,jy0);
222             dz20             = _mm256_sub_pd(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
232
233             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
234             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
235             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
239                                                                  charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm256_setzero_pd();
246             fjy0             = _mm256_setzero_pd();
247             fjz0             = _mm256_setzero_pd();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (gmx_mm256_any_lt(rsq00,rcutoff2))
254             {
255
256             r00              = _mm256_mul_pd(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm256_mul_pd(iq0,jq0);
260             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
261                                             vdwioffsetptr0+vdwjidx0B,
262                                             vdwioffsetptr0+vdwjidx0C,
263                                             vdwioffsetptr0+vdwjidx0D,
264                                             &c6_00,&c12_00);
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = _mm256_mul_pd(r00,vftabscale);
268             vfitab           = _mm256_cvttpd_epi32(rt);
269             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
270             vfitab           = _mm_slli_epi32(vfitab,3);
271
272             /* REACTION-FIELD ELECTROSTATICS */
273             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
274             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
281             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
282             Heps             = _mm256_mul_pd(vfeps,H);
283             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
284             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
285             vvdw6            = _mm256_mul_pd(c6_00,VV);
286             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
287             fvdw6            = _mm256_mul_pd(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
295             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
296             Heps             = _mm256_mul_pd(vfeps,H);
297             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
298             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
299             vvdw12           = _mm256_mul_pd(c12_00,VV);
300             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
301             fvdw12           = _mm256_mul_pd(c12_00,FF);
302             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
303             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
304
305             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm256_and_pd(velec,cutoff_mask);
309             velecsum         = _mm256_add_pd(velecsum,velec);
310             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
311             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
312
313             fscal            = _mm256_add_pd(felec,fvdw);
314
315             fscal            = _mm256_and_pd(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm256_mul_pd(fscal,dx00);
319             ty               = _mm256_mul_pd(fscal,dy00);
320             tz               = _mm256_mul_pd(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm256_add_pd(fix0,tx);
324             fiy0             = _mm256_add_pd(fiy0,ty);
325             fiz0             = _mm256_add_pd(fiz0,tz);
326
327             fjx0             = _mm256_add_pd(fjx0,tx);
328             fjy0             = _mm256_add_pd(fjy0,ty);
329             fjz0             = _mm256_add_pd(fjz0,tz);
330
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm256_any_lt(rsq10,rcutoff2))
338             {
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm256_mul_pd(iq1,jq0);
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
345             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
346
347             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm256_and_pd(velec,cutoff_mask);
351             velecsum         = _mm256_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             fscal            = _mm256_and_pd(fscal,cutoff_mask);
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm256_mul_pd(fscal,dx10);
359             ty               = _mm256_mul_pd(fscal,dy10);
360             tz               = _mm256_mul_pd(fscal,dz10);
361
362             /* Update vectorial force */
363             fix1             = _mm256_add_pd(fix1,tx);
364             fiy1             = _mm256_add_pd(fiy1,ty);
365             fiz1             = _mm256_add_pd(fiz1,tz);
366
367             fjx0             = _mm256_add_pd(fjx0,tx);
368             fjy0             = _mm256_add_pd(fjy0,ty);
369             fjz0             = _mm256_add_pd(fjz0,tz);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm256_any_lt(rsq20,rcutoff2))
378             {
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq20             = _mm256_mul_pd(iq2,jq0);
382
383             /* REACTION-FIELD ELECTROSTATICS */
384             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
385             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
386
387             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm256_and_pd(velec,cutoff_mask);
391             velecsum         = _mm256_add_pd(velecsum,velec);
392
393             fscal            = felec;
394
395             fscal            = _mm256_and_pd(fscal,cutoff_mask);
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm256_mul_pd(fscal,dx20);
399             ty               = _mm256_mul_pd(fscal,dy20);
400             tz               = _mm256_mul_pd(fscal,dz20);
401
402             /* Update vectorial force */
403             fix2             = _mm256_add_pd(fix2,tx);
404             fiy2             = _mm256_add_pd(fiy2,ty);
405             fiz2             = _mm256_add_pd(fiz2,tz);
406
407             fjx0             = _mm256_add_pd(fjx0,tx);
408             fjy0             = _mm256_add_pd(fjy0,ty);
409             fjz0             = _mm256_add_pd(fjz0,tz);
410
411             }
