Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm256_set1_pd(fr->ic->k_rf);
120     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm256_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
132     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_pd();
167         fiy0             = _mm256_setzero_pd();
168         fiz0             = _mm256_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176         vvdwsum          = _mm256_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_pd(ix0,jx0);
199             dy00             = _mm256_sub_pd(iy0,jy0);
200             dz00             = _mm256_sub_pd(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
206
207             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
211                                                                  charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm256_any_lt(rsq00,rcutoff2))
222             {
223
224             r00              = _mm256_mul_pd(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm256_mul_pd(iq0,jq0);
228             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
229                                             vdwioffsetptr0+vdwjidx0B,
230                                             vdwioffsetptr0+vdwjidx0C,
231                                             vdwioffsetptr0+vdwjidx0D,
232                                             &c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm256_mul_pd(r00,vftabscale);
236             vfitab           = _mm256_cvttpd_epi32(rt);
237             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
238             vfitab           = _mm_slli_epi32(vfitab,3);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
242             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
246             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
247             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
248             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
249             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
250             Heps             = _mm256_mul_pd(vfeps,H);
251             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
252             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
253             vvdw6            = _mm256_mul_pd(c6_00,VV);
254             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
255             fvdw6            = _mm256_mul_pd(c6_00,FF);
256
257             /* CUBIC SPLINE TABLE REPULSION */
258             vfitab           = _mm_add_epi32(vfitab,ifour);
259             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
262             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
263             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
264             Heps             = _mm256_mul_pd(vfeps,H);
265             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
266             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
267             vvdw12           = _mm256_mul_pd(c12_00,VV);
268             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
269             fvdw12           = _mm256_mul_pd(c12_00,FF);
270             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
272
273             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm256_and_pd(velec,cutoff_mask);
277             velecsum         = _mm256_add_pd(velecsum,velec);
278             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
279             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
280
281             fscal            = _mm256_add_pd(felec,fvdw);
282
283             fscal            = _mm256_and_pd(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx00);
287             ty               = _mm256_mul_pd(fscal,dy00);
288             tz               = _mm256_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_pd(fix0,tx);
292             fiy0             = _mm256_add_pd(fiy0,ty);
293             fiz0             = _mm256_add_pd(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301             }
302
303             /* Inner loop uses 72 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
317              */
318             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319
320             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
321             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
322             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
323
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             j_coord_offsetA  = DIM*jnrA;
329             j_coord_offsetB  = DIM*jnrB;
330             j_coord_offsetC  = DIM*jnrC;
331             j_coord_offsetD  = DIM*jnrD;
332
333             /* load j atom coordinates */
334             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
335                                                  x+j_coord_offsetC,x+j_coord_offsetD,
336                                                  &jx0,&jy0,&jz0);
337
338             /* Calculate displacement vector */
339             dx00             = _mm256_sub_pd(ix0,jx0);
340             dy00             = _mm256_sub_pd(iy0,jy0);
341             dz00             = _mm256_sub_pd(iz0,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
345
346             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
347
348             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
349
350             /* Load parameters for j particles */
351             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
352                                                                  charge+jnrC+0,charge+jnrD+0);
353             vdwjidx0A        = 2*vdwtype[jnrA+0];
354             vdwjidx0B        = 2*vdwtype[jnrB+0];
355             vdwjidx0C        = 2*vdwtype[jnrC+0];
356             vdwjidx0D        = 2*vdwtype[jnrD+0];
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             if (gmx_mm256_any_lt(rsq00,rcutoff2))
363             {
364
365             r00              = _mm256_mul_pd(rsq00,rinv00);
366             r00              = _mm256_andnot_pd(dummy_mask,r00);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq00             = _mm256_mul_pd(iq0,jq0);
370             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
371                                             vdwioffsetptr0+vdwjidx0B,
372                                             vdwioffsetptr0+vdwjidx0C,
373                                             vdwioffsetptr0+vdwjidx0D,
374                                             &c6_00,&c12_00);
375
376             /* Calculate table index by multiplying r with table scale and truncate to integer */
377             rt               = _mm256_mul_pd(r00,vftabscale);
378             vfitab           = _mm256_cvttpd_epi32(rt);
379             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
380             vfitab           = _mm_slli_epi32(vfitab,3);
381
382             /* REACTION-FIELD ELECTROSTATICS */
383             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
384             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
385
386             /* CUBIC SPLINE TABLE DISPERSION */
387             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
388             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
389             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
390             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
