Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm256_set1_pd(fr->ic->k_rf);
119     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
120     crf              = _mm256_set1_pd(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
127
128     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
129     rcutoff_scalar   = fr->ic->rcoulomb;
130     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
131     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm256_setzero_pd();
166         fiy0             = _mm256_setzero_pd();
167         fiz0             = _mm256_setzero_pd();
168
169         /* Load parameters for i particles */
170         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
171         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_pd();
175         vvdwsum          = _mm256_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                                  x+j_coord_offsetC,x+j_coord_offsetD,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm256_sub_pd(ix0,jx0);
198             dy00             = _mm256_sub_pd(iy0,jy0);
199             dz00             = _mm256_sub_pd(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
203
204             rinv00           = avx256_invsqrt_d(rsq00);
205
206             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
210                                                                  charge+jnrC+0,charge+jnrD+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213             vdwjidx0C        = 2*vdwtype[jnrC+0];
214             vdwjidx0D        = 2*vdwtype[jnrD+0];
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (gmx_mm256_any_lt(rsq00,rcutoff2))
221             {
222
223             r00              = _mm256_mul_pd(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm256_mul_pd(iq0,jq0);
227             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
228                                             vdwioffsetptr0+vdwjidx0B,
229                                             vdwioffsetptr0+vdwjidx0C,
230                                             vdwioffsetptr0+vdwjidx0D,
231                                             &c6_00,&c12_00);
232
233             /* Calculate table index by multiplying r with table scale and truncate to integer */
234             rt               = _mm256_mul_pd(r00,vftabscale);
235             vfitab           = _mm256_cvttpd_epi32(rt);
236             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
237             vfitab           = _mm_slli_epi32(vfitab,3);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
241             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
242
243             /* CUBIC SPLINE TABLE DISPERSION */
244             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
245             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
246             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
247             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
248             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
249             Heps             = _mm256_mul_pd(vfeps,H);
250             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
251             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
252             vvdw6            = _mm256_mul_pd(c6_00,VV);
253             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
254             fvdw6            = _mm256_mul_pd(c6_00,FF);
255
256             /* CUBIC SPLINE TABLE REPULSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
262             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
263             Heps             = _mm256_mul_pd(vfeps,H);
264             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
265             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
266             vvdw12           = _mm256_mul_pd(c12_00,VV);
267             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
268             fvdw12           = _mm256_mul_pd(c12_00,FF);
269             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
270             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
271
272             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm256_and_pd(velec,cutoff_mask);
276             velecsum         = _mm256_add_pd(velecsum,velec);
277             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
278             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm256_add_pd(felec,fvdw);
281
282             fscal            = _mm256_and_pd(fscal,cutoff_mask);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_pd(fscal,dx00);
286             ty               = _mm256_mul_pd(fscal,dy00);
287             tz               = _mm256_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_pd(fix0,tx);
291             fiy0             = _mm256_add_pd(fiy0,ty);
292             fiz0             = _mm256_add_pd(fiz0,tz);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299
300             }
301
302             /* Inner loop uses 72 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             /* Sign of each element will be negative for non-real atoms.