412
413             fjptrA             = f+j_coord_offsetA;
414             fjptrB             = f+j_coord_offsetB;
415             fjptrC             = f+j_coord_offsetC;
416             fjptrD             = f+j_coord_offsetD;
417
418             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
419
420             /* Inner loop uses 147 flops */
421         }
422
423         if(jidx<j_index_end)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrlistA         = jjnr[jidx];
428             jnrlistB         = jjnr[jidx+1];
429             jnrlistC         = jjnr[jidx+2];
430             jnrlistD         = jjnr[jidx+3];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
434              */
435             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
436
437             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
438             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
439             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
440
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
452                                                  x+j_coord_offsetC,x+j_coord_offsetD,
453                                                  &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm256_sub_pd(ix0,jx0);
457             dy00             = _mm256_sub_pd(iy0,jy0);
458             dz00             = _mm256_sub_pd(iz0,jz0);
459             dx10             = _mm256_sub_pd(ix1,jx0);
460             dy10             = _mm256_sub_pd(iy1,jy0);
461             dz10             = _mm256_sub_pd(iz1,jz0);
462             dx20             = _mm256_sub_pd(ix2,jx0);
463             dy20             = _mm256_sub_pd(iy2,jy0);
464             dz20             = _mm256_sub_pd(iz2,jz0);
465
466             /* Calculate squared distance and things based on it */
467             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
468             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
469             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
470
471             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
472             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
473             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
474
475             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
476             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
477             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
478
479             /* Load parameters for j particles */
480             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
481                                                                  charge+jnrC+0,charge+jnrD+0);
482             vdwjidx0A        = 2*vdwtype[jnrA+0];
483             vdwjidx0B        = 2*vdwtype[jnrB+0];
484             vdwjidx0C        = 2*vdwtype[jnrC+0];
485             vdwjidx0D        = 2*vdwtype[jnrD+0];
486
487             fjx0             = _mm256_setzero_pd();
488             fjy0             = _mm256_setzero_pd();
489             fjz0             = _mm256_setzero_pd();
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm256_any_lt(rsq00,rcutoff2))
496             {
497
498             r00              = _mm256_mul_pd(rsq00,rinv00);
499             r00              = _mm256_andnot_pd(dummy_mask,r00);
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq00             = _mm256_mul_pd(iq0,jq0);
503             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
504                                             vdwioffsetptr0+vdwjidx0B,
505                                             vdwioffsetptr0+vdwjidx0C,
506                                             vdwioffsetptr0+vdwjidx0D,
507                                             &c6_00,&c12_00);
508
509             /* Calculate table index by multiplying r with table scale and truncate to integer */
510             rt               = _mm256_mul_pd(r00,vftabscale);
511             vfitab           = _mm256_cvttpd_epi32(rt);
512             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
513             vfitab           = _mm_slli_epi32(vfitab,3);
514
515             /* REACTION-FIELD ELECTROSTATICS */
516             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
517             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
518
519             /* CUBIC SPLINE TABLE DISPERSION */
520             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
521             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
522             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
523             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
524             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
525             Heps             = _mm256_mul_pd(vfeps,H);
526             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
527             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
528             vvdw6            = _mm256_mul_pd(c6_00,VV);
529             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
530             fvdw6            = _mm256_mul_pd(c6_00,FF);
531
532             /* CUBIC SPLINE TABLE REPULSION */
533             vfitab           = _mm_add_epi32(vfitab,ifour);
534             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
535             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
536             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
537             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
538             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
539             Heps             = _mm256_mul_pd(vfeps,H);
540             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
541             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
542             vvdw12           = _mm256_mul_pd(c12_00,VV);
543             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
544             fvdw12           = _mm256_mul_pd(c12_00,FF);
545             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
546             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
547
548             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm256_and_pd(velec,cutoff_mask);