391             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
392             Heps             = _mm256_mul_pd(vfeps,H);
393             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
394             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
395             vvdw6            = _mm256_mul_pd(c6_00,VV);
396             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
397             fvdw6            = _mm256_mul_pd(c6_00,FF);
398
399             /* CUBIC SPLINE TABLE REPULSION */
400             vfitab           = _mm_add_epi32(vfitab,ifour);
401             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
402             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
403             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
404             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
405             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
406             Heps             = _mm256_mul_pd(vfeps,H);
407             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
408             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
409             vvdw12           = _mm256_mul_pd(c12_00,VV);
410             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
411             fvdw12           = _mm256_mul_pd(c12_00,FF);
412             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
413             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
414
415             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm256_and_pd(velec,cutoff_mask);
419             velec            = _mm256_andnot_pd(dummy_mask,velec);
420             velecsum         = _mm256_add_pd(velecsum,velec);
421             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
422             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
423             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
424
425             fscal            = _mm256_add_pd(felec,fvdw);
426
427             fscal            = _mm256_and_pd(fscal,cutoff_mask);
428
429             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm256_mul_pd(fscal,dx00);
433             ty               = _mm256_mul_pd(fscal,dy00);
434             tz               = _mm256_mul_pd(fscal,dz00);
435
436             /* Update vectorial force */
437             fix0             = _mm256_add_pd(fix0,tx);
438             fiy0             = _mm256_add_pd(fiy0,ty);
439             fiz0             = _mm256_add_pd(fiz0,tz);
440
441             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
442             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
443             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
444             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
445             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
446
447             }
448
449             /* Inner loop uses 73 flops */
450         }
451
452         /* End of innermost loop */
453
454         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
455                                                  f+i_coord_offset,fshift+i_shift_offset);
456
457         ggid                        = gid[iidx];
458         /* Update potential energies */
459         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
460         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
461
462         /* Increment number of inner iterations */
463         inneriter                  += j_index_end - j_index_start;
464
465         /* Outer loop uses 9 flops */
466     }
467
468     /* Increment number of outer iterations */
469     outeriter        += nri;
470
471     /* Update outer/inner flops */
472
473     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
474 }
475 /*
476  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
477  * Electrostatics interaction: ReactionField
478  * VdW interaction:            CubicSplineTable
479  * Geometry:                   Particle-Particle
480  * Calculate force/pot:        Force
481  */
482 void
483 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
484                     (t_nblist                    * gmx_restrict       nlist,
485                      rvec                        * gmx_restrict          xx,
486                      rvec                        * gmx_restrict          ff,
487                      t_forcerec                  * gmx_restrict          fr,
488                      t_mdatoms                   * gmx_restrict     mdatoms,
489                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
490                      t_nrnb                      * gmx_restrict        nrnb)
491 {
492     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
493      * just 0 for non-waters.
494      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
495      * jnr indices corresponding to data put in the four positions in the SIMD register.
496      */
497     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
498     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
499     int              jnrA,jnrB,jnrC,jnrD;
500     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
501     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
502     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
503     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
504     real             rcutoff_scalar;
505     real             *shiftvec,*fshift,*x,*f;
506     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
507     real             scratch[4*DIM];
508     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
509     real *           vdwioffsetptr0;
510     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
511     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
512     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
513     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
514     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
515     real             *charge;
516     int              nvdwtype;
517     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
518     int              *vdwtype;
519     real             *vdwparam;
520     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
521     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
522     __m128i          vfitab;
523     __m128i          ifour       = _mm_set1_epi32(4);
524     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
525     real             *vftab;
526     __m256d          dummy_mask,cutoff_mask;
527     __m128           tmpmask0,tmpmask1;
528     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
529     __m256d          one     = _mm256_set1_pd(1.0);
530     __m256d          two     = _mm256_set1_pd(2.0);
531     x                = xx[0];
532     f                = ff[0];
533
534     nri              = nlist->nri;
535     iinr             = nlist->iinr;
536     jindex           = nlist->jindex;
537     jjnr             = nlist->jjnr;
538     shiftidx         = nlist->shift;
539     gid              = nlist->gid;
540     shiftvec         = fr->shift_vec[0];
541     fshift           = fr->fshift[0];
542     facel            = _mm256_set1_pd(fr->epsfac);
543     charge           = mdatoms->chargeA;
544     krf              = _mm256_set1_pd(fr->ic->k_rf);
545     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
546     crf              = _mm256_set1_pd(fr->ic->c_rf);
547     nvdwtype         = fr->ntype;
548     vdwparam         = fr->nbfp;
549     vdwtype          = mdatoms->typeA;
