Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     int              nvdwtype;
76     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
77     int              *vdwtype;
78     real             *vdwparam;
79     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
80     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
81     __m256d          dummy_mask,cutoff_mask;
82     __m128           tmpmask0,tmpmask1;
83     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
84     __m256d          one     = _mm256_set1_pd(1.0);
85     __m256d          two     = _mm256_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     nvdwtype         = fr->ntype;
98     vdwparam         = fr->nbfp;
99     vdwtype          = mdatoms->typeA;
100
101     /* Avoid stupid compiler warnings */
102     jnrA = jnrB = jnrC = jnrD = 0;
103     j_coord_offsetA = 0;
104     j_coord_offsetB = 0;
105     j_coord_offsetC = 0;
106     j_coord_offsetD = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     for(iidx=0;iidx<4*DIM;iidx++)
112     {
113         scratch[iidx] = 0.0;
114     }
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
132
133         fix0             = _mm256_setzero_pd();
134         fiy0             = _mm256_setzero_pd();
135         fiz0             = _mm256_setzero_pd();
136
137         /* Load parameters for i particles */
138         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         vvdwsum          = _mm256_setzero_pd();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             jnrC             = jjnr[jidx+2];
151             jnrD             = jjnr[jidx+3];
152             j_coord_offsetA  = DIM*jnrA;
153             j_coord_offsetB  = DIM*jnrB;
154             j_coord_offsetC  = DIM*jnrC;
155             j_coord_offsetD  = DIM*jnrD;
156
157             /* load j atom coordinates */
158             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                                  x+j_coord_offsetC,x+j_coord_offsetD,
160                                                  &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm256_sub_pd(ix0,jx0);
164             dy00             = _mm256_sub_pd(iy0,jy0);
165             dz00             = _mm256_sub_pd(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
169
170             rinvsq00         = gmx_mm256_inv_pd(rsq00);
171
172             /* Load parameters for j particles */
173             vdwjidx0A        = 2*vdwtype[jnrA+0];
174             vdwjidx0B        = 2*vdwtype[jnrB+0];
175             vdwjidx0C        = 2*vdwtype[jnrC+0];
176             vdwjidx0D        = 2*vdwtype[jnrD+0];
177
178             /**************************
179              * CALCULATE INTERACTIONS *
180              **************************/
181
182             /* Compute parameters for interactions between i and j atoms */
183             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
184                                             vdwioffsetptr0+vdwjidx0B,
185                                             vdwioffsetptr0+vdwjidx0C,
186                                             vdwioffsetptr0+vdwjidx0D,
187                                             &c6_00,&c12_00);
188
189             /* LENNARD-JONES DISPERSION/REPULSION */
190
191             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
192             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
193             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
194             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
195             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
196
197             /* Update potential sum for this i atom from the interaction with this j atom. */
198             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
199
200             fscal            = fvdw;
201
202             /* Calculate temporary vectorial force */
203             tx               = _mm256_mul_pd(fscal,dx00);
204             ty               = _mm256_mul_pd(fscal,dy00);
205             tz               = _mm256_mul_pd(fscal,dz00);
206
207             /* Update vectorial force */
208             fix0             = _mm256_add_pd(fix0,tx);
209             fiy0             = _mm256_add_pd(fiy0,ty);
210             fiz0             = _mm256_add_pd(fiz0,tz);
211
212             fjptrA             = f+j_coord_offsetA;
213             fjptrB             = f+j_coord_offsetB;
214             fjptrC             = f+j_coord_offsetC;
215             fjptrD             = f+j_coord_offsetD;
216             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
217
218             /* Inner loop uses 32 flops */
219         }
220
221         if(jidx<j_index_end)
222         {
223
224             /* Get j neighbor index, and coordinate index */
225             jnrlistA         = jjnr[jidx];
226             jnrlistB         = jjnr[jidx+1];
227             jnrlistC         = jjnr[jidx+2];
228             jnrlistD         = jjnr[jidx+3];
229             /* Sign of each element will be negative for non-real atoms.
