Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm256_setzero_pd();
150         fiy0             = _mm256_setzero_pd();
151         fiz0             = _mm256_setzero_pd();
152
153         /* Load parameters for i particles */
154         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         vvdwsum          = _mm256_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             j_coord_offsetC  = DIM*jnrC;
171             j_coord_offsetD  = DIM*jnrD;
172
173             /* load j atom coordinates */
174             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                                  x+j_coord_offsetC,x+j_coord_offsetD,
176                                                  &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm256_sub_pd(ix0,jx0);
180             dy00             = _mm256_sub_pd(iy0,jy0);
181             dz00             = _mm256_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinvsq00         = gmx_mm256_inv_pd(rsq00);
187
188             /* Load parameters for j particles */
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191             vdwjidx0C        = 2*vdwtype[jnrC+0];
192             vdwjidx0D        = 2*vdwtype[jnrD+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             /* Compute parameters for interactions between i and j atoms */
199             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
200                                             vdwioffsetptr0+vdwjidx0B,
201                                             vdwioffsetptr0+vdwjidx0C,
202                                             vdwioffsetptr0+vdwjidx0D,
203                                             &c6_00,&c12_00);
204
205             /* LENNARD-JONES DISPERSION/REPULSION */
206
207             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
208             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
209             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
210             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
211             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
215
216             fscal            = fvdw;
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm256_mul_pd(fscal,dx00);
220             ty               = _mm256_mul_pd(fscal,dy00);
221             tz               = _mm256_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm256_add_pd(fix0,tx);
225             fiy0             = _mm256_add_pd(fiy0,ty);
226             fiz0             = _mm256_add_pd(fiz0,tz);
227
228             fjptrA             = f+j_coord_offsetA;
229             fjptrB             = f+j_coord_offsetB;
230             fjptrC             = f+j_coord_offsetC;
231             fjptrD             = f+j_coord_offsetD;
232             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
233
234             /* Inner loop uses 32 flops */
235         }
236
237         if(jidx<j_index_end)
238         {
239
240             /* Get j neighbor index, and coordinate index */
241             jnrlistA         = jjnr[jidx];
242             jnrlistB         = jjnr[jidx+1];
243             jnrlistC         = jjnr[jidx+2];
244             jnrlistD         = jjnr[jidx+3];
245             /* Sign of each element will be negative for non-real atoms.
246              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
247              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
248              */
249             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
250
251             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
252             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
253             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
254
255             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
256             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
257             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
258             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
259             j_coord_offsetA  = DIM*jnrA;
260             j_coord_offsetB  = DIM*jnrB;
261             j_coord_offsetC  = DIM*jnrC;
262             j_coord_offsetD  = DIM*jnrD;
263
264             /* load j atom coordinates */
265             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
266                                                  x+j_coord_offsetC,x+j_coord_offsetD,
267                                                  &jx0,&jy0,&jz0);
268
269             /* Calculate displacement vector */
270             dx00             = _mm256_sub_pd(ix0,jx0);
271             dy00             = _mm256_sub_pd(iy0,jy0);
272             dz00             = _mm256_sub_pd(iz0,jz0);
273
274             /* Calculate squared distance and things based on it */
275             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
276
277             rinvsq00         = gmx_mm256_inv_pd(rsq00);
278
279             /* Load parameters for j particles */
280             vdwjidx0A        = 2*vdwtype[jnrA+0];
281             vdwjidx0B        = 2*vdwtype[jnrB+0];
282             vdwjidx0C        = 2*vdwtype[jnrC+0];
283             vdwjidx0D        = 2*vdwtype[jnrD+0];
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             /* Compute parameters for interactions between i and j atoms */
290             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
291                                             vdwioffsetptr0+vdwjidx0B,
292                                             vdwioffsetptr0+vdwjidx0C,
293                                             vdwioffsetptr0+vdwjidx0D,
294                                             &c6_00,&c12_00);
295
296             /* LENNARD-JONES DISPERSION/REPULSION */
297
298             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
299             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
300             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
301             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
302             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
306             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_pd(fscal,dx00);
314             ty               = _mm256_mul_pd(fscal,dy00);
315             tz               = _mm256_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_pd(fix0,tx);
319             fiy0             = _mm256_add_pd(fiy0,ty);
320             fiz0             = _mm256_add_pd(fiz0,tz);
321
322             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
323             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
324             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
325             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
326             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
327
328             /* Inner loop uses 32 flops */
329         }
330
331         /* End of innermost loop */
332
333         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
334                                                  f+i_coord_offset,fshift+i_shift_offset);
335
336         ggid                        = gid[iidx];
337         /* Update potential energies */
338         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
339
340         /* Increment number of inner iterations */
341         inneriter                  += j_index_end - j_index_start;
342
343         /* Outer loop uses 7 flops */
344     }
345
346     /* Increment number of outer iterations */
347     outeriter        += nri;
348
349     /* Update outer/inner flops */
350
351     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
352 }
353 /*
354  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
355  * Electrostatics interaction: None
356  * VdW interaction:            LennardJones
357  * Geometry:                   Particle-Particle
358  * Calculate force/pot:        Force
359  */
360 void
361 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
362                     (t_nblist                    * gmx_restrict       nlist,
363                      rvec                        * gmx_restrict          xx,
364                      rvec                        * gmx_restrict          ff,
365                      t_forcerec                  * gmx_restrict          fr,
366                      t_mdatoms                   * gmx_restrict     mdatoms,
367                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
368                      t_nrnb                      * gmx_restrict        nrnb)
369 {
370     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
371      * just 0 for non-waters.