552             velec            = _mm256_andnot_pd(dummy_mask,velec);
553             velecsum         = _mm256_add_pd(velecsum,velec);
554             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
555             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
556             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
557
558             fscal            = _mm256_add_pd(felec,fvdw);
559
560             fscal            = _mm256_and_pd(fscal,cutoff_mask);
561
562             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm256_mul_pd(fscal,dx00);
566             ty               = _mm256_mul_pd(fscal,dy00);
567             tz               = _mm256_mul_pd(fscal,dz00);
568
569             /* Update vectorial force */
570             fix0             = _mm256_add_pd(fix0,tx);
571             fiy0             = _mm256_add_pd(fiy0,ty);
572             fiz0             = _mm256_add_pd(fiz0,tz);
573
574             fjx0             = _mm256_add_pd(fjx0,tx);
575             fjy0             = _mm256_add_pd(fjy0,ty);
576             fjz0             = _mm256_add_pd(fjz0,tz);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm256_any_lt(rsq10,rcutoff2))
585             {
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm256_mul_pd(iq1,jq0);
589
590             /* REACTION-FIELD ELECTROSTATICS */
591             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
592             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
593
594             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm256_and_pd(velec,cutoff_mask);
598             velec            = _mm256_andnot_pd(dummy_mask,velec);
599             velecsum         = _mm256_add_pd(velecsum,velec);
600
601             fscal            = felec;
602
603             fscal            = _mm256_and_pd(fscal,cutoff_mask);
604
605             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm256_mul_pd(fscal,dx10);
609             ty               = _mm256_mul_pd(fscal,dy10);
610             tz               = _mm256_mul_pd(fscal,dz10);
611
612             /* Update vectorial force */
613             fix1             = _mm256_add_pd(fix1,tx);
614             fiy1             = _mm256_add_pd(fiy1,ty);
615             fiz1             = _mm256_add_pd(fiz1,tz);
616
617             fjx0             = _mm256_add_pd(fjx0,tx);
618             fjy0             = _mm256_add_pd(fjy0,ty);
619             fjz0             = _mm256_add_pd(fjz0,tz);
620
621             }
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (gmx_mm256_any_lt(rsq20,rcutoff2))
628             {
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq20             = _mm256_mul_pd(iq2,jq0);
632
633             /* REACTION-FIELD ELECTROSTATICS */
634             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
635             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
636
637             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_and_pd(velec,cutoff_mask);
641             velec            = _mm256_andnot_pd(dummy_mask,velec);
642             velecsum         = _mm256_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_and_pd(fscal,cutoff_mask);
647
648             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx20);
652             ty               = _mm256_mul_pd(fscal,dy20);
653             tz               = _mm256_mul_pd(fscal,dz20);
654
655             /* Update vectorial force */
656             fix2             = _mm256_add_pd(fix2,tx);
657             fiy2             = _mm256_add_pd(fiy2,ty);
658             fiz2             = _mm256_add_pd(fiz2,tz);
659
660             fjx0             = _mm256_add_pd(fjx0,tx);
661             fjy0             = _mm256_add_pd(fjy0,ty);
662             fjz0             = _mm256_add_pd(fjz0,tz);
663
664             }
665
666             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
667             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
668             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
669             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
670
671             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
672
673             /* Inner loop uses 148 flops */
674         }
675
676         /* End of innermost loop */
677
678         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
679                                                  f+i_coord_offset,fshift+i_shift_offset);
680
681         ggid                        = gid[iidx];
682         /* Update potential energies */
683         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
684         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
685
686         /* Increment number of inner iterations */
687         inneriter                  += j_index_end - j_index_start;
688
689         /* Outer loop uses 20 flops */
690     }
691
692     /* Increment number of outer iterations */
693     outeriter        += nri;
694
695     /* Update outer/inner flops */
696
697     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
698 }
699 /*
700  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
701  * Electrostatics interaction: ReactionField
702  * VdW interaction:            CubicSplineTable
703  * Geometry:                   Water3-Particle
704  * Calculate force/pot:        Force
705  */
706 void
707 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
708                     (t_nblist                    * gmx_restrict       nlist,
709                      rvec                        * gmx_restrict          xx,
710                      rvec                        * gmx_restrict          ff,
711                      t_forcerec                  * gmx_restrict          fr,
712                      t_mdatoms                   * gmx_restrict     mdatoms,
713                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
714                      t_nrnb                      * gmx_restrict        nrnb)
715 {
716     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
717      * just 0 for non-waters.
718      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
719      * jnr indices corresponding to data put in the four positions in the SIMD register.