314              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
315              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
316              */
317             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
318
319             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
320             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
321             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
322
323             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
324             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
325             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
326             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
327             j_coord_offsetA  = DIM*jnrA;
328             j_coord_offsetB  = DIM*jnrB;
329             j_coord_offsetC  = DIM*jnrC;
330             j_coord_offsetD  = DIM*jnrD;
331
332             /* load j atom coordinates */
333             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
334                                                  x+j_coord_offsetC,x+j_coord_offsetD,
335                                                  &jx0,&jy0,&jz0);
336
337             /* Calculate displacement vector */
338             dx00             = _mm256_sub_pd(ix0,jx0);
339             dy00             = _mm256_sub_pd(iy0,jy0);
340             dz00             = _mm256_sub_pd(iz0,jz0);
341
342             /* Calculate squared distance and things based on it */
343             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
344
345             rinv00           = avx256_invsqrt_d(rsq00);
346
347             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
348
349             /* Load parameters for j particles */
350             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
351                                                                  charge+jnrC+0,charge+jnrD+0);
352             vdwjidx0A        = 2*vdwtype[jnrA+0];
353             vdwjidx0B        = 2*vdwtype[jnrB+0];
354             vdwjidx0C        = 2*vdwtype[jnrC+0];
355             vdwjidx0D        = 2*vdwtype[jnrD+0];
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm256_any_lt(rsq00,rcutoff2))
362             {
363
364             r00              = _mm256_mul_pd(rsq00,rinv00);
365             r00              = _mm256_andnot_pd(dummy_mask,r00);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq00             = _mm256_mul_pd(iq0,jq0);
369             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
370                                             vdwioffsetptr0+vdwjidx0B,
371                                             vdwioffsetptr0+vdwjidx0C,
372                                             vdwioffsetptr0+vdwjidx0D,
373                                             &c6_00,&c12_00);
374
375             /* Calculate table index by multiplying r with table scale and truncate to integer */
376             rt               = _mm256_mul_pd(r00,vftabscale);
377             vfitab           = _mm256_cvttpd_epi32(rt);
378             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
379             vfitab           = _mm_slli_epi32(vfitab,3);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
383             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
384
385             /* CUBIC SPLINE TABLE DISPERSION */
386             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
387             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
388             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
389             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
390             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
391             Heps             = _mm256_mul_pd(vfeps,H);
392             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
393             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
394             vvdw6            = _mm256_mul_pd(c6_00,VV);
395             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
396             fvdw6            = _mm256_mul_pd(c6_00,FF);
397
398             /* CUBIC SPLINE TABLE REPULSION */
399             vfitab           = _mm_add_epi32(vfitab,ifour);
400             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
401             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
402             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
403             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
404             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
405             Heps             = _mm256_mul_pd(vfeps,H);
406             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
407             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
408             vvdw12           = _mm256_mul_pd(c12_00,VV);
409             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
410             fvdw12           = _mm256_mul_pd(c12_00,FF);
411             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
412             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
413
414             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm256_and_pd(velec,cutoff_mask);
418             velec            = _mm256_andnot_pd(dummy_mask,velec);
419             velecsum         = _mm256_add_pd(velecsum,velec);
420             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
421             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
422             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
423
424             fscal            = _mm256_add_pd(felec,fvdw);
425
426             fscal            = _mm256_and_pd(fscal,cutoff_mask);
427
428             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm256_mul_pd(fscal,dx00);
432             ty               = _mm256_mul_pd(fscal,dy00);
433             tz               = _mm256_mul_pd(fscal,dz00);
434
435             /* Update vectorial force */
436             fix0             = _mm256_add_pd(fix0,tx);
437             fiy0             = _mm256_add_pd(fiy0,ty);
438             fiz0             = _mm256_add_pd(fiz0,tz);
439
440             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
441             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
442             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
443             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
444             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
445
446             }
447
448             /* Inner loop uses 73 flops */
449         }
450
451         /* End of innermost loop */
452
453         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
454                                                  f+i_coord_offset,fshift+i_shift_offset);
455
456         ggid                        = gid[iidx];
457         /* Update potential energies */
458         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
459         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 9 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
473 }
474 /*
475  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
476  * Electrostatics interaction: ReactionField
477  * VdW interaction:            CubicSplineTable
478  * Geometry:                   Particle-Particle
479  * Calculate force/pot:        Force
480  */
481 void
482 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
483                     (t_nblist                    * gmx_restrict       nlist,
484                      rvec                        * gmx_restrict          xx,
485                      rvec                        * gmx_restrict          ff,
486                      struct t_forcerec           * gmx_restrict          fr,
487                      t_mdatoms                   * gmx_restrict     mdatoms,
488                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
489                      t_nrnb                      * gmx_restrict        nrnb)
490 {
491     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
492      * just 0 for non-waters.
