Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm256_set1_pd(fr->ic->k_rf);
122     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm256_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_vdw->data;
129     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm256_setzero_pd();
169         fiy0             = _mm256_setzero_pd();
170         fiz0             = _mm256_setzero_pd();
171
172         /* Load parameters for i particles */
173         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
174         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm256_setzero_pd();
178         vvdwsum          = _mm256_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm256_sub_pd(ix0,jx0);
201             dy00             = _mm256_sub_pd(iy0,jy0);
202             dz00             = _mm256_sub_pd(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
208
209             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
213                                                                  charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             if (gmx_mm256_any_lt(rsq00,rcutoff2))
224             {
225
226             r00              = _mm256_mul_pd(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm256_mul_pd(iq0,jq0);
230             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
231                                             vdwioffsetptr0+vdwjidx0B,
232                                             vdwioffsetptr0+vdwjidx0C,
233                                             vdwioffsetptr0+vdwjidx0D,
234                                             &c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm256_mul_pd(r00,vftabscale);
238             vfitab           = _mm256_cvttpd_epi32(rt);
239             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* REACTION-FIELD ELECTROSTATICS */
243             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
244             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
245
246             /* CUBIC SPLINE TABLE DISPERSION */
247             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
248             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
249             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
250             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
251             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
252             Heps             = _mm256_mul_pd(vfeps,H);
253             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
254             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
255             vvdw6            = _mm256_mul_pd(c6_00,VV);
256             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
257             fvdw6            = _mm256_mul_pd(c6_00,FF);
258
259             /* CUBIC SPLINE TABLE REPULSION */
260             vfitab           = _mm_add_epi32(vfitab,ifour);
261             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
263             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
264             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
265             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
266             Heps             = _mm256_mul_pd(vfeps,H);
267             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
268             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
269             vvdw12           = _mm256_mul_pd(c12_00,VV);
270             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
271             fvdw12           = _mm256_mul_pd(c12_00,FF);
272             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
273             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
274
275             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm256_and_pd(velec,cutoff_mask);
279             velecsum         = _mm256_add_pd(velecsum,velec);
280             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
281             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_pd(felec,fvdw);
284
285             fscal            = _mm256_and_pd(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx00);
289             ty               = _mm256_mul_pd(fscal,dy00);
290             tz               = _mm256_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_pd(fix0,tx);
294             fiy0             = _mm256_add_pd(fiy0,ty);
295             fiz0             = _mm256_add_pd(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302
303             }
304
305             /* Inner loop uses 72 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             /* Sign of each element will be negative for non-real atoms.
317              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
318              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
319              */
320             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
321
322             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
323             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
324             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
325
326             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
327             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
328             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
329             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
330             j_coord_offsetA  = DIM*jnrA;
331             j_coord_offsetB  = DIM*jnrB;
332             j_coord_offsetC  = DIM*jnrC;
333             j_coord_offsetD  = DIM*jnrD;
334
335             /* load j atom coordinates */
336             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
337                                                  x+j_coord_offsetC,x+j_coord_offsetD,
338                                                  &jx0,&jy0,&jz0);
339
340             /* Calculate displacement vector */
341             dx00             = _mm256_sub_pd(ix0,jx0);
342             dy00             = _mm256_sub_pd(iy0,jy0);
343             dz00             = _mm256_sub_pd(iz0,jz0);
344
345             /* Calculate squared distance and things based on it */
346             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
347
348             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
349
350             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
351
352             /* Load parameters for j particles */
353             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
354                                                                  charge+jnrC+0,charge+jnrD+0);
355             vdwjidx0A        = 2*vdwtype[jnrA+0];
356             vdwjidx0B        = 2*vdwtype[jnrB+0];
357             vdwjidx0C        = 2*vdwtype[jnrC+0];
358             vdwjidx0D        = 2*vdwtype[jnrD+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm256_any_lt(rsq00,rcutoff2))
365             {
366
367             r00              = _mm256_mul_pd(rsq00,rinv00);
368             r00              = _mm256_andnot_pd(dummy_mask,r00);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq00             = _mm256_mul_pd(iq0,jq0);
372             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
373                                             vdwioffsetptr0+vdwjidx0B,
374                                             vdwioffsetptr0+vdwjidx0C,
375                                             vdwioffsetptr0+vdwjidx0D,
376                                             &c6_00,&c12_00);
377
378             /* Calculate table index by multiplying r with table scale and truncate to integer */
379             rt               = _mm256_mul_pd(r00,vftabscale);
380             vfitab           = _mm256_cvttpd_epi32(rt);