720      */
721     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
722     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
723     int              jnrA,jnrB,jnrC,jnrD;
724     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
725     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
726     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
727     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
728     real             rcutoff_scalar;
729     real             *shiftvec,*fshift,*x,*f;
730     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
731     real             scratch[4*DIM];
732     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
733     real *           vdwioffsetptr0;
734     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735     real *           vdwioffsetptr1;
736     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737     real *           vdwioffsetptr2;
738     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
740     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
745     real             *charge;
746     int              nvdwtype;
747     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
748     int              *vdwtype;
749     real             *vdwparam;
750     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
751     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
752     __m128i          vfitab;
753     __m128i          ifour       = _mm_set1_epi32(4);
754     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
755     real             *vftab;
756     __m256d          dummy_mask,cutoff_mask;
757     __m128           tmpmask0,tmpmask1;
758     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
759     __m256d          one     = _mm256_set1_pd(1.0);
760     __m256d          two     = _mm256_set1_pd(2.0);
761     x                = xx[0];
762     f                = ff[0];
763
764     nri              = nlist->nri;
765     iinr             = nlist->iinr;
766     jindex           = nlist->jindex;
767     jjnr             = nlist->jjnr;
768     shiftidx         = nlist->shift;
769     gid              = nlist->gid;
770     shiftvec         = fr->shift_vec[0];
771     fshift           = fr->fshift[0];
772     facel            = _mm256_set1_pd(fr->epsfac);
773     charge           = mdatoms->chargeA;
774     krf              = _mm256_set1_pd(fr->ic->k_rf);
775     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
776     crf              = _mm256_set1_pd(fr->ic->c_rf);
777     nvdwtype         = fr->ntype;
778     vdwparam         = fr->nbfp;
779     vdwtype          = mdatoms->typeA;
780
781     vftab            = kernel_data->table_vdw->data;
782     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
783
784     /* Setup water-specific parameters */
785     inr              = nlist->iinr[0];
786     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
787     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
788     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
789     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
790
791     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
792     rcutoff_scalar   = fr->rcoulomb;
793     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
794     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
795
796     /* Avoid stupid compiler warnings */
797     jnrA = jnrB = jnrC = jnrD = 0;
798     j_coord_offsetA = 0;
799     j_coord_offsetB = 0;
800     j_coord_offsetC = 0;
801     j_coord_offsetD = 0;
802
803     outeriter        = 0;
804     inneriter        = 0;
805
806     for(iidx=0;iidx<4*DIM;iidx++)
807     {
808         scratch[iidx] = 0.0;
809     }
810
811     /* Start outer loop over neighborlists */
812     for(iidx=0; iidx<nri; iidx++)
813     {
814         /* Load shift vector for this list */
815         i_shift_offset   = DIM*shiftidx[iidx];
816
817         /* Load limits for loop over neighbors */
818         j_index_start    = jindex[iidx];
819         j_index_end      = jindex[iidx+1];
820
821         /* Get outer coordinate index */
822         inr              = iinr[iidx];
823         i_coord_offset   = DIM*inr;
824
825         /* Load i particle coords and add shift vector */
826         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
827                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
828
829         fix0             = _mm256_setzero_pd();
830         fiy0             = _mm256_setzero_pd();
831         fiz0             = _mm256_setzero_pd();
832         fix1             = _mm256_setzero_pd();
833         fiy1             = _mm256_setzero_pd();
834         fiz1             = _mm256_setzero_pd();
835         fix2             = _mm256_setzero_pd();
836         fiy2             = _mm256_setzero_pd();
837         fiz2             = _mm256_setzero_pd();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             jnrC             = jjnr[jidx+2];
847             jnrD             = jjnr[jidx+3];
848             j_coord_offsetA  = DIM*jnrA;
849             j_coord_offsetB  = DIM*jnrB;
850             j_coord_offsetC  = DIM*jnrC;
851             j_coord_offsetD  = DIM*jnrD;
852
853             /* load j atom coordinates */
854             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
855                                                  x+j_coord_offsetC,x+j_coord_offsetD,
856                                                  &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm256_sub_pd(ix0,jx0);
860             dy00             = _mm256_sub_pd(iy0,jy0);
861             dz00             = _mm256_sub_pd(iz0,jz0);
862             dx10             = _mm256_sub_pd(ix1,jx0);
863             dy10             = _mm256_sub_pd(iy1,jy0);
864             dz10             = _mm256_sub_pd(iz1,jz0);
865             dx20             = _mm256_sub_pd(ix2,jx0);
866             dy20             = _mm256_sub_pd(iy2,jy0);