493      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
494      * jnr indices corresponding to data put in the four positions in the SIMD register.
495      */
496     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
497     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
498     int              jnrA,jnrB,jnrC,jnrD;
499     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
500     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
501     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
502     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
503     real             rcutoff_scalar;
504     real             *shiftvec,*fshift,*x,*f;
505     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
506     real             scratch[4*DIM];
507     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
508     real *           vdwioffsetptr0;
509     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
510     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
511     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
512     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
513     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
514     real             *charge;
515     int              nvdwtype;
516     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
517     int              *vdwtype;
518     real             *vdwparam;
519     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
520     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
521     __m128i          vfitab;
522     __m128i          ifour       = _mm_set1_epi32(4);
523     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
524     real             *vftab;
525     __m256d          dummy_mask,cutoff_mask;
526     __m128           tmpmask0,tmpmask1;
527     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
528     __m256d          one     = _mm256_set1_pd(1.0);
529     __m256d          two     = _mm256_set1_pd(2.0);
530     x                = xx[0];
531     f                = ff[0];
532
533     nri              = nlist->nri;
534     iinr             = nlist->iinr;
535     jindex           = nlist->jindex;
536     jjnr             = nlist->jjnr;
537     shiftidx         = nlist->shift;
538     gid              = nlist->gid;
539     shiftvec         = fr->shift_vec[0];
540     fshift           = fr->fshift[0];
541     facel            = _mm256_set1_pd(fr->ic->epsfac);
542     charge           = mdatoms->chargeA;
543     krf              = _mm256_set1_pd(fr->ic->k_rf);
544     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
545     crf              = _mm256_set1_pd(fr->ic->c_rf);
546     nvdwtype         = fr->ntype;
547     vdwparam         = fr->nbfp;
548     vdwtype          = mdatoms->typeA;
549
550     vftab            = kernel_data->table_vdw->data;
551     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
552
553     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
554     rcutoff_scalar   = fr->ic->rcoulomb;
555     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
556     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
557
558     /* Avoid stupid compiler warnings */
559     jnrA = jnrB = jnrC = jnrD = 0;
560     j_coord_offsetA = 0;
561     j_coord_offsetB = 0;
562     j_coord_offsetC = 0;
563     j_coord_offsetD = 0;
564
565     outeriter        = 0;
566     inneriter        = 0;
567
568     for(iidx=0;iidx<4*DIM;iidx++)
569     {
570         scratch[iidx] = 0.0;
571     }
572
573     /* Start outer loop over neighborlists */
574     for(iidx=0; iidx<nri; iidx++)
575     {
576         /* Load shift vector for this list */
577         i_shift_offset   = DIM*shiftidx[iidx];
578
579         /* Load limits for loop over neighbors */
580         j_index_start    = jindex[iidx];
581         j_index_end      = jindex[iidx+1];
582
583         /* Get outer coordinate index */
584         inr              = iinr[iidx];
585         i_coord_offset   = DIM*inr;
586
587         /* Load i particle coords and add shift vector */
588         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
589
590         fix0             = _mm256_setzero_pd();
591         fiy0             = _mm256_setzero_pd();
592         fiz0             = _mm256_setzero_pd();
593
594         /* Load parameters for i particles */
595         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
596         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
597
598         /* Start inner kernel loop */
599         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrA             = jjnr[jidx];
604             jnrB             = jjnr[jidx+1];
605             jnrC             = jjnr[jidx+2];
606             jnrD             = jjnr[jidx+3];
607             j_coord_offsetA  = DIM*jnrA;
608             j_coord_offsetB  = DIM*jnrB;
609             j_coord_offsetC  = DIM*jnrC;
610             j_coord_offsetD  = DIM*jnrD;
611
612             /* load j atom coordinates */
613             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