372      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
373      * jnr indices corresponding to data put in the four positions in the SIMD register.
374      */
375     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
376     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377     int              jnrA,jnrB,jnrC,jnrD;
378     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
379     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
380     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
381     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
382     real             rcutoff_scalar;
383     real             *shiftvec,*fshift,*x,*f;
384     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
385     real             scratch[4*DIM];
386     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
387     real *           vdwioffsetptr0;
388     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
389     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
390     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
391     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
392     int              nvdwtype;
393     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
394     int              *vdwtype;
395     real             *vdwparam;
396     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
397     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
398     __m256d          dummy_mask,cutoff_mask;
399     __m128           tmpmask0,tmpmask1;
400     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
401     __m256d          one     = _mm256_set1_pd(1.0);
402     __m256d          two     = _mm256_set1_pd(2.0);
403     x                = xx[0];
404     f                = ff[0];
405
406     nri              = nlist->nri;
407     iinr             = nlist->iinr;
408     jindex           = nlist->jindex;
409     jjnr             = nlist->jjnr;
410     shiftidx         = nlist->shift;
411     gid              = nlist->gid;
412     shiftvec         = fr->shift_vec[0];
413     fshift           = fr->fshift[0];
414     nvdwtype         = fr->ntype;
415     vdwparam         = fr->nbfp;
416     vdwtype          = mdatoms->typeA;
417
418     /* Avoid stupid compiler warnings */
419     jnrA = jnrB = jnrC = jnrD = 0;
420     j_coord_offsetA = 0;
421     j_coord_offsetB = 0;
422     j_coord_offsetC = 0;
423     j_coord_offsetD = 0;
424
425     outeriter        = 0;
426     inneriter        = 0;
427
428     for(iidx=0;iidx<4*DIM;iidx++)
429     {
430         scratch[iidx] = 0.0;
431     }
432
433     /* Start outer loop over neighborlists */
434     for(iidx=0; iidx<nri; iidx++)
435     {
436         /* Load shift vector for this list */
437         i_shift_offset   = DIM*shiftidx[iidx];
438
439         /* Load limits for loop over neighbors */
440         j_index_start    = jindex[iidx];
441         j_index_end      = jindex[iidx+1];
442
443         /* Get outer coordinate index */
444         inr              = iinr[iidx];
445         i_coord_offset   = DIM*inr;
446
447         /* Load i particle coords and add shift vector */
448         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
449
450         fix0             = _mm256_setzero_pd();
451         fiy0             = _mm256_setzero_pd();
452         fiz0             = _mm256_setzero_pd();
453
454         /* Load parameters for i particles */
455         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
456
457         /* Start inner kernel loop */
458         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrA             = jjnr[jidx];
463             jnrB             = jjnr[jidx+1];
464             jnrC             = jjnr[jidx+2];
465             jnrD             = jjnr[jidx+3];
466             j_coord_offsetA  = DIM*jnrA;
467             j_coord_offsetB  = DIM*jnrB;
468             j_coord_offsetC  = DIM*jnrC;
469             j_coord_offsetD  = DIM*jnrD;
470
471             /* load j atom coordinates */
472             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
473                                                  x+j_coord_offsetC,x+j_coord_offsetD,
474                                                  &jx0,&jy0,&jz0);
475
476             /* Calculate displacement vector */
477             dx00             = _mm256_sub_pd(ix0,jx0);
478             dy00             = _mm256_sub_pd(iy0,jy0);
479             dz00             = _mm256_sub_pd(iz0,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
483
484             rinvsq00         = gmx_mm256_inv_pd(rsq00);
485
486             /* Load parameters for j particles */
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489             vdwjidx0C        = 2*vdwtype[jnrC+0];
490             vdwjidx0D        = 2*vdwtype[jnrD+0];
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             /* Compute parameters for interactions between i and j atoms */
497             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
498                                             vdwioffsetptr0+vdwjidx0B,
499                                             vdwioffsetptr0+vdwjidx0C,