867             dz20             = _mm256_sub_pd(iz2,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
871             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
872             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
873
874             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
875             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
876             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
877
878             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
879             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
884                                                                  charge+jnrC+0,charge+jnrD+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887             vdwjidx0C        = 2*vdwtype[jnrC+0];
888             vdwjidx0D        = 2*vdwtype[jnrD+0];
889
890             fjx0             = _mm256_setzero_pd();
891             fjy0             = _mm256_setzero_pd();
892             fjz0             = _mm256_setzero_pd();
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             if (gmx_mm256_any_lt(rsq00,rcutoff2))
899             {
900
901             r00              = _mm256_mul_pd(rsq00,rinv00);
902
903             /* Compute parameters for interactions between i and j atoms */
904             qq00             = _mm256_mul_pd(iq0,jq0);
905             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
906                                             vdwioffsetptr0+vdwjidx0B,
907                                             vdwioffsetptr0+vdwjidx0C,
908                                             vdwioffsetptr0+vdwjidx0D,
909                                             &c6_00,&c12_00);
910
911             /* Calculate table index by multiplying r with table scale and truncate to integer */
912             rt               = _mm256_mul_pd(r00,vftabscale);
913             vfitab           = _mm256_cvttpd_epi32(rt);
914             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
915             vfitab           = _mm_slli_epi32(vfitab,3);
916
917             /* REACTION-FIELD ELECTROSTATICS */
918             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
919
920             /* CUBIC SPLINE TABLE DISPERSION */
921             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
922             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
923             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
924             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
925             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
926             Heps             = _mm256_mul_pd(vfeps,H);
927             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
928             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
929             fvdw6            = _mm256_mul_pd(c6_00,FF);
930
931             /* CUBIC SPLINE TABLE REPULSION */
932             vfitab           = _mm_add_epi32(vfitab,ifour);
933             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
934             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
935             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
936             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
937             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
938             Heps             = _mm256_mul_pd(vfeps,H);
939             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
940             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
941             fvdw12           = _mm256_mul_pd(c12_00,FF);
942             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
943
944             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
945
946             fscal            = _mm256_add_pd(felec,fvdw);
947
948             fscal            = _mm256_and_pd(fscal,cutoff_mask);
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm256_mul_pd(fscal,dx00);
952             ty               = _mm256_mul_pd(fscal,dy00);
953             tz               = _mm256_mul_pd(fscal,dz00);
954
955             /* Update vectorial force */
956             fix0             = _mm256_add_pd(fix0,tx);
957             fiy0             = _mm256_add_pd(fiy0,ty);
958             fiz0             = _mm256_add_pd(fiz0,tz);
959
960             fjx0             = _mm256_add_pd(fjx0,tx);
961             fjy0             = _mm256_add_pd(fjy0,ty);
962             fjz0             = _mm256_add_pd(fjz0,tz);
963
964             }
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm256_any_lt(rsq10,rcutoff2))
971             {
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq10             = _mm256_mul_pd(iq1,jq0);
975
976             /* REACTION-FIELD ELECTROSTATICS */
977             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
978
979             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
980
981             fscal            = felec;
982
983             fscal            = _mm256_and_pd(fscal,cutoff_mask);
984
985             /* Calculate temporary vectorial force */
986             tx               = _mm256_mul_pd(fscal,dx10);
987             ty               = _mm256_mul_pd(fscal,dy10);
988             tz               = _mm256_mul_pd(fscal,dz10);
989
990             /* Update vectorial force */
991             fix1             = _mm256_add_pd(fix1,tx);
992             fiy1             = _mm256_add_pd(fiy1,ty);
993             fiz1             = _mm256_add_pd(fiz1,tz);
994
995             fjx0             = _mm256_add_pd(fjx0,tx);
996             fjy0             = _mm256_add_pd(fjy0,ty);
997             fjz0             = _mm256_add_pd(fjz0,tz);
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1006             {
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq20             = _mm256_mul_pd(iq2,jq0);
1010
1011             /* REACTION-FIELD ELECTROSTATICS */
1012             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1013