550
551     vftab            = kernel_data->table_vdw->data;
552     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
553
554     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
555     rcutoff_scalar   = fr->rcoulomb;
556     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
557     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
558
559     /* Avoid stupid compiler warnings */
560     jnrA = jnrB = jnrC = jnrD = 0;
561     j_coord_offsetA = 0;
562     j_coord_offsetB = 0;
563     j_coord_offsetC = 0;
564     j_coord_offsetD = 0;
565
566     outeriter        = 0;
567     inneriter        = 0;
568
569     for(iidx=0;iidx<4*DIM;iidx++)
570     {
571         scratch[iidx] = 0.0;
572     }
573
574     /* Start outer loop over neighborlists */
575     for(iidx=0; iidx<nri; iidx++)
576     {
577         /* Load shift vector for this list */
578         i_shift_offset   = DIM*shiftidx[iidx];
579
580         /* Load limits for loop over neighbors */
581         j_index_start    = jindex[iidx];
582         j_index_end      = jindex[iidx+1];
583
584         /* Get outer coordinate index */
585         inr              = iinr[iidx];
586         i_coord_offset   = DIM*inr;
587
588         /* Load i particle coords and add shift vector */
589         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
590
591         fix0             = _mm256_setzero_pd();
592         fiy0             = _mm256_setzero_pd();
593         fiz0             = _mm256_setzero_pd();
594
595         /* Load parameters for i particles */
596         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
597         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
598
599         /* Start inner kernel loop */
600         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
601         {
602
603             /* Get j neighbor index, and coordinate index */
604             jnrA             = jjnr[jidx];
605             jnrB             = jjnr[jidx+1];
606             jnrC             = jjnr[jidx+2];
607             jnrD             = jjnr[jidx+3];
608             j_coord_offsetA  = DIM*jnrA;
609             j_coord_offsetB  = DIM*jnrB;
610             j_coord_offsetC  = DIM*jnrC;
611             j_coord_offsetD  = DIM*jnrD;
612
613             /* load j atom coordinates */
614             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
615                                                  x+j_coord_offsetC,x+j_coord_offsetD,
616                                                  &jx0,&jy0,&jz0);
617
618             /* Calculate displacement vector */
619             dx00             = _mm256_sub_pd(ix0,jx0);
620             dy00             = _mm256_sub_pd(iy0,jy0);
621             dz00             = _mm256_sub_pd(iz0,jz0);
622
623             /* Calculate squared distance and things based on it */
624             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
625
626             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
627
628             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
629
630             /* Load parameters for j particles */
631             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
632                                                                  charge+jnrC+0,charge+jnrD+0);
633             vdwjidx0A        = 2*vdwtype[jnrA+0];
634             vdwjidx0B        = 2*vdwtype[jnrB+0];
635             vdwjidx0C        = 2*vdwtype[jnrC+0];
636             vdwjidx0D        = 2*vdwtype[jnrD+0];
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             if (gmx_mm256_any_lt(rsq00,rcutoff2))
643             {
644
645             r00              = _mm256_mul_pd(rsq00,rinv00);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq00             = _mm256_mul_pd(iq0,jq0);
649             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
650                                             vdwioffsetptr0+vdwjidx0B,
651                                             vdwioffsetptr0+vdwjidx0C,
652                                             vdwioffsetptr0+vdwjidx0D,
653                                             &c6_00,&c12_00);
654
655             /* Calculate table index by multiplying r with table scale and truncate to integer */
656             rt               = _mm256_mul_pd(r00,vftabscale);
657             vfitab           = _mm256_cvttpd_epi32(rt);
658             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
659             vfitab           = _mm_slli_epi32(vfitab,3);
660
661             /* REACTION-FIELD ELECTROSTATICS */
662             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
663
664             /* CUBIC SPLINE TABLE DISPERSION */
665             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
666             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
667             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
668             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
669             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
670             Heps             = _mm256_mul_pd(vfeps,H);
671             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
672             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
673             fvdw6            = _mm256_mul_pd(c6_00,FF);
674
675             /* CUBIC SPLINE TABLE REPULSION */
676             vfitab           = _mm_add_epi32(vfitab,ifour);
677             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
678             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
679             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
680             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
681             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
682             Heps             = _mm256_mul_pd(vfeps,H);
683             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
684             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
685             fvdw12           = _mm256_mul_pd(c12_00,FF);
686             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
687
688             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
689
690             fscal            = _mm256_add_pd(felec,fvdw);
691
692             fscal            = _mm256_and_pd(fscal,cutoff_mask);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm256_mul_pd(fscal,dx00);
696             ty               = _mm256_mul_pd(fscal,dy00);
697             tz               = _mm256_mul_pd(fscal,dz00);
698
699             /* Update vectorial force */
700             fix0             = _mm256_add_pd(fix0,tx);
701             fiy0             = _mm256_add_pd(fiy0,ty);
702             fiz0             = _mm256_add_pd(fiz0,tz);
703
704             fjptrA             = f+j_coord_offsetA;
705             fjptrB             = f+j_coord_offsetB;
706             fjptrC             = f+j_coord_offsetC;
707             fjptrD             = f+j_coord_offsetD;
708             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
709
710             }
711
712             /* Inner loop uses 57 flops */
713         }
714
715         if(jidx<j_index_end)
716         {
717
718             /* Get j neighbor index, and coordinate index */
719             jnrlistA         = jjnr[jidx];
720             jnrlistB         = jjnr[jidx+1];
721             jnrlistC         = jjnr[jidx+2];
722             jnrlistD         = jjnr[jidx+3];
723             /* Sign of each element will be negative for non-real atoms.
