cd5df143b18a4522d6ddc869284accd4682bac49
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
98     real             rswitch_scalar,d_scalar;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     rcutoff_scalar   = fr->rvdw;
120     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
121     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
122
123     rswitch_scalar   = fr->rvdw_switch;
124     rswitch          = _mm256_set1_pd(rswitch_scalar);
125     /* Setup switch parameters */
126     d_scalar         = rcutoff_scalar-rswitch_scalar;
127     d                = _mm256_set1_pd(d_scalar);
128     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
129     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
132     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170
171         /* Load parameters for i particles */
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         vvdwsum          = _mm256_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                                  x+j_coord_offsetC,x+j_coord_offsetD,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm256_sub_pd(ix0,jx0);
198             dy00             = _mm256_sub_pd(iy0,jy0);
199             dz00             = _mm256_sub_pd(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
203
204             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
205
206             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             if (gmx_mm256_any_lt(rsq00,rcutoff2))
219             {
220
221             r00              = _mm256_mul_pd(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
225                                             vdwioffsetptr0+vdwjidx0B,
226                                             vdwioffsetptr0+vdwjidx0C,
227                                             vdwioffsetptr0+vdwjidx0D,
228                                             &c6_00,&c12_00);
229
230             /* LENNARD-JONES DISPERSION/REPULSION */
231
232             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
233             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
234             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
235             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
236             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
237
238             d                = _mm256_sub_pd(r00,rswitch);
239             d                = _mm256_max_pd(d,_mm256_setzero_pd());
240             d2               = _mm256_mul_pd(d,d);
241             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
242
243             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
244
245             /* Evaluate switch function */
246             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
247             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
248             vvdw             = _mm256_mul_pd(vvdw,sw);
249             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
253             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
254
255             fscal            = fvdw;
256
257             fscal            = _mm256_and_pd(fscal,cutoff_mask);
258
259             /* Calculate temporary vectorial force */
260             tx               = _mm256_mul_pd(fscal,dx00);
261             ty               = _mm256_mul_pd(fscal,dy00);
262             tz               = _mm256_mul_pd(fscal,dz00);
263
264             /* Update vectorial force */
265             fix0             = _mm256_add_pd(fix0,tx);
266             fiy0             = _mm256_add_pd(fiy0,ty);
267             fiz0             = _mm256_add_pd(fiz0,tz);
268
269             fjptrA             = f+j_coord_offsetA;
270             fjptrB             = f+j_coord_offsetB;
271             fjptrC             = f+j_coord_offsetC;
272             fjptrD             = f+j_coord_offsetD;
273             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
274
275             }
276
277             /* Inner loop uses 59 flops */
278         }
279
280         if(jidx<j_index_end)
281         {
282
283             /* Get j neighbor index, and coordinate index */
284             jnrlistA         = jjnr[jidx];
285             jnrlistB         = jjnr[jidx+1];
286             jnrlistC         = jjnr[jidx+2];
287             jnrlistD         = jjnr[jidx+3];
288             /* Sign of each element will be negative for non-real atoms.
289              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
290              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
291              */
292             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
293
294             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
295             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
296             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
297
298             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
299             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
300             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
301             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
302             j_coord_offsetA  = DIM*jnrA;
303             j_coord_offsetB  = DIM*jnrB;
304             j_coord_offsetC  = DIM*jnrC;
305             j_coord_offsetD  = DIM*jnrD;
306
307             /* load j atom coordinates */
308             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
309                                                  x+j_coord_offsetC,x+j_coord_offsetD,
310                                                  &jx0,&jy0,&jz0);
311
312             /* Calculate displacement vector */
313             dx00             = _mm256_sub_pd(ix0,jx0);
314             dy00             = _mm256_sub_pd(iy0,jy0);
315             dz00             = _mm256_sub_pd(iz0,jz0);
316
317             /* Calculate squared distance and things based on it */
318             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
319
320             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
321
322             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
323
324             /* Load parameters for j particles */
325             vdwjidx0A        = 2*vdwtype[jnrA+0];
326             vdwjidx0B        = 2*vdwtype[jnrB+0];
327             vdwjidx0C        = 2*vdwtype[jnrC+0];
328             vdwjidx0D        = 2*vdwtype[jnrD+0];
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             if (gmx_mm256_any_lt(rsq00,rcutoff2))
335             {
336
337             r00              = _mm256_mul_pd(rsq00,rinv00);
338             r00              = _mm256_andnot_pd(dummy_mask,r00);
339
340             /* Compute parameters for interactions between i and j atoms */
341             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
342                                             vdwioffsetptr0+vdwjidx0B,
343                                             vdwioffsetptr0+vdwjidx0C,
344                                             vdwioffsetptr0+vdwjidx0D,
345                                             &c6_00,&c12_00);
346
347             /* LENNARD-JONES DISPERSION/REPULSION */
348
349             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
350             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
351             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
352             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
353             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
354
355             d                = _mm256_sub_pd(r00,rswitch);
356             d                = _mm256_max_pd(d,_mm256_setzero_pd());
357             d2               = _mm256_mul_pd(d,d);
358             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
359
360             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
361
362             /* Evaluate switch function */
363             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
364             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
365             vvdw             = _mm256_mul_pd(vvdw,sw);
366             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
370             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
371             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
372
373             fscal            = fvdw;
374
375             fscal            = _mm256_and_pd(fscal,cutoff_mask);
376
377             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_pd(fscal,dx00);
381             ty               = _mm256_mul_pd(fscal,dy00);
382             tz               = _mm256_mul_pd(fscal,dz00);
383
384             /* Update vectorial force */
385             fix0             = _mm256_add_pd(fix0,tx);
386             fiy0             = _mm256_add_pd(fiy0,ty);
387             fiz0             = _mm256_add_pd(fiz0,tz);
388
389             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
390             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
391             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
392             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
393             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
394
395             }
396
397             /* Inner loop uses 60 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
403                                                  f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 7 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
424  * Electrostatics interaction: None
425  * VdW interaction:            LennardJones
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      t_forcerec                  * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
440      * just 0 for non-waters.