381             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
382             vfitab           = _mm_slli_epi32(vfitab,3);
383
384             /* REACTION-FIELD ELECTROSTATICS */
385             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
386             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
387
388             /* CUBIC SPLINE TABLE DISPERSION */
389             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
390             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
391             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
392             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
393             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
394             Heps             = _mm256_mul_pd(vfeps,H);
395             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
396             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
397             vvdw6            = _mm256_mul_pd(c6_00,VV);
398             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
399             fvdw6            = _mm256_mul_pd(c6_00,FF);
400
401             /* CUBIC SPLINE TABLE REPULSION */
402             vfitab           = _mm_add_epi32(vfitab,ifour);
403             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
404             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
405             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
406             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
408             Heps             = _mm256_mul_pd(vfeps,H);
409             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
410             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
411             vvdw12           = _mm256_mul_pd(c12_00,VV);
412             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
413             fvdw12           = _mm256_mul_pd(c12_00,FF);
414             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
415             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
416
417             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm256_and_pd(velec,cutoff_mask);
421             velec            = _mm256_andnot_pd(dummy_mask,velec);
422             velecsum         = _mm256_add_pd(velecsum,velec);
423             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
424             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
425             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
426
427             fscal            = _mm256_add_pd(felec,fvdw);
428
429             fscal            = _mm256_and_pd(fscal,cutoff_mask);
430
431             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_pd(fscal,dx00);
435             ty               = _mm256_mul_pd(fscal,dy00);
436             tz               = _mm256_mul_pd(fscal,dz00);
437
438             /* Update vectorial force */
439             fix0             = _mm256_add_pd(fix0,tx);
440             fiy0             = _mm256_add_pd(fiy0,ty);
441             fiz0             = _mm256_add_pd(fiz0,tz);
442
443             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
444             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
445             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
446             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
447             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
448
449             }
450
451             /* Inner loop uses 73 flops */
452         }
453
454         /* End of innermost loop */
455
456         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
457                                                  f+i_coord_offset,fshift+i_shift_offset);
458
459         ggid                        = gid[iidx];
460         /* Update potential energies */
461         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
462         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
463
464         /* Increment number of inner iterations */
465         inneriter                  += j_index_end - j_index_start;
466
467         /* Outer loop uses 9 flops */
468     }
469
470     /* Increment number of outer iterations */
471     outeriter        += nri;
472
473     /* Update outer/inner flops */
474
475     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
476 }
477 /*
478  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
479  * Electrostatics interaction: ReactionField
480  * VdW interaction:            CubicSplineTable
481  * Geometry:                   Particle-Particle
482  * Calculate force/pot:        Force
483  */
484 void
485 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
486                     (t_nblist                    * gmx_restrict       nlist,
487                      rvec                        * gmx_restrict          xx,
488                      rvec                        * gmx_restrict          ff,
489                      t_forcerec                  * gmx_restrict          fr,
490                      t_mdatoms                   * gmx_restrict     mdatoms,
491                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
492                      t_nrnb                      * gmx_restrict        nrnb)
493 {
494     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
495      * just 0 for non-waters.
496      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
497      * jnr indices corresponding to data put in the four positions in the SIMD register.
498      */
499     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
500     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
501     int              jnrA,jnrB,jnrC,jnrD;
502     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
503     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
504     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
505     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
506     real             rcutoff_scalar;
507     real             *shiftvec,*fshift,*x,*f;
508     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
509     real             scratch[4*DIM];
510     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
511     real *           vdwioffsetptr0;
512     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
513     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
514     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
515     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
516     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
517     real             *charge;
518     int              nvdwtype;
519     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
520     int              *vdwtype;
521     real             *vdwparam;
522     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
523     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
524     __m128i          vfitab;
525     __m128i          ifour       = _mm_set1_epi32(4);
526     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
527     real             *vftab;
528     __m256d          dummy_mask,cutoff_mask;
529     __m128           tmpmask0,tmpmask1;
530     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
531     __m256d          one     = _mm256_set1_pd(1.0);
532     __m256d          two     = _mm256_set1_pd(2.0);
533     x                = xx[0];
534     f                = ff[0];
535
536     nri              = nlist->nri;
537     iinr             = nlist->iinr;
538     jindex           = nlist->jindex;
539     jjnr             = nlist->jjnr;
540     shiftidx         = nlist->shift;
541     gid              = nlist->gid;
542     shiftvec         = fr->shift_vec[0];
543     fshift           = fr->fshift[0];
544     facel            = _mm256_set1_pd(fr->epsfac);