230              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
231              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
232              */
233             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
234
235             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
236             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
237             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
238
239             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
240             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
241             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
242             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
243             j_coord_offsetA  = DIM*jnrA;
244             j_coord_offsetB  = DIM*jnrB;
245             j_coord_offsetC  = DIM*jnrC;
246             j_coord_offsetD  = DIM*jnrD;
247
248             /* load j atom coordinates */
249             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
250                                                  x+j_coord_offsetC,x+j_coord_offsetD,
251                                                  &jx0,&jy0,&jz0);
252
253             /* Calculate displacement vector */
254             dx00             = _mm256_sub_pd(ix0,jx0);
255             dy00             = _mm256_sub_pd(iy0,jy0);
256             dz00             = _mm256_sub_pd(iz0,jz0);
257
258             /* Calculate squared distance and things based on it */
259             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
260
261             rinvsq00         = gmx_mm256_inv_pd(rsq00);
262
263             /* Load parameters for j particles */
264             vdwjidx0A        = 2*vdwtype[jnrA+0];
265             vdwjidx0B        = 2*vdwtype[jnrB+0];
266             vdwjidx0C        = 2*vdwtype[jnrC+0];
267             vdwjidx0D        = 2*vdwtype[jnrD+0];
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             /* Compute parameters for interactions between i and j atoms */
274             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             &c6_00,&c12_00);
279
280             /* LENNARD-JONES DISPERSION/REPULSION */
281
282             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
283             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
284             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
286             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
290             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_pd(fscal,dx00);
298             ty               = _mm256_mul_pd(fscal,dy00);
299             tz               = _mm256_mul_pd(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm256_add_pd(fix0,tx);
303             fiy0             = _mm256_add_pd(fiy0,ty);
304             fiz0             = _mm256_add_pd(fiz0,tz);
305
306             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
307             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
308             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
309             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
310             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
311
312             /* Inner loop uses 32 flops */
313         }
314
315         /* End of innermost loop */
316
317         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
318                                                  f+i_coord_offset,fshift+i_shift_offset);
319
320         ggid                        = gid[iidx];
321         /* Update potential energies */
322         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
323
324         /* Increment number of inner iterations */
325         inneriter                  += j_index_end - j_index_start;
326
327         /* Outer loop uses 7 flops */
328     }
329
330     /* Increment number of outer iterations */
331     outeriter        += nri;
332
333     /* Update outer/inner flops */
334
335     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
336 }
337 /*
338  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
339  * Electrostatics interaction: None
340  * VdW interaction:            LennardJones
341  * Geometry:                   Particle-Particle
342  * Calculate force/pot:        Force
343  */
344 void
345 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
346                     (t_nblist * gmx_restrict                nlist,
347                      rvec * gmx_restrict                    xx,
348                      rvec * gmx_restrict                    ff,
349                      t_forcerec * gmx_restrict              fr,
350                      t_mdatoms * gmx_restrict               mdatoms,
351                      nb_kernel_data_t * gmx_restrict        kernel_data,
352                      t_nrnb * gmx_restrict                  nrnb)
353 {
354     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
355      * just 0 for non-waters.
356      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
357      * jnr indices corresponding to data put in the four positions in the SIMD register.
358      */
359     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
360     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
361     int              jnrA,jnrB,jnrC,jnrD;
362     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
363     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
364     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
365     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
366     real             rcutoff_scalar;
367     real             *shiftvec,*fshift,*x,*f;
368     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
369     real             scratch[4*DIM];
370     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
371     real *           vdwioffsetptr0;
372     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
373     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
374     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
375     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
376     int              nvdwtype;
377     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
378     int              *vdwtype;
379     real             *vdwparam;
380     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
381     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
382     __m256d          dummy_mask,cutoff_mask;
383     __m128           tmpmask0,tmpmask1;
384     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
385     __m256d          one     = _mm256_set1_pd(1.0);
386     __m256d          two     = _mm256_set1_pd(2.0);
387     x                = xx[0];
388     f                = ff[0];
389
390     nri              = nlist->nri;
391     iinr             = nlist->iinr;
392     jindex           = nlist->jindex;
393     jjnr             = nlist->jjnr;
394     shiftidx         = nlist->shift;
395     gid              = nlist->gid;
396     shiftvec         = fr->shift_vec[0];
397     fshift           = fr->fshift[0];
398     nvdwtype         = fr->ntype;
399     vdwparam         = fr->nbfp;
400     vdwtype          = mdatoms->typeA;
401
402     /* Avoid stupid compiler warnings */
403     jnrA = jnrB = jnrC = jnrD = 0;
404     j_coord_offsetA = 0;
405     j_coord_offsetB = 0;
406     j_coord_offsetC = 0;
407     j_coord_offsetD = 0;
408
409     outeriter        = 0;
410     inneriter        = 0;
411
412     for(iidx=0;iidx<4*DIM;iidx++)
413     {
414         scratch[iidx] = 0.0;
415     }
416
417     /* Start outer loop over neighborlists */
418     for(iidx=0; iidx<nri; iidx++)
419     {
