Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
93     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
94     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     rcutoff_scalar   = fr->ic->rvdw;
117     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
118     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
119
120     rswitch_scalar   = fr->ic->rvdw_switch;
121     rswitch          = _mm256_set1_pd(rswitch_scalar);
122     /* Setup switch parameters */
123     d_scalar         = rcutoff_scalar-rswitch_scalar;
124     d                = _mm256_set1_pd(d_scalar);
125     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
126     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
127     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
128     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
129     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167
168         /* Load parameters for i particles */
169         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         vvdwsum          = _mm256_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                                  x+j_coord_offsetC,x+j_coord_offsetD,
191                                                  &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm256_sub_pd(ix0,jx0);
195             dy00             = _mm256_sub_pd(iy0,jy0);
196             dz00             = _mm256_sub_pd(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
200
201             rinv00           = avx256_invsqrt_d(rsq00);
202
203             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208             vdwjidx0C        = 2*vdwtype[jnrC+0];
209             vdwjidx0D        = 2*vdwtype[jnrD+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm256_any_lt(rsq00,rcutoff2))
216             {
217
218             r00              = _mm256_mul_pd(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
222                                             vdwioffsetptr0+vdwjidx0B,
223                                             vdwioffsetptr0+vdwjidx0C,
224                                             vdwioffsetptr0+vdwjidx0D,
225                                             &c6_00,&c12_00);
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
231             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
233             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
234
235             d                = _mm256_sub_pd(r00,rswitch);
236             d                = _mm256_max_pd(d,_mm256_setzero_pd());
237             d2               = _mm256_mul_pd(d,d);
238             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
239
240             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
241
242             /* Evaluate switch function */
243             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
244             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
245             vvdw             = _mm256_mul_pd(vvdw,sw);
246             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
250             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
251
252             fscal            = fvdw;
253
254             fscal            = _mm256_and_pd(fscal,cutoff_mask);
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm256_mul_pd(fscal,dx00);
258             ty               = _mm256_mul_pd(fscal,dy00);
259             tz               = _mm256_mul_pd(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm256_add_pd(fix0,tx);
263             fiy0             = _mm256_add_pd(fiy0,ty);
264             fiz0             = _mm256_add_pd(fiz0,tz);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
271
272             }
273
274             /* Inner loop uses 59 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             /* Get j neighbor index, and coordinate index */
281             jnrlistA         = jjnr[jidx];
282             jnrlistB         = jjnr[jidx+1];
283             jnrlistC         = jjnr[jidx+2];
284             jnrlistD         = jjnr[jidx+3];
285             /* Sign of each element will be negative for non-real atoms.
286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
287              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
288              */
289             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
290
291             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
292             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
293             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
294
295             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
296             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
297             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
298             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
299             j_coord_offsetA  = DIM*jnrA;
300             j_coord_offsetB  = DIM*jnrB;
301             j_coord_offsetC  = DIM*jnrC;
302             j_coord_offsetD  = DIM*jnrD;
303
304             /* load j atom coordinates */
305             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
306                                                  x+j_coord_offsetC,x+j_coord_offsetD,
307                                                  &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _mm256_sub_pd(ix0,jx0);
311             dy00             = _mm256_sub_pd(iy0,jy0);
312             dz00             = _mm256_sub_pd(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
316
317             rinv00           = avx256_invsqrt_d(rsq00);
318
319             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
320
321             /* Load parameters for j particles */
322             vdwjidx0A        = 2*vdwtype[jnrA+0];
323             vdwjidx0B        = 2*vdwtype[jnrB+0];
324             vdwjidx0C        = 2*vdwtype[jnrC+0];
325             vdwjidx0D        = 2*vdwtype[jnrD+0];
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm256_any_lt(rsq00,rcutoff2))
332             {
333
334             r00              = _mm256_mul_pd(rsq00,rinv00);
335             r00              = _mm256_andnot_pd(dummy_mask,r00);
336
337             /* Compute parameters for interactions between i and j atoms */
338             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
339                                             vdwioffsetptr0+vdwjidx0B,
340                                             vdwioffsetptr0+vdwjidx0C,
341                                             vdwioffsetptr0+vdwjidx0D,
342                                             &c6_00,&c12_00);
343
344             /* LENNARD-JONES DISPERSION/REPULSION */
345
346             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
347             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
348             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
349             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
350             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
351
352             d                = _mm256_sub_pd(r00,rswitch);
353             d                = _mm256_max_pd(d,_mm256_setzero_pd());
354             d2               = _mm256_mul_pd(d,d);
355             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
356
357             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
358
359             /* Evaluate switch function */
360             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
361             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
362             vvdw             = _mm256_mul_pd(vvdw,sw);
363             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
367             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
368             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
369
370             fscal            = fvdw;
371
372             fscal            = _mm256_and_pd(fscal,cutoff_mask);
373
374             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_pd(fscal,dx00);
378             ty               = _mm256_mul_pd(fscal,dy00);
379             tz               = _mm256_mul_pd(fscal,dz00);
380
381             /* Update vectorial force */
382             fix0             = _mm256_add_pd(fix0,tx);
383             fiy0             = _mm256_add_pd(fiy0,ty);
384             fiz0             = _mm256_add_pd(fiz0,tz);
385
386             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
387             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
388             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
389             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
390             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
391
392             }
393
394             /* Inner loop uses 60 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
400                                                  f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 7 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
421  * Electrostatics interaction: None
422  * VdW interaction:            LennardJones
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
428                     (t_nblist                    * gmx_restrict       nlist,
429                      rvec                        * gmx_restrict          xx,
430                      rvec                        * gmx_restrict          ff,
431                      struct t_forcerec           * gmx_restrict          fr,
432                      t_mdatoms                   * gmx_restrict     mdatoms,
433                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
434                      t_nrnb                      * gmx_restrict        nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
437      * just 0 for non-waters.