724              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
725              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
726              */
727             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
728
729             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
730             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
731             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
732
733             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
734             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
735             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
736             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
744                                                  x+j_coord_offsetC,x+j_coord_offsetD,
745                                                  &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm256_sub_pd(ix0,jx0);
749             dy00             = _mm256_sub_pd(iy0,jy0);
750             dz00             = _mm256_sub_pd(iz0,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
754
755             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
756
757             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
758
759             /* Load parameters for j particles */
760             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
761                                                                  charge+jnrC+0,charge+jnrD+0);
762             vdwjidx0A        = 2*vdwtype[jnrA+0];
763             vdwjidx0B        = 2*vdwtype[jnrB+0];
764             vdwjidx0C        = 2*vdwtype[jnrC+0];
765             vdwjidx0D        = 2*vdwtype[jnrD+0];
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             if (gmx_mm256_any_lt(rsq00,rcutoff2))
772             {
773
774             r00              = _mm256_mul_pd(rsq00,rinv00);
775             r00              = _mm256_andnot_pd(dummy_mask,r00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm256_mul_pd(iq0,jq0);
779             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
780                                             vdwioffsetptr0+vdwjidx0B,
781                                             vdwioffsetptr0+vdwjidx0C,
782                                             vdwioffsetptr0+vdwjidx0D,
783                                             &c6_00,&c12_00);
784
785             /* Calculate table index by multiplying r with table scale and truncate to integer */
786             rt               = _mm256_mul_pd(r00,vftabscale);
787             vfitab           = _mm256_cvttpd_epi32(rt);
788             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
789             vfitab           = _mm_slli_epi32(vfitab,3);
790
791             /* REACTION-FIELD ELECTROSTATICS */
792             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
793
794             /* CUBIC SPLINE TABLE DISPERSION */
795             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
796             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
797             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
798             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
799             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
800             Heps             = _mm256_mul_pd(vfeps,H);
801             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
802             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
803             fvdw6            = _mm256_mul_pd(c6_00,FF);
804
805             /* CUBIC SPLINE TABLE REPULSION */
806             vfitab           = _mm_add_epi32(vfitab,ifour);
807             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
808             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
809             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
810             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
811             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
812             Heps             = _mm256_mul_pd(vfeps,H);
813             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
814             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
815             fvdw12           = _mm256_mul_pd(c12_00,FF);
816             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
817
818             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
819
820             fscal            = _mm256_add_pd(felec,fvdw);
821
822             fscal            = _mm256_and_pd(fscal,cutoff_mask);
823
824             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
825
826             /* Calculate temporary vectorial force */
827             tx               = _mm256_mul_pd(fscal,dx00);
828             ty               = _mm256_mul_pd(fscal,dy00);
829             tz               = _mm256_mul_pd(fscal,dz00);
830
831             /* Update vectorial force */
832             fix0             = _mm256_add_pd(fix0,tx);
833             fiy0             = _mm256_add_pd(fiy0,ty);
834             fiz0             = _mm256_add_pd(fiz0,tz);
835
836             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
837             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
838             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
839             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
840             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
841
842             }
843
844             /* Inner loop uses 58 flops */
845         }
846
847         /* End of innermost loop */
848
849         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
850                                                  f+i_coord_offset,fshift+i_shift_offset);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 7 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
864 }