Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
93     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
94     __m256d          dummy_mask,cutoff_mask;
95     __m128           tmpmask0,tmpmask1;
96     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
97     __m256d          one     = _mm256_set1_pd(1.0);
98     __m256d          two     = _mm256_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm256_setzero_pd();
147         fiy0             = _mm256_setzero_pd();
148         fiz0             = _mm256_setzero_pd();
149
150         /* Load parameters for i particles */
151         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         vvdwsum          = _mm256_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             jnrC             = jjnr[jidx+2];
164             jnrD             = jjnr[jidx+3];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167             j_coord_offsetC  = DIM*jnrC;
168             j_coord_offsetD  = DIM*jnrD;
169
170             /* load j atom coordinates */
171             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                                  x+j_coord_offsetC,x+j_coord_offsetD,
173                                                  &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm256_sub_pd(ix0,jx0);
177             dy00             = _mm256_sub_pd(iy0,jy0);
178             dz00             = _mm256_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinvsq00         = avx256_inv_d(rsq00);
184
185             /* Load parameters for j particles */
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188             vdwjidx0C        = 2*vdwtype[jnrC+0];
189             vdwjidx0D        = 2*vdwtype[jnrD+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             /* Compute parameters for interactions between i and j atoms */
196             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
197                                             vdwioffsetptr0+vdwjidx0B,
198                                             vdwioffsetptr0+vdwjidx0C,
199                                             vdwioffsetptr0+vdwjidx0D,
200                                             &c6_00,&c12_00);
201
202             /* LENNARD-JONES DISPERSION/REPULSION */
203
204             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
205             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
206             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
207             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
208             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
209
210             /* Update potential sum for this i atom from the interaction with this j atom. */
211             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
212
213             fscal            = fvdw;
214
215             /* Calculate temporary vectorial force */
216             tx               = _mm256_mul_pd(fscal,dx00);
217             ty               = _mm256_mul_pd(fscal,dy00);
218             tz               = _mm256_mul_pd(fscal,dz00);
219
220             /* Update vectorial force */
221             fix0             = _mm256_add_pd(fix0,tx);
222             fiy0             = _mm256_add_pd(fiy0,ty);
223             fiz0             = _mm256_add_pd(fiz0,tz);
224
225             fjptrA             = f+j_coord_offsetA;
226             fjptrB             = f+j_coord_offsetB;
227             fjptrC             = f+j_coord_offsetC;
228             fjptrD             = f+j_coord_offsetD;
229             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
230
231             /* Inner loop uses 32 flops */
232         }
233
234         if(jidx<j_index_end)
235         {
236
237             /* Get j neighbor index, and coordinate index */
238             jnrlistA         = jjnr[jidx];
239             jnrlistB         = jjnr[jidx+1];
240             jnrlistC         = jjnr[jidx+2];
241             jnrlistD         = jjnr[jidx+3];
242             /* Sign of each element will be negative for non-real atoms.
243              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
244              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
245              */
246             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
247
248             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
249             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
250             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
251
252             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
253             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
254             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
255             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
256             j_coord_offsetA  = DIM*jnrA;
257             j_coord_offsetB  = DIM*jnrB;
258             j_coord_offsetC  = DIM*jnrC;
259             j_coord_offsetD  = DIM*jnrD;
260
261             /* load j atom coordinates */
262             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
263                                                  x+j_coord_offsetC,x+j_coord_offsetD,
264                                                  &jx0,&jy0,&jz0);
265
266             /* Calculate displacement vector */
267             dx00             = _mm256_sub_pd(ix0,jx0);
268             dy00             = _mm256_sub_pd(iy0,jy0);
269             dz00             = _mm256_sub_pd(iz0,jz0);
270
271             /* Calculate squared distance and things based on it */
272             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
273
274             rinvsq00         = avx256_inv_d(rsq00);
275
276             /* Load parameters for j particles */
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278             vdwjidx0B        = 2*vdwtype[jnrB+0];
279             vdwjidx0C        = 2*vdwtype[jnrC+0];
280             vdwjidx0D        = 2*vdwtype[jnrD+0];
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
288                                             vdwioffsetptr0+vdwjidx0B,
289                                             vdwioffsetptr0+vdwjidx0C,
290                                             vdwioffsetptr0+vdwjidx0D,
291                                             &c6_00,&c12_00);
292
293             /* LENNARD-JONES DISPERSION/REPULSION */