420         /* Load shift vector for this list */
421         i_shift_offset   = DIM*shiftidx[iidx];
422
423         /* Load limits for loop over neighbors */
424         j_index_start    = jindex[iidx];
425         j_index_end      = jindex[iidx+1];
426
427         /* Get outer coordinate index */
428         inr              = iinr[iidx];
429         i_coord_offset   = DIM*inr;
430
431         /* Load i particle coords and add shift vector */
432         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
433
434         fix0             = _mm256_setzero_pd();
435         fiy0             = _mm256_setzero_pd();
436         fiz0             = _mm256_setzero_pd();
437
438         /* Load parameters for i particles */
439         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
440
441         /* Start inner kernel loop */
442         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
443         {
444
445             /* Get j neighbor index, and coordinate index */
446             jnrA             = jjnr[jidx];
447             jnrB             = jjnr[jidx+1];
448             jnrC             = jjnr[jidx+2];
449             jnrD             = jjnr[jidx+3];
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452             j_coord_offsetC  = DIM*jnrC;
453             j_coord_offsetD  = DIM*jnrD;
454
455             /* load j atom coordinates */
456             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
457                                                  x+j_coord_offsetC,x+j_coord_offsetD,
458                                                  &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm256_sub_pd(ix0,jx0);
462             dy00             = _mm256_sub_pd(iy0,jy0);
463             dz00             = _mm256_sub_pd(iz0,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
467
468             rinvsq00         = gmx_mm256_inv_pd(rsq00);
469
470             /* Load parameters for j particles */
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472             vdwjidx0B        = 2*vdwtype[jnrB+0];
473             vdwjidx0C        = 2*vdwtype[jnrC+0];
474             vdwjidx0D        = 2*vdwtype[jnrD+0];
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             /* Compute parameters for interactions between i and j atoms */
481             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
482                                             vdwioffsetptr0+vdwjidx0B,
483                                             vdwioffsetptr0+vdwjidx0C,
484                                             vdwioffsetptr0+vdwjidx0D,
485                                             &c6_00,&c12_00);
486
487             /* LENNARD-JONES DISPERSION/REPULSION */
488
489             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
490             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
491
492             fscal            = fvdw;
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm256_mul_pd(fscal,dx00);
496             ty               = _mm256_mul_pd(fscal,dy00);
497             tz               = _mm256_mul_pd(fscal,dz00);
498
499             /* Update vectorial force */
500             fix0             = _mm256_add_pd(fix0,tx);
501             fiy0             = _mm256_add_pd(fiy0,ty);
502             fiz0             = _mm256_add_pd(fiz0,tz);
503
504             fjptrA             = f+j_coord_offsetA;
505             fjptrB             = f+j_coord_offsetB;
506             fjptrC             = f+j_coord_offsetC;
507             fjptrD             = f+j_coord_offsetD;
508             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
509
510             /* Inner loop uses 27 flops */
511         }
512
513         if(jidx<j_index_end)
514         {
515
516             /* Get j neighbor index, and coordinate index */
517             jnrlistA         = jjnr[jidx];
518             jnrlistB         = jjnr[jidx+1];
519             jnrlistC         = jjnr[jidx+2];
520             jnrlistD         = jjnr[jidx+3];
521             /* Sign of each element will be negative for non-real atoms.
522              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
523              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
524              */
525             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
526
527             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
528             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
529             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
530
531             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
532             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
533             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
534             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
535             j_coord_offsetA  = DIM*jnrA;
536             j_coord_offsetB  = DIM*jnrB;
537             j_coord_offsetC  = DIM*jnrC;
538             j_coord_offsetD  = DIM*jnrD;
539
540             /* load j atom coordinates */
541             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
542                                                  x+j_coord_offsetC,x+j_coord_offsetD,
543                                                  &jx0,&jy0,&jz0);
544
545             /* Calculate displacement vector */
546             dx00             = _mm256_sub_pd(ix0,jx0);
547             dy00             = _mm256_sub_pd(iy0,jy0);
548             dz00             = _mm256_sub_pd(iz0,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
552
553             rinvsq00         = gmx_mm256_inv_pd(rsq00);
554
555             /* Load parameters for j particles */
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557             vdwjidx0B        = 2*vdwtype[jnrB+0];
558             vdwjidx0C        = 2*vdwtype[jnrC+0];
559             vdwjidx0D        = 2*vdwtype[jnrD+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             /* Compute parameters for interactions between i and j atoms */
566             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
567                                             vdwioffsetptr0+vdwjidx0B,
568                                             vdwioffsetptr0+vdwjidx0C,
569                                             vdwioffsetptr0+vdwjidx0D,
570                                             &c6_00,&c12_00);
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
575             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
576
577             fscal            = fvdw;
578
579             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm256_mul_pd(fscal,dx00);
583             ty               = _mm256_mul_pd(fscal,dy00);
584             tz               = _mm256_mul_pd(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm256_add_pd(fix0,tx);
588             fiy0             = _mm256_add_pd(fiy0,ty);
589             fiz0             = _mm256_add_pd(fiz0,tz);
590
591             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
592             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
593             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
594             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
595             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
596
597             /* Inner loop uses 27 flops */
598         }
599
600         /* End of innermost loop */
601
602         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
603                                                  f+i_coord_offset,fshift+i_shift_offset);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 6 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
617 }