614                                                  x+j_coord_offsetC,x+j_coord_offsetD,
615                                                  &jx0,&jy0,&jz0);
616
617             /* Calculate displacement vector */
618             dx00             = _mm256_sub_pd(ix0,jx0);
619             dy00             = _mm256_sub_pd(iy0,jy0);
620             dz00             = _mm256_sub_pd(iz0,jz0);
621
622             /* Calculate squared distance and things based on it */
623             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
624
625             rinv00           = avx256_invsqrt_d(rsq00);
626
627             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
628
629             /* Load parameters for j particles */
630             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
631                                                                  charge+jnrC+0,charge+jnrD+0);
632             vdwjidx0A        = 2*vdwtype[jnrA+0];
633             vdwjidx0B        = 2*vdwtype[jnrB+0];
634             vdwjidx0C        = 2*vdwtype[jnrC+0];
635             vdwjidx0D        = 2*vdwtype[jnrD+0];
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm256_any_lt(rsq00,rcutoff2))
642             {
643
644             r00              = _mm256_mul_pd(rsq00,rinv00);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq00             = _mm256_mul_pd(iq0,jq0);
648             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
649                                             vdwioffsetptr0+vdwjidx0B,
650                                             vdwioffsetptr0+vdwjidx0C,
651                                             vdwioffsetptr0+vdwjidx0D,
652                                             &c6_00,&c12_00);
653
654             /* Calculate table index by multiplying r with table scale and truncate to integer */
655             rt               = _mm256_mul_pd(r00,vftabscale);
656             vfitab           = _mm256_cvttpd_epi32(rt);
657             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
658             vfitab           = _mm_slli_epi32(vfitab,3);
659
660             /* REACTION-FIELD ELECTROSTATICS */
661             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
662
663             /* CUBIC SPLINE TABLE DISPERSION */
664             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
665             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
666             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
667             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
668             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
669             Heps             = _mm256_mul_pd(vfeps,H);
670             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
671             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
672             fvdw6            = _mm256_mul_pd(c6_00,FF);
673
674             /* CUBIC SPLINE TABLE REPULSION */
675             vfitab           = _mm_add_epi32(vfitab,ifour);
676             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
677             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
678             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
679             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
680             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
681             Heps             = _mm256_mul_pd(vfeps,H);
682             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
683             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
684             fvdw12           = _mm256_mul_pd(c12_00,FF);
685             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
686
687             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
688
689             fscal            = _mm256_add_pd(felec,fvdw);
690
691             fscal            = _mm256_and_pd(fscal,cutoff_mask);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm256_mul_pd(fscal,dx00);
695             ty               = _mm256_mul_pd(fscal,dy00);
696             tz               = _mm256_mul_pd(fscal,dz00);
697
698             /* Update vectorial force */
699             fix0             = _mm256_add_pd(fix0,tx);
700             fiy0             = _mm256_add_pd(fiy0,ty);
701             fiz0             = _mm256_add_pd(fiz0,tz);
702
703             fjptrA             = f+j_coord_offsetA;
704             fjptrB             = f+j_coord_offsetB;
705             fjptrC             = f+j_coord_offsetC;
706             fjptrD             = f+j_coord_offsetD;
707             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
708
709             }
710
711             /* Inner loop uses 57 flops */
712         }
713
714         if(jidx<j_index_end)
715         {
716
717             /* Get j neighbor index, and coordinate index */
718             jnrlistA         = jjnr[jidx];
719             jnrlistB         = jjnr[jidx+1];
720             jnrlistC         = jjnr[jidx+2];
721             jnrlistD         = jjnr[jidx+3];
722             /* Sign of each element will be negative for non-real atoms.