438      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB,jnrC,jnrD;
444     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
445     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
446     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             rcutoff_scalar;
449     real             *shiftvec,*fshift,*x,*f;
450     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
451     real             scratch[4*DIM];
452     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
453     real *           vdwioffsetptr0;
454     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
455     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
456     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
458     int              nvdwtype;
459     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
463     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
464     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
465     real             rswitch_scalar,d_scalar;
466     __m256d          dummy_mask,cutoff_mask;
467     __m128           tmpmask0,tmpmask1;
468     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
469     __m256d          one     = _mm256_set1_pd(1.0);
470     __m256d          two     = _mm256_set1_pd(2.0);
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485
486     rcutoff_scalar   = fr->ic->rvdw;
487     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
488     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
489
490     rswitch_scalar   = fr->ic->rvdw_switch;
491     rswitch          = _mm256_set1_pd(rswitch_scalar);
492     /* Setup switch parameters */
493     d_scalar         = rcutoff_scalar-rswitch_scalar;
494     d                = _mm256_set1_pd(d_scalar);
495     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
496     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
497     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
498     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
499     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
500     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = jnrC = jnrD = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506     j_coord_offsetC = 0;
507     j_coord_offsetD = 0;
508
509     outeriter        = 0;
510     inneriter        = 0;
511
512     for(iidx=0;iidx<4*DIM;iidx++)
513     {
514         scratch[iidx] = 0.0;
515     }
516
517     /* Start outer loop over neighborlists */
518     for(iidx=0; iidx<nri; iidx++)
519     {
520         /* Load shift vector for this list */
521         i_shift_offset   = DIM*shiftidx[iidx];
522
523         /* Load limits for loop over neighbors */
524         j_index_start    = jindex[iidx];
525         j_index_end      = jindex[iidx+1];
526
527         /* Get outer coordinate index */
528         inr              = iinr[iidx];
529         i_coord_offset   = DIM*inr;
530
531         /* Load i particle coords and add shift vector */
532         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
533
534         fix0             = _mm256_setzero_pd();
535         fiy0             = _mm256_setzero_pd();
536         fiz0             = _mm256_setzero_pd();
537
538         /* Load parameters for i particles */
539         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
540
541         /* Start inner kernel loop */
542         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
543         {
544
545             /* Get j neighbor index, and coordinate index */
546             jnrA             = jjnr[jidx];
547             jnrB             = jjnr[jidx+1];
548             jnrC             = jjnr[jidx+2];
549             jnrD             = jjnr[jidx+3];
550             j_coord_offsetA  = DIM*jnrA;
551             j_coord_offsetB  = DIM*jnrB;
552             j_coord_offsetC  = DIM*jnrC;
553             j_coord_offsetD  = DIM*jnrD;
554
555             /* load j atom coordinates */
556             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
557                                                  x+j_coord_offsetC,x+j_coord_offsetD,
558                                                  &jx0,&jy0,&jz0);
559
560             /* Calculate displacement vector */
561             dx00             = _mm256_sub_pd(ix0,jx0);
562             dy00             = _mm256_sub_pd(iy0,jy0);
563             dz00             = _mm256_sub_pd(iz0,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
567
568             rinv00           = avx256_invsqrt_d(rsq00);
569
570             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
571
572             /* Load parameters for j particles */
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574             vdwjidx0B        = 2*vdwtype[jnrB+0];
575             vdwjidx0C        = 2*vdwtype[jnrC+0];
576             vdwjidx0D        = 2*vdwtype[jnrD+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (gmx_mm256_any_lt(rsq00,rcutoff2))
583             {
584
585             r00              = _mm256_mul_pd(rsq00,rinv00);
586
587             /* Compute parameters for interactions between i and j atoms */
588             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
589                                             vdwioffsetptr0+vdwjidx0B,
590                                             vdwioffsetptr0+vdwjidx0C,
591                                             vdwioffsetptr0+vdwjidx0D,
592                                             &c6_00,&c12_00);
593
594             /* LENNARD-JONES DISPERSION/REPULSION */
595
596             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
597             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
598             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
599             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
600             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
601
602             d                = _mm256_sub_pd(r00,rswitch);
603             d                = _mm256_max_pd(d,_mm256_setzero_pd());
604             d2               = _mm256_mul_pd(d,d);
605             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
606
607             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
608
609             /* Evaluate switch function */
610             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
611             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
612             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
613
614             fscal            = fvdw;
615
616             fscal            = _mm256_and_pd(fscal,cutoff_mask);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_pd(fscal,dx00);
