b528cc0d64448b63cef64ffec8787ac4f3ebdb0d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     int              nvdwtype;
90     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
94     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
95     __m256d          dummy_mask,cutoff_mask;
96     __m128           tmpmask0,tmpmask1;
97     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
98     __m256d          one     = _mm256_set1_pd(1.0);
99     __m256d          two     = _mm256_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm256_setzero_pd();
148         fiy0             = _mm256_setzero_pd();
149         fiz0             = _mm256_setzero_pd();
150
151         /* Load parameters for i particles */
152         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         vvdwsum          = _mm256_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                                  x+j_coord_offsetC,x+j_coord_offsetD,
174                                                  &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm256_sub_pd(ix0,jx0);
178             dy00             = _mm256_sub_pd(iy0,jy0);
179             dz00             = _mm256_sub_pd(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
183
184             rinvsq00         = gmx_mm256_inv_pd(rsq00);
185
186             /* Load parameters for j particles */
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189             vdwjidx0C        = 2*vdwtype[jnrC+0];
190             vdwjidx0D        = 2*vdwtype[jnrD+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             /* Compute parameters for interactions between i and j atoms */
197             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
198                                             vdwioffsetptr0+vdwjidx0B,
199                                             vdwioffsetptr0+vdwjidx0C,
200                                             vdwioffsetptr0+vdwjidx0D,
201                                             &c6_00,&c12_00);
202
203             /* LENNARD-JONES DISPERSION/REPULSION */
204
205             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
206             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
207             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
208             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
209             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
213
214             fscal            = fvdw;
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm256_mul_pd(fscal,dx00);
218             ty               = _mm256_mul_pd(fscal,dy00);
219             tz               = _mm256_mul_pd(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm256_add_pd(fix0,tx);
223             fiy0             = _mm256_add_pd(fiy0,ty);
224             fiz0             = _mm256_add_pd(fiz0,tz);
225
226             fjptrA             = f+j_coord_offsetA;
227             fjptrB             = f+j_coord_offsetB;
228             fjptrC             = f+j_coord_offsetC;
229             fjptrD             = f+j_coord_offsetD;
230             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
231
232             /* Inner loop uses 32 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             /* Get j neighbor index, and coordinate index */
239             jnrlistA         = jjnr[jidx];
240             jnrlistB         = jjnr[jidx+1];
241             jnrlistC         = jjnr[jidx+2];
242             jnrlistD         = jjnr[jidx+3];
243             /* Sign of each element will be negative for non-real atoms.
244              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
245              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
246              */
247             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
248
249             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
250             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
251             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
252
253             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
254             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
255             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
256             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
257             j_coord_offsetA  = DIM*jnrA;
258             j_coord_offsetB  = DIM*jnrB;
259             j_coord_offsetC  = DIM*jnrC;
260             j_coord_offsetD  = DIM*jnrD;
261
262             /* load j atom coordinates */
263             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
264                                                  x+j_coord_offsetC,x+j_coord_offsetD,
265                                                  &jx0,&jy0,&jz0);
266
267             /* Calculate displacement vector */
268             dx00             = _mm256_sub_pd(ix0,jx0);
269             dy00             = _mm256_sub_pd(iy0,jy0);
270             dz00             = _mm256_sub_pd(iz0,jz0);
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
274
275             rinvsq00         = gmx_mm256_inv_pd(rsq00);
276
277             /* Load parameters for j particles */
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279             vdwjidx0B        = 2*vdwtype[jnrB+0];
280             vdwjidx0C        = 2*vdwtype[jnrC+0];
281             vdwjidx0D        = 2*vdwtype[jnrD+0];
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             /* Compute parameters for interactions between i and j atoms */
288             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
289                                             vdwioffsetptr0+vdwjidx0B,
290                                             vdwioffsetptr0+vdwjidx0C,
291                                             vdwioffsetptr0+vdwjidx0D,
292                                             &c6_00,&c12_00);
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
297             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
298             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
299             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
300             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
304             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx00);
312             ty               = _mm256_mul_pd(fscal,dy00);