723              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
724              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
725              */
726             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
727
728             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
729             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
730             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
731
732             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
733             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
734             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
735             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
736             j_coord_offsetA  = DIM*jnrA;
737             j_coord_offsetB  = DIM*jnrB;
738             j_coord_offsetC  = DIM*jnrC;
739             j_coord_offsetD  = DIM*jnrD;
740
741             /* load j atom coordinates */
742             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
743                                                  x+j_coord_offsetC,x+j_coord_offsetD,
744                                                  &jx0,&jy0,&jz0);
745
746             /* Calculate displacement vector */
747             dx00             = _mm256_sub_pd(ix0,jx0);
748             dy00             = _mm256_sub_pd(iy0,jy0);
749             dz00             = _mm256_sub_pd(iz0,jz0);
750
751             /* Calculate squared distance and things based on it */
752             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
753
754             rinv00           = avx256_invsqrt_d(rsq00);
755
756             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
757
758             /* Load parameters for j particles */
759             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
760                                                                  charge+jnrC+0,charge+jnrD+0);
761             vdwjidx0A        = 2*vdwtype[jnrA+0];
762             vdwjidx0B        = 2*vdwtype[jnrB+0];
763             vdwjidx0C        = 2*vdwtype[jnrC+0];
764             vdwjidx0D        = 2*vdwtype[jnrD+0];
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             if (gmx_mm256_any_lt(rsq00,rcutoff2))
771             {
772
773             r00              = _mm256_mul_pd(rsq00,rinv00);
774             r00              = _mm256_andnot_pd(dummy_mask,r00);
775
776             /* Compute parameters for interactions between i and j atoms */
777             qq00             = _mm256_mul_pd(iq0,jq0);
778             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
779                                             vdwioffsetptr0+vdwjidx0B,
780                                             vdwioffsetptr0+vdwjidx0C,
781                                             vdwioffsetptr0+vdwjidx0D,
782                                             &c6_00,&c12_00);
783
784             /* Calculate table index by multiplying r with table scale and truncate to integer */
785             rt               = _mm256_mul_pd(r00,vftabscale);
786             vfitab           = _mm256_cvttpd_epi32(rt);
787             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
788             vfitab           = _mm_slli_epi32(vfitab,3);
789
790             /* REACTION-FIELD ELECTROSTATICS */
791             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
792
793             /* CUBIC SPLINE TABLE DISPERSION */
794             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
795             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
796             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
797             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
798             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
799             Heps             = _mm256_mul_pd(vfeps,H);
800             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
801             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
802             fvdw6            = _mm256_mul_pd(c6_00,FF);
803
804             /* CUBIC SPLINE TABLE REPULSION */
805             vfitab           = _mm_add_epi32(vfitab,ifour);
806             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
807             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
808             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
809             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
810             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
811             Heps             = _mm256_mul_pd(vfeps,H);
812             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
813             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
814             fvdw12           = _mm256_mul_pd(c12_00,FF);
815             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
816
817             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
818
819             fscal            = _mm256_add_pd(felec,fvdw);
820
821             fscal            = _mm256_and_pd(fscal,cutoff_mask);
822
823             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
824
825             /* Calculate temporary vectorial force */
826             tx               = _mm256_mul_pd(fscal,dx00);
827             ty               = _mm256_mul_pd(fscal,dy00);
828             tz               = _mm256_mul_pd(fscal,dz00);
829
830             /* Update vectorial force */
831             fix0             = _mm256_add_pd(fix0,tx);
832             fiy0             = _mm256_add_pd(fiy0,ty);
833             fiz0             = _mm256_add_pd(fiz0,tz);
834
835             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
836             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
837             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
838             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
839             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
840
841             }
842
843             /* Inner loop uses 58 flops */
844         }
845
846         /* End of innermost loop */
847
848         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
849                                                  f+i_coord_offset,fshift+i_shift_offset);
850
851         /* Increment number of inner iterations */
852         inneriter                  += j_index_end - j_index_start;
853
854         /* Outer loop uses 7 flops */
855     }
856
857     /* Increment number of outer iterations */
858     outeriter        += nri;
859
860     /* Update outer/inner flops */
861
862     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
863 }