1014             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1015
1016             fscal            = felec;
1017
1018             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = _mm256_mul_pd(fscal,dx20);
1022             ty               = _mm256_mul_pd(fscal,dy20);
1023             tz               = _mm256_mul_pd(fscal,dz20);
1024
1025             /* Update vectorial force */
1026             fix2             = _mm256_add_pd(fix2,tx);
1027             fiy2             = _mm256_add_pd(fiy2,ty);
1028             fiz2             = _mm256_add_pd(fiz2,tz);
1029
1030             fjx0             = _mm256_add_pd(fjx0,tx);
1031             fjy0             = _mm256_add_pd(fjy0,ty);
1032             fjz0             = _mm256_add_pd(fjz0,tz);
1033
1034             }
1035
1036             fjptrA             = f+j_coord_offsetA;
1037             fjptrB             = f+j_coord_offsetB;
1038             fjptrC             = f+j_coord_offsetC;
1039             fjptrD             = f+j_coord_offsetD;
1040
1041             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1042
1043             /* Inner loop uses 120 flops */
1044         }
1045
1046         if(jidx<j_index_end)
1047         {
1048
1049             /* Get j neighbor index, and coordinate index */
1050             jnrlistA         = jjnr[jidx];
1051             jnrlistB         = jjnr[jidx+1];
1052             jnrlistC         = jjnr[jidx+2];
1053             jnrlistD         = jjnr[jidx+3];
1054             /* Sign of each element will be negative for non-real atoms.
1055              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1056              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1057              */
1058             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1059
1060             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1061             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1062             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1063
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             j_coord_offsetA  = DIM*jnrA;
1069             j_coord_offsetB  = DIM*jnrB;
1070             j_coord_offsetC  = DIM*jnrC;
1071             j_coord_offsetD  = DIM*jnrD;
1072
1073             /* load j atom coordinates */
1074             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1075                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1076                                                  &jx0,&jy0,&jz0);
1077
1078             /* Calculate displacement vector */
1079             dx00             = _mm256_sub_pd(ix0,jx0);
1080             dy00             = _mm256_sub_pd(iy0,jy0);
1081             dz00             = _mm256_sub_pd(iz0,jz0);
1082             dx10             = _mm256_sub_pd(ix1,jx0);
1083             dy10             = _mm256_sub_pd(iy1,jy0);
1084             dz10             = _mm256_sub_pd(iz1,jz0);
1085             dx20             = _mm256_sub_pd(ix2,jx0);
1086             dy20             = _mm256_sub_pd(iy2,jy0);
1087             dz20             = _mm256_sub_pd(iz2,jz0);
1088
1089             /* Calculate squared distance and things based on it */
1090             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1091             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1092             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1093
1094             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1095             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1096             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1097
1098             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1099             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1100             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1101
1102             /* Load parameters for j particles */
1103             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1104                                                                  charge+jnrC+0,charge+jnrD+0);
1105             vdwjidx0A        = 2*vdwtype[jnrA+0];
1106             vdwjidx0B        = 2*vdwtype[jnrB+0];
1107             vdwjidx0C        = 2*vdwtype[jnrC+0];
1108             vdwjidx0D        = 2*vdwtype[jnrD+0];
1109
1110             fjx0             = _mm256_setzero_pd();
1111             fjy0             = _mm256_setzero_pd();
1112             fjz0             = _mm256_setzero_pd();
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1119             {
1120
1121             r00              = _mm256_mul_pd(rsq00,rinv00);
1122             r00              = _mm256_andnot_pd(dummy_mask,r00);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq00             = _mm256_mul_pd(iq0,jq0);
1126             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1127                                             vdwioffsetptr0+vdwjidx0B,
1128                                             vdwioffsetptr0+vdwjidx0C,
1129                                             vdwioffsetptr0+vdwjidx0D,
1130                                             &c6_00,&c12_00);
1131
1132             /* Calculate table index by multiplying r with table scale and truncate to integer */
1133             rt               = _mm256_mul_pd(r00,vftabscale);
1134             vfitab           = _mm256_cvttpd_epi32(rt);
1135             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1136             vfitab           = _mm_slli_epi32(vfitab,3);
1137
1138             /* REACTION-FIELD ELECTROSTATICS */
1139             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1140
1141             /* CUBIC SPLINE TABLE DISPERSION */
1142             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1143             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1144             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1145             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1146             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1147             Heps             = _mm256_mul_pd(vfeps,H);