313             tz               = _mm256_mul_pd(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm256_add_pd(fix0,tx);
317             fiy0             = _mm256_add_pd(fiy0,ty);
318             fiz0             = _mm256_add_pd(fiz0,tz);
319
320             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
321             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
322             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
323             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
324             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325
326             /* Inner loop uses 32 flops */
327         }
328
329         /* End of innermost loop */
330
331         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
332                                                  f+i_coord_offset,fshift+i_shift_offset);
333
334         ggid                        = gid[iidx];
335         /* Update potential energies */
336         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
337
338         /* Increment number of inner iterations */
339         inneriter                  += j_index_end - j_index_start;
340
341         /* Outer loop uses 7 flops */
342     }
343
344     /* Increment number of outer iterations */
345     outeriter        += nri;
346
347     /* Update outer/inner flops */
348
349     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
350 }
351 /*
352  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
353  * Electrostatics interaction: None
354  * VdW interaction:            LennardJones
355  * Geometry:                   Particle-Particle
356  * Calculate force/pot:        Force
357  */
358 void
359 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
360                     (t_nblist                    * gmx_restrict       nlist,
361                      rvec                        * gmx_restrict          xx,
362                      rvec                        * gmx_restrict          ff,
363                      t_forcerec                  * gmx_restrict          fr,
364                      t_mdatoms                   * gmx_restrict     mdatoms,
365                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
366                      t_nrnb                      * gmx_restrict        nrnb)
367 {
368     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
369      * just 0 for non-waters.
370      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
371      * jnr indices corresponding to data put in the four positions in the SIMD register.
372      */
373     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
374     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
375     int              jnrA,jnrB,jnrC,jnrD;
376     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
377     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
378     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
379     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
380     real             rcutoff_scalar;
381     real             *shiftvec,*fshift,*x,*f;
382     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
383     real             scratch[4*DIM];
384     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
385     real *           vdwioffsetptr0;
386     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
387     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
388     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
389     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
390     int              nvdwtype;
391     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
392     int              *vdwtype;
393     real             *vdwparam;
394     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
395     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
396     __m256d          dummy_mask,cutoff_mask;
397     __m128           tmpmask0,tmpmask1;
398     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
399     __m256d          one     = _mm256_set1_pd(1.0);
400     __m256d          two     = _mm256_set1_pd(2.0);
401     x                = xx[0];
402     f                = ff[0];
403
404     nri              = nlist->nri;
405     iinr             = nlist->iinr;
406     jindex           = nlist->jindex;
407     jjnr             = nlist->jjnr;
408     shiftidx         = nlist->shift;
409     gid              = nlist->gid;
410     shiftvec         = fr->shift_vec[0];
411     fshift           = fr->fshift[0];
412     nvdwtype         = fr->ntype;
413     vdwparam         = fr->nbfp;
414     vdwtype          = mdatoms->typeA;
415
416     /* Avoid stupid compiler warnings */
417     jnrA = jnrB = jnrC = jnrD = 0;
418     j_coord_offsetA = 0;
419     j_coord_offsetB = 0;
420     j_coord_offsetC = 0;
421     j_coord_offsetD = 0;
422
423     outeriter        = 0;
424     inneriter        = 0;
425
426     for(iidx=0;iidx<4*DIM;iidx++)
427     {
428         scratch[iidx] = 0.0;
429     }
430
431     /* Start outer loop over neighborlists */
432     for(iidx=0; iidx<nri; iidx++)
433     {
434         /* Load shift vector for this list */
435         i_shift_offset   = DIM*shiftidx[iidx];
436
437         /* Load limits for loop over neighbors */
438         j_index_start    = jindex[iidx];
439         j_index_end      = jindex[iidx+1];
440
441         /* Get outer coordinate index */
442         inr              = iinr[iidx];
443         i_coord_offset   = DIM*inr;
444
445         /* Load i particle coords and add shift vector */
446         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
447
448         fix0             = _mm256_setzero_pd();
449         fiy0             = _mm256_setzero_pd();
450         fiz0             = _mm256_setzero_pd();
451
452         /* Load parameters for i particles */
453         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
454
455         /* Start inner kernel loop */
456         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrA             = jjnr[jidx];
461             jnrB             = jjnr[jidx+1];
462             jnrC             = jjnr[jidx+2];
463             jnrD             = jjnr[jidx+3];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466             j_coord_offsetC  = DIM*jnrC;
467             j_coord_offsetD  = DIM*jnrD;
468
469             /* load j atom coordinates */