500                                             vdwioffsetptr0+vdwjidx0D,
501                                             &c6_00,&c12_00);
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
507
508             fscal            = fvdw;
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm256_mul_pd(fscal,dx00);
512             ty               = _mm256_mul_pd(fscal,dy00);
513             tz               = _mm256_mul_pd(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm256_add_pd(fix0,tx);
517             fiy0             = _mm256_add_pd(fiy0,ty);
518             fiz0             = _mm256_add_pd(fiz0,tz);
519
520             fjptrA             = f+j_coord_offsetA;
521             fjptrB             = f+j_coord_offsetB;
522             fjptrC             = f+j_coord_offsetC;
523             fjptrD             = f+j_coord_offsetD;
524             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
525
526             /* Inner loop uses 27 flops */
527         }
528
529         if(jidx<j_index_end)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrlistA         = jjnr[jidx];
534             jnrlistB         = jjnr[jidx+1];
535             jnrlistC         = jjnr[jidx+2];
536             jnrlistD         = jjnr[jidx+3];
537             /* Sign of each element will be negative for non-real atoms.
538              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
539              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
540              */
541             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
542
543             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
544             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
545             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
546
547             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
548             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
549             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
550             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
551             j_coord_offsetA  = DIM*jnrA;
552             j_coord_offsetB  = DIM*jnrB;
553             j_coord_offsetC  = DIM*jnrC;
554             j_coord_offsetD  = DIM*jnrD;
555
556             /* load j atom coordinates */
557             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
558                                                  x+j_coord_offsetC,x+j_coord_offsetD,
559                                                  &jx0,&jy0,&jz0);
560
561             /* Calculate displacement vector */
562             dx00             = _mm256_sub_pd(ix0,jx0);
563             dy00             = _mm256_sub_pd(iy0,jy0);
564             dz00             = _mm256_sub_pd(iz0,jz0);
565
566             /* Calculate squared distance and things based on it */
567             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
568
569             rinvsq00         = gmx_mm256_inv_pd(rsq00);
570
571             /* Load parameters for j particles */
572             vdwjidx0A        = 2*vdwtype[jnrA+0];
573             vdwjidx0B        = 2*vdwtype[jnrB+0];
574             vdwjidx0C        = 2*vdwtype[jnrC+0];
575             vdwjidx0D        = 2*vdwtype[jnrD+0];
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             /* Compute parameters for interactions between i and j atoms */
582             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
583                                             vdwioffsetptr0+vdwjidx0B,
584                                             vdwioffsetptr0+vdwjidx0C,
585                                             vdwioffsetptr0+vdwjidx0D,
586                                             &c6_00,&c12_00);
587
588             /* LENNARD-JONES DISPERSION/REPULSION */
589
590             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
591             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
592
593             fscal            = fvdw;
594
595             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm256_mul_pd(fscal,dx00);
599             ty               = _mm256_mul_pd(fscal,dy00);
600             tz               = _mm256_mul_pd(fscal,dz00);
601
602             /* Update vectorial force */
603             fix0             = _mm256_add_pd(fix0,tx);
604             fiy0             = _mm256_add_pd(fiy0,ty);
605             fiz0             = _mm256_add_pd(fiz0,tz);
606
607             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
608             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
609             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
610             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
611             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
612
613             /* Inner loop uses 27 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
619                                                  f+i_coord_offset,fshift+i_shift_offset);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 6 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
633 }