294
295             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
296             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
297             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
298             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
299             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
303             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
304
305             fscal            = fvdw;
306
307             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm256_mul_pd(fscal,dx00);
311             ty               = _mm256_mul_pd(fscal,dy00);
312             tz               = _mm256_mul_pd(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm256_add_pd(fix0,tx);
316             fiy0             = _mm256_add_pd(fiy0,ty);
317             fiz0             = _mm256_add_pd(fiz0,tz);
318
319             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
320             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
321             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
322             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
323             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
324
325             /* Inner loop uses 32 flops */
326         }
327
328         /* End of innermost loop */
329
330         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
331                                                  f+i_coord_offset,fshift+i_shift_offset);
332
333         ggid                        = gid[iidx];
334         /* Update potential energies */
335         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
336
337         /* Increment number of inner iterations */
338         inneriter                  += j_index_end - j_index_start;
339
340         /* Outer loop uses 7 flops */
341     }
342
343     /* Increment number of outer iterations */
344     outeriter        += nri;
345
346     /* Update outer/inner flops */
347
348     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
349 }
350 /*
351  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
352  * Electrostatics interaction: None
353  * VdW interaction:            LennardJones
354  * Geometry:                   Particle-Particle
355  * Calculate force/pot:        Force
356  */
357 void
358 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_256_double
359                     (t_nblist                    * gmx_restrict       nlist,
360                      rvec                        * gmx_restrict          xx,
361                      rvec                        * gmx_restrict          ff,
362                      struct t_forcerec           * gmx_restrict          fr,
363                      t_mdatoms                   * gmx_restrict     mdatoms,
364                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
365                      t_nrnb                      * gmx_restrict        nrnb)
366 {
367     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
368      * just 0 for non-waters.
369      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
370      * jnr indices corresponding to data put in the four positions in the SIMD register.
371      */
372     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
373     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
374     int              jnrA,jnrB,jnrC,jnrD;
375     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
376     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
377     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
382     real             scratch[4*DIM];
383     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
384     real *           vdwioffsetptr0;
385     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
386     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
387     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
388     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
389     int              nvdwtype;
390     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
391     int              *vdwtype;
392     real             *vdwparam;
393     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
394     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
395     __m256d          dummy_mask,cutoff_mask;
396     __m128           tmpmask0,tmpmask1;
397     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
398     __m256d          one     = _mm256_set1_pd(1.0);
399     __m256d          two     = _mm256_set1_pd(2.0);
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     nvdwtype         = fr->ntype;
412     vdwparam         = fr->nbfp;
413     vdwtype          = mdatoms->typeA;
414
415     /* Avoid stupid compiler warnings */
416     jnrA = jnrB = jnrC = jnrD = 0;
417     j_coord_offsetA = 0;
418     j_coord_offsetB = 0;
419     j_coord_offsetC = 0;
420     j_coord_offsetD = 0;
421
422     outeriter        = 0;
423     inneriter        = 0;
424
425     for(iidx=0;iidx<4*DIM;iidx++)
426     {
427         scratch[iidx] = 0.0;
428     }
429
430     /* Start outer loop over neighborlists */
431     for(iidx=0; iidx<nri; iidx++)
432     {
433         /* Load shift vector for this list */
434         i_shift_offset   = DIM*shiftidx[iidx];
435
436         /* Load limits for loop over neighbors */
437         j_index_start    = jindex[iidx];
438         j_index_end      = jindex[iidx+1];
439
440         /* Get outer coordinate index */
441         inr              = iinr[iidx];
442         i_coord_offset   = DIM*inr;
443
444         /* Load i particle coords and add shift vector */
445         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
446
447         fix0             = _mm256_setzero_pd();
448         fiy0             = _mm256_setzero_pd();
449         fiz0             = _mm256_setzero_pd();
450
451         /* Load parameters for i particles */
452         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
453
454         /* Start inner kernel loop */
455         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
456         {
457
458             /* Get j neighbor index, and coordinate index */
459             jnrA             = jjnr[jidx];
460             jnrB             = jjnr[jidx+1];
461             jnrC             = jjnr[jidx+2];
462             jnrD             = jjnr[jidx+3];