1148             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1149             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1150             fvdw6            = _mm256_mul_pd(c6_00,FF);
1151
1152             /* CUBIC SPLINE TABLE REPULSION */
1153             vfitab           = _mm_add_epi32(vfitab,ifour);
1154             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1155             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1156             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1157             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1158             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1159             Heps             = _mm256_mul_pd(vfeps,H);
1160             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1161             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1162             fvdw12           = _mm256_mul_pd(c12_00,FF);
1163             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1164
1165             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1166
1167             fscal            = _mm256_add_pd(felec,fvdw);
1168
1169             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1170
1171             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1172
1173             /* Calculate temporary vectorial force */
1174             tx               = _mm256_mul_pd(fscal,dx00);
1175             ty               = _mm256_mul_pd(fscal,dy00);
1176             tz               = _mm256_mul_pd(fscal,dz00);
1177
1178             /* Update vectorial force */
1179             fix0             = _mm256_add_pd(fix0,tx);
1180             fiy0             = _mm256_add_pd(fiy0,ty);
1181             fiz0             = _mm256_add_pd(fiz0,tz);
1182
1183             fjx0             = _mm256_add_pd(fjx0,tx);
1184             fjy0             = _mm256_add_pd(fjy0,ty);
1185             fjz0             = _mm256_add_pd(fjz0,tz);
1186
1187             }
1188
1189             /**************************
1190              * CALCULATE INTERACTIONS *
1191              **************************/
1192
1193             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1194             {
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq10             = _mm256_mul_pd(iq1,jq0);
1198
1199             /* REACTION-FIELD ELECTROSTATICS */
1200             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1201
1202             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1207
1208             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1209
1210             /* Calculate temporary vectorial force */
1211             tx               = _mm256_mul_pd(fscal,dx10);
1212             ty               = _mm256_mul_pd(fscal,dy10);
1213             tz               = _mm256_mul_pd(fscal,dz10);
1214
1215             /* Update vectorial force */
1216             fix1             = _mm256_add_pd(fix1,tx);
1217             fiy1             = _mm256_add_pd(fiy1,ty);
1218             fiz1             = _mm256_add_pd(fiz1,tz);
1219
1220             fjx0             = _mm256_add_pd(fjx0,tx);
1221             fjy0             = _mm256_add_pd(fjy0,ty);
1222             fjz0             = _mm256_add_pd(fjz0,tz);
1223
1224             }
1225
1226             /**************************
1227              * CALCULATE INTERACTIONS *
1228              **************************/
1229
1230             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1231             {
1232
1233             /* Compute parameters for interactions between i and j atoms */
1234             qq20             = _mm256_mul_pd(iq2,jq0);
1235
1236             /* REACTION-FIELD ELECTROSTATICS */
1237             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1238
1239             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1240
1241             fscal            = felec;
1242
1243             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1244
1245             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1246
1247             /* Calculate temporary vectorial force */
1248             tx               = _mm256_mul_pd(fscal,dx20);
1249             ty               = _mm256_mul_pd(fscal,dy20);
1250             tz               = _mm256_mul_pd(fscal,dz20);
1251
1252             /* Update vectorial force */
1253             fix2             = _mm256_add_pd(fix2,tx);
1254             fiy2             = _mm256_add_pd(fiy2,ty);
1255             fiz2             = _mm256_add_pd(fiz2,tz);
1256
1257             fjx0             = _mm256_add_pd(fjx0,tx);
1258             fjy0             = _mm256_add_pd(fjy0,ty);
1259             fjz0             = _mm256_add_pd(fjz0,tz);
1260
1261             }
1262
1263             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1264             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1265             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1266             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1267
1268             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1269
1270             /* Inner loop uses 121 flops */
1271         }
1272
1273         /* End of innermost loop */
1274
1275         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1276                                                  f+i_coord_offset,fshift+i_shift_offset);
1277
1278         /* Increment number of inner iterations */
1279         inneriter                  += j_index_end - j_index_start;
1280
1281         /* Outer loop uses 18 flops */
1282     }
1283
1284     /* Increment number of outer iterations */
1285     outeriter        += nri;
1286
1287     /* Update outer/inner flops */
1288
1289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1290 }