545     charge           = mdatoms->chargeA;
546     krf              = _mm256_set1_pd(fr->ic->k_rf);
547     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
548     crf              = _mm256_set1_pd(fr->ic->c_rf);
549     nvdwtype         = fr->ntype;
550     vdwparam         = fr->nbfp;
551     vdwtype          = mdatoms->typeA;
552
553     vftab            = kernel_data->table_vdw->data;
554     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
555
556     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
557     rcutoff_scalar   = fr->rcoulomb;
558     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
559     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
560
561     /* Avoid stupid compiler warnings */
562     jnrA = jnrB = jnrC = jnrD = 0;
563     j_coord_offsetA = 0;
564     j_coord_offsetB = 0;
565     j_coord_offsetC = 0;
566     j_coord_offsetD = 0;
567
568     outeriter        = 0;
569     inneriter        = 0;
570
571     for(iidx=0;iidx<4*DIM;iidx++)
572     {
573         scratch[iidx] = 0.0;
574     }
575
576     /* Start outer loop over neighborlists */
577     for(iidx=0; iidx<nri; iidx++)
578     {
579         /* Load shift vector for this list */
580         i_shift_offset   = DIM*shiftidx[iidx];
581
582         /* Load limits for loop over neighbors */
583         j_index_start    = jindex[iidx];
584         j_index_end      = jindex[iidx+1];
585
586         /* Get outer coordinate index */
587         inr              = iinr[iidx];
588         i_coord_offset   = DIM*inr;
589
590         /* Load i particle coords and add shift vector */
591         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
592
593         fix0             = _mm256_setzero_pd();
594         fiy0             = _mm256_setzero_pd();
595         fiz0             = _mm256_setzero_pd();
596
597         /* Load parameters for i particles */
598         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
599         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
600
601         /* Start inner kernel loop */
602         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
603         {
604
605             /* Get j neighbor index, and coordinate index */
606             jnrA             = jjnr[jidx];
607             jnrB             = jjnr[jidx+1];
608             jnrC             = jjnr[jidx+2];
609             jnrD             = jjnr[jidx+3];
610             j_coord_offsetA  = DIM*jnrA;
611             j_coord_offsetB  = DIM*jnrB;
612             j_coord_offsetC  = DIM*jnrC;
613             j_coord_offsetD  = DIM*jnrD;
614
615             /* load j atom coordinates */
616             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
617                                                  x+j_coord_offsetC,x+j_coord_offsetD,
618                                                  &jx0,&jy0,&jz0);
619
620             /* Calculate displacement vector */
621             dx00             = _mm256_sub_pd(ix0,jx0);
622             dy00             = _mm256_sub_pd(iy0,jy0);
623             dz00             = _mm256_sub_pd(iz0,jz0);
624
625             /* Calculate squared distance and things based on it */
626             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
627
628             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
629
630             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
631
632             /* Load parameters for j particles */
633             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
634                                                                  charge+jnrC+0,charge+jnrD+0);
635             vdwjidx0A        = 2*vdwtype[jnrA+0];
636             vdwjidx0B        = 2*vdwtype[jnrB+0];
637             vdwjidx0C        = 2*vdwtype[jnrC+0];
638             vdwjidx0D        = 2*vdwtype[jnrD+0];
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             if (gmx_mm256_any_lt(rsq00,rcutoff2))
645             {
646
647             r00              = _mm256_mul_pd(rsq00,rinv00);
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq00             = _mm256_mul_pd(iq0,jq0);
651             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
652                                             vdwioffsetptr0+vdwjidx0B,
653                                             vdwioffsetptr0+vdwjidx0C,
654                                             vdwioffsetptr0+vdwjidx0D,
655                                             &c6_00,&c12_00);
656
657             /* Calculate table index by multiplying r with table scale and truncate to integer */
658             rt               = _mm256_mul_pd(r00,vftabscale);
659             vfitab           = _mm256_cvttpd_epi32(rt);
660             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
661             vfitab           = _mm_slli_epi32(vfitab,3);
662
663             /* REACTION-FIELD ELECTROSTATICS */
664             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
665
666             /* CUBIC SPLINE TABLE DISPERSION */
667             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
668             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
669             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
670             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
671             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
672             Heps             = _mm256_mul_pd(vfeps,H);
673             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
674             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
675             fvdw6            = _mm256_mul_pd(c6_00,FF);
676
677             /* CUBIC SPLINE TABLE REPULSION */
678             vfitab           = _mm_add_epi32(vfitab,ifour);
679             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
680             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
681             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
682             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
683             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
684             Heps             = _mm256_mul_pd(vfeps,H);
685             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
686             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
687             fvdw12           = _mm256_mul_pd(c12_00,FF);
688             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
689
690             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
691
692             fscal            = _mm256_add_pd(felec,fvdw);
693
694             fscal            = _mm256_and_pd(fscal,cutoff_mask);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm256_mul_pd(fscal,dx00);
698             ty               = _mm256_mul_pd(fscal,dy00);
699             tz               = _mm256_mul_pd(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm256_add_pd(fix0,tx);
703             fiy0             = _mm256_add_pd(fiy0,ty);
704             fiz0             = _mm256_add_pd(fiz0,tz);
705
706             fjptrA             = f+j_coord_offsetA;
707             fjptrB             = f+j_coord_offsetB;
708             fjptrC             = f+j_coord_offsetC;
709             fjptrD             = f+j_coord_offsetD;
710             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
711
712             }
713
714             /* Inner loop uses 57 flops */
715         }
716
717         if(jidx<j_index_end)
718         {
719
720             /* Get j neighbor index, and coordinate index */
721             jnrlistA         = jjnr[jidx];
722             jnrlistB         = jjnr[jidx+1];
723             jnrlistC         = jjnr[jidx+2];
724             jnrlistD         = jjnr[jidx+3];
725             /* Sign of each element will be negative for non-real atoms.