463             j_coord_offsetA  = DIM*jnrA;
464             j_coord_offsetB  = DIM*jnrB;
465             j_coord_offsetC  = DIM*jnrC;
466             j_coord_offsetD  = DIM*jnrD;
467
468             /* load j atom coordinates */
469             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
470                                                  x+j_coord_offsetC,x+j_coord_offsetD,
471                                                  &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm256_sub_pd(ix0,jx0);
475             dy00             = _mm256_sub_pd(iy0,jy0);
476             dz00             = _mm256_sub_pd(iz0,jz0);
477
478             /* Calculate squared distance and things based on it */
479             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
480
481             rinvsq00         = avx256_inv_d(rsq00);
482
483             /* Load parameters for j particles */
484             vdwjidx0A        = 2*vdwtype[jnrA+0];
485             vdwjidx0B        = 2*vdwtype[jnrB+0];
486             vdwjidx0C        = 2*vdwtype[jnrC+0];
487             vdwjidx0D        = 2*vdwtype[jnrD+0];
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             /* Compute parameters for interactions between i and j atoms */
494             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
495                                             vdwioffsetptr0+vdwjidx0B,
496                                             vdwioffsetptr0+vdwjidx0C,
497                                             vdwioffsetptr0+vdwjidx0D,
498                                             &c6_00,&c12_00);
499
500             /* LENNARD-JONES DISPERSION/REPULSION */
501
502             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
503             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
504
505             fscal            = fvdw;
506
507             /* Calculate temporary vectorial force */
508             tx               = _mm256_mul_pd(fscal,dx00);
509             ty               = _mm256_mul_pd(fscal,dy00);
510             tz               = _mm256_mul_pd(fscal,dz00);
511
512             /* Update vectorial force */
513             fix0             = _mm256_add_pd(fix0,tx);
514             fiy0             = _mm256_add_pd(fiy0,ty);
515             fiz0             = _mm256_add_pd(fiz0,tz);
516
517             fjptrA             = f+j_coord_offsetA;
518             fjptrB             = f+j_coord_offsetB;
519             fjptrC             = f+j_coord_offsetC;
520             fjptrD             = f+j_coord_offsetD;
521             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
522
523             /* Inner loop uses 27 flops */
524         }
525
526         if(jidx<j_index_end)
527         {
528
529             /* Get j neighbor index, and coordinate index */
530             jnrlistA         = jjnr[jidx];
531             jnrlistB         = jjnr[jidx+1];
532             jnrlistC         = jjnr[jidx+2];
533             jnrlistD         = jjnr[jidx+3];
534             /* Sign of each element will be negative for non-real atoms.
535              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
536              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
537              */
538             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
539
540             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
541             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
542             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
543
544             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
545             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
546             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
547             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550             j_coord_offsetC  = DIM*jnrC;
551             j_coord_offsetD  = DIM*jnrD;
552
553             /* load j atom coordinates */
554             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
555                                                  x+j_coord_offsetC,x+j_coord_offsetD,
556                                                  &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm256_sub_pd(ix0,jx0);
560             dy00             = _mm256_sub_pd(iy0,jy0);
561             dz00             = _mm256_sub_pd(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
565
566             rinvsq00         = avx256_inv_d(rsq00);
567
568             /* Load parameters for j particles */
569             vdwjidx0A        = 2*vdwtype[jnrA+0];
570             vdwjidx0B        = 2*vdwtype[jnrB+0];
571             vdwjidx0C        = 2*vdwtype[jnrC+0];
572             vdwjidx0D        = 2*vdwtype[jnrD+0];
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             /* Compute parameters for interactions between i and j atoms */
579             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
580                                             vdwioffsetptr0+vdwjidx0B,
581                                             vdwioffsetptr0+vdwjidx0C,
582                                             vdwioffsetptr0+vdwjidx0D,
583                                             &c6_00,&c12_00);
584
585             /* LENNARD-JONES DISPERSION/REPULSION */
586
587             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
588             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
589
590             fscal            = fvdw;
591
592             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm256_mul_pd(fscal,dx00);
596             ty               = _mm256_mul_pd(fscal,dy00);
597             tz               = _mm256_mul_pd(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm256_add_pd(fix0,tx);
601             fiy0             = _mm256_add_pd(fiy0,ty);
602             fiz0             = _mm256_add_pd(fiz0,tz);
603
604             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
609
610             /* Inner loop uses 27 flops */
611         }
612
613         /* End of innermost loop */
614
615         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
616                                                  f+i_coord_offset,fshift+i_shift_offset);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 6 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
630 }