470             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
471                                                  x+j_coord_offsetC,x+j_coord_offsetD,
472                                                  &jx0,&jy0,&jz0);
473
474             /* Calculate displacement vector */
475             dx00             = _mm256_sub_pd(ix0,jx0);
476             dy00             = _mm256_sub_pd(iy0,jy0);
477             dz00             = _mm256_sub_pd(iz0,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
481
482             rinvsq00         = gmx_mm256_inv_pd(rsq00);
483
484             /* Load parameters for j particles */
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487             vdwjidx0C        = 2*vdwtype[jnrC+0];
488             vdwjidx0D        = 2*vdwtype[jnrD+0];
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             /* Compute parameters for interactions between i and j atoms */
495             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
496                                             vdwioffsetptr0+vdwjidx0B,
497                                             vdwioffsetptr0+vdwjidx0C,
498                                             vdwioffsetptr0+vdwjidx0D,
499                                             &c6_00,&c12_00);
500
501             /* LENNARD-JONES DISPERSION/REPULSION */
502
503             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
504             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
505
506             fscal            = fvdw;
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm256_mul_pd(fscal,dx00);
510             ty               = _mm256_mul_pd(fscal,dy00);
511             tz               = _mm256_mul_pd(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm256_add_pd(fix0,tx);
515             fiy0             = _mm256_add_pd(fiy0,ty);
516             fiz0             = _mm256_add_pd(fiz0,tz);
517
518             fjptrA             = f+j_coord_offsetA;
519             fjptrB             = f+j_coord_offsetB;
520             fjptrC             = f+j_coord_offsetC;
521             fjptrD             = f+j_coord_offsetD;
522             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
523
524             /* Inner loop uses 27 flops */
525         }
526
527         if(jidx<j_index_end)
528         {
529
530             /* Get j neighbor index, and coordinate index */
531             jnrlistA         = jjnr[jidx];
532             jnrlistB         = jjnr[jidx+1];
533             jnrlistC         = jjnr[jidx+2];
534             jnrlistD         = jjnr[jidx+3];
535             /* Sign of each element will be negative for non-real atoms.
536              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
537              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
538              */
539             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
540
541             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
542             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
543             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
544
545             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
546             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
547             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
548             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551             j_coord_offsetC  = DIM*jnrC;
552             j_coord_offsetD  = DIM*jnrD;
553
554             /* load j atom coordinates */
555             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
556                                                  x+j_coord_offsetC,x+j_coord_offsetD,
557                                                  &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm256_sub_pd(ix0,jx0);
561             dy00             = _mm256_sub_pd(iy0,jy0);
562             dz00             = _mm256_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinvsq00         = gmx_mm256_inv_pd(rsq00);
568
569             /* Load parameters for j particles */
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572             vdwjidx0C        = 2*vdwtype[jnrC+0];
573             vdwjidx0D        = 2*vdwtype[jnrD+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             /* Compute parameters for interactions between i and j atoms */
580             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
581                                             vdwioffsetptr0+vdwjidx0B,
582                                             vdwioffsetptr0+vdwjidx0C,
583                                             vdwioffsetptr0+vdwjidx0D,
584                                             &c6_00,&c12_00);
585
586             /* LENNARD-JONES DISPERSION/REPULSION */
587
588             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
589             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
590
591             fscal            = fvdw;
592
593             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_pd(fscal,dx00);
597             ty               = _mm256_mul_pd(fscal,dy00);
598             tz               = _mm256_mul_pd(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm256_add_pd(fix0,tx);
602             fiy0             = _mm256_add_pd(fiy0,ty);
603             fiz0             = _mm256_add_pd(fiz0,tz);
604
605             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
606             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
607             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
608             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
609             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
610
611             /* Inner loop uses 27 flops */
612         }
613
614         /* End of innermost loop */
615
616         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
617                                                  f+i_coord_offset,fshift+i_shift_offset);
618
619         /* Increment number of inner iterations */
620         inneriter                  += j_index_end - j_index_start;
621
622         /* Outer loop uses 6 flops */
623     }
624
625     /* Increment number of outer iterations */
626     outeriter        += nri;
627
628     /* Update outer/inner flops */
629
630     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
631 }