620             ty               = _mm256_mul_pd(fscal,dy00);
621             tz               = _mm256_mul_pd(fscal,dz00);
622
623             /* Update vectorial force */
624             fix0             = _mm256_add_pd(fix0,tx);
625             fiy0             = _mm256_add_pd(fiy0,ty);
626             fiz0             = _mm256_add_pd(fiz0,tz);
627
628             fjptrA             = f+j_coord_offsetA;
629             fjptrB             = f+j_coord_offsetB;
630             fjptrC             = f+j_coord_offsetC;
631             fjptrD             = f+j_coord_offsetD;
632             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
633
634             }
635
636             /* Inner loop uses 56 flops */
637         }
638
639         if(jidx<j_index_end)
640         {
641
642             /* Get j neighbor index, and coordinate index */
643             jnrlistA         = jjnr[jidx];
644             jnrlistB         = jjnr[jidx+1];
645             jnrlistC         = jjnr[jidx+2];
646             jnrlistD         = jjnr[jidx+3];
647             /* Sign of each element will be negative for non-real atoms.
648              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
649              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
650              */
651             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
652
653             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
654             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
655             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
656
657             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
658             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
659             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
660             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
661             j_coord_offsetA  = DIM*jnrA;
662             j_coord_offsetB  = DIM*jnrB;
663             j_coord_offsetC  = DIM*jnrC;
664             j_coord_offsetD  = DIM*jnrD;
665
666             /* load j atom coordinates */
667             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
668                                                  x+j_coord_offsetC,x+j_coord_offsetD,
669                                                  &jx0,&jy0,&jz0);
670
671             /* Calculate displacement vector */
672             dx00             = _mm256_sub_pd(ix0,jx0);
673             dy00             = _mm256_sub_pd(iy0,jy0);
674             dz00             = _mm256_sub_pd(iz0,jz0);
675
676             /* Calculate squared distance and things based on it */
677             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
678
679             rinv00           = avx256_invsqrt_d(rsq00);
680
681             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
682
683             /* Load parameters for j particles */
684             vdwjidx0A        = 2*vdwtype[jnrA+0];
685             vdwjidx0B        = 2*vdwtype[jnrB+0];
686             vdwjidx0C        = 2*vdwtype[jnrC+0];
687             vdwjidx0D        = 2*vdwtype[jnrD+0];
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             if (gmx_mm256_any_lt(rsq00,rcutoff2))
694             {
695
696             r00              = _mm256_mul_pd(rsq00,rinv00);
697             r00              = _mm256_andnot_pd(dummy_mask,r00);
698
699             /* Compute parameters for interactions between i and j atoms */
700             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
701                                             vdwioffsetptr0+vdwjidx0B,
702                                             vdwioffsetptr0+vdwjidx0C,
703                                             vdwioffsetptr0+vdwjidx0D,
704                                             &c6_00,&c12_00);
705
706             /* LENNARD-JONES DISPERSION/REPULSION */
707
708             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
709             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
710             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
711             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
712             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
713
714             d                = _mm256_sub_pd(r00,rswitch);
715             d                = _mm256_max_pd(d,_mm256_setzero_pd());
716             d2               = _mm256_mul_pd(d,d);
717             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
718
719             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
720
721             /* Evaluate switch function */
722             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
723             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
724             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
725
726             fscal            = fvdw;
727
728             fscal            = _mm256_and_pd(fscal,cutoff_mask);
729
730             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
731
732             /* Calculate temporary vectorial force */
733             tx               = _mm256_mul_pd(fscal,dx00);
734             ty               = _mm256_mul_pd(fscal,dy00);
735             tz               = _mm256_mul_pd(fscal,dz00);
736
737             /* Update vectorial force */
738             fix0             = _mm256_add_pd(fix0,tx);
739             fiy0             = _mm256_add_pd(fiy0,ty);
740             fiz0             = _mm256_add_pd(fiz0,tz);
741
742             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
743             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
744             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
745             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
746             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
747
748             }
749
750             /* Inner loop uses 57 flops */
751         }
752
753         /* End of innermost loop */
754
755         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
756                                                  f+i_coord_offset,fshift+i_shift_offset);
757
758         /* Increment number of inner iterations */
759         inneriter                  += j_index_end - j_index_start;
760
761         /* Outer loop uses 6 flops */
762     }
763
764     /* Increment number of outer iterations */
765     outeriter        += nri;
766
767     /* Update outer/inner flops */
768
769     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
770 }