726              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
727              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
728              */
729             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
730
731             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
732             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
733             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
734
735             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
736             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
737             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
738             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743
744             /* load j atom coordinates */
745             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
746                                                  x+j_coord_offsetC,x+j_coord_offsetD,
747                                                  &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm256_sub_pd(ix0,jx0);
751             dy00             = _mm256_sub_pd(iy0,jy0);
752             dz00             = _mm256_sub_pd(iz0,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
756
757             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
758
759             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
760
761             /* Load parameters for j particles */
762             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
763                                                                  charge+jnrC+0,charge+jnrD+0);
764             vdwjidx0A        = 2*vdwtype[jnrA+0];
765             vdwjidx0B        = 2*vdwtype[jnrB+0];
766             vdwjidx0C        = 2*vdwtype[jnrC+0];
767             vdwjidx0D        = 2*vdwtype[jnrD+0];
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             if (gmx_mm256_any_lt(rsq00,rcutoff2))
774             {
775
776             r00              = _mm256_mul_pd(rsq00,rinv00);
777             r00              = _mm256_andnot_pd(dummy_mask,r00);
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq00             = _mm256_mul_pd(iq0,jq0);
781             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
782                                             vdwioffsetptr0+vdwjidx0B,
783                                             vdwioffsetptr0+vdwjidx0C,
784                                             vdwioffsetptr0+vdwjidx0D,
785                                             &c6_00,&c12_00);
786
787             /* Calculate table index by multiplying r with table scale and truncate to integer */
788             rt               = _mm256_mul_pd(r00,vftabscale);
789             vfitab           = _mm256_cvttpd_epi32(rt);
790             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
791             vfitab           = _mm_slli_epi32(vfitab,3);
792
793             /* REACTION-FIELD ELECTROSTATICS */
794             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
795
796             /* CUBIC SPLINE TABLE DISPERSION */
797             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
798             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
799             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
800             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
801             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
802             Heps             = _mm256_mul_pd(vfeps,H);
803             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
804             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
805             fvdw6            = _mm256_mul_pd(c6_00,FF);
806
807             /* CUBIC SPLINE TABLE REPULSION */
808             vfitab           = _mm_add_epi32(vfitab,ifour);
809             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
810             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
811             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
812             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
813             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
814             Heps             = _mm256_mul_pd(vfeps,H);
815             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
816             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
817             fvdw12           = _mm256_mul_pd(c12_00,FF);
818             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
819
820             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
821
822             fscal            = _mm256_add_pd(felec,fvdw);
823
824             fscal            = _mm256_and_pd(fscal,cutoff_mask);
825
826             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
827
828             /* Calculate temporary vectorial force */
829             tx               = _mm256_mul_pd(fscal,dx00);
830             ty               = _mm256_mul_pd(fscal,dy00);
831             tz               = _mm256_mul_pd(fscal,dz00);
832
833             /* Update vectorial force */
834             fix0             = _mm256_add_pd(fix0,tx);
835             fiy0             = _mm256_add_pd(fiy0,ty);
836             fiz0             = _mm256_add_pd(fiz0,tz);
837
838             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
839             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
840             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
841             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
842             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
843
844             }
845
846             /* Inner loop uses 58 flops */
847         }
848
849         /* End of innermost loop */
850
851         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
852                                                  f+i_coord_offset,fshift+i_shift_offset);
853
854         /* Increment number of inner iterations */
855         inneriter                  += j_index_end - j_index_start;
856
857         /* Outer loop uses 7 flops */
858     }
859
860     /* Increment number of outer iterations */
861     outeriter        += nri;
862
863     /* Update outer/inner flops */
864
865     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
866 }