441      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB,jnrC,jnrD;
447     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
448     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
449     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
450     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
451     real             rcutoff_scalar;
452     real             *shiftvec,*fshift,*x,*f;
453     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
454     real             scratch[4*DIM];
455     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
456     real *           vdwioffsetptr0;
457     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
459     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
460     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
461     int              nvdwtype;
462     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
463     int              *vdwtype;
464     real             *vdwparam;
465     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
466     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
467     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
468     real             rswitch_scalar,d_scalar;
469     __m256d          dummy_mask,cutoff_mask;
470     __m128           tmpmask0,tmpmask1;
471     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
472     __m256d          one     = _mm256_set1_pd(1.0);
473     __m256d          two     = _mm256_set1_pd(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     nvdwtype         = fr->ntype;
486     vdwparam         = fr->nbfp;
487     vdwtype          = mdatoms->typeA;
488
489     rcutoff_scalar   = fr->rvdw;
490     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
491     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
492
493     rswitch_scalar   = fr->rvdw_switch;
494     rswitch          = _mm256_set1_pd(rswitch_scalar);
495     /* Setup switch parameters */
496     d_scalar         = rcutoff_scalar-rswitch_scalar;
497     d                = _mm256_set1_pd(d_scalar);
498     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
499     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
500     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
501     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
502     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
503     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
504
505     /* Avoid stupid compiler warnings */
506     jnrA = jnrB = jnrC = jnrD = 0;
507     j_coord_offsetA = 0;
508     j_coord_offsetB = 0;
509     j_coord_offsetC = 0;
510     j_coord_offsetD = 0;
511
512     outeriter        = 0;
513     inneriter        = 0;
514
515     for(iidx=0;iidx<4*DIM;iidx++)
516     {
517         scratch[iidx] = 0.0;
518     }
519
520     /* Start outer loop over neighborlists */
521     for(iidx=0; iidx<nri; iidx++)
522     {
523         /* Load shift vector for this list */
524         i_shift_offset   = DIM*shiftidx[iidx];
525
526         /* Load limits for loop over neighbors */
527         j_index_start    = jindex[iidx];
528         j_index_end      = jindex[iidx+1];
529
530         /* Get outer coordinate index */
531         inr              = iinr[iidx];
532         i_coord_offset   = DIM*inr;
533
534         /* Load i particle coords and add shift vector */
535         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
536
537         fix0             = _mm256_setzero_pd();
538         fiy0             = _mm256_setzero_pd();
539         fiz0             = _mm256_setzero_pd();
540
541         /* Load parameters for i particles */
542         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
543
544         /* Start inner kernel loop */
545         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
546         {
547
548             /* Get j neighbor index, and coordinate index */
549             jnrA             = jjnr[jidx];
550             jnrB             = jjnr[jidx+1];
551             jnrC             = jjnr[jidx+2];
552             jnrD             = jjnr[jidx+3];
553             j_coord_offsetA  = DIM*jnrA;
554             j_coord_offsetB  = DIM*jnrB;
555             j_coord_offsetC  = DIM*jnrC;
556             j_coord_offsetD  = DIM*jnrD;
557
558             /* load j atom coordinates */
559             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
560                                                  x+j_coord_offsetC,x+j_coord_offsetD,
561                                                  &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm256_sub_pd(ix0,jx0);
565             dy00             = _mm256_sub_pd(iy0,jy0);
566             dz00             = _mm256_sub_pd(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
570
571             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
572
573             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
574
575             /* Load parameters for j particles */
576             vdwjidx0A        = 2*vdwtype[jnrA+0];
577             vdwjidx0B        = 2*vdwtype[jnrB+0];
578             vdwjidx0C        = 2*vdwtype[jnrC+0];
579             vdwjidx0D        = 2*vdwtype[jnrD+0];
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             if (gmx_mm256_any_lt(rsq00,rcutoff2))
586             {
587
588             r00              = _mm256_mul_pd(rsq00,rinv00);
589
590             /* Compute parameters for interactions between i and j atoms */
591             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
592                                             vdwioffsetptr0+vdwjidx0B,
593                                             vdwioffsetptr0+vdwjidx0C,
594                                             vdwioffsetptr0+vdwjidx0D,
595                                             &c6_00,&c12_00);
596
597             /* LENNARD-JONES DISPERSION/REPULSION */
598
599             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
600             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
601             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
602             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
603             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
604
605             d                = _mm256_sub_pd(r00,rswitch);
606             d                = _mm256_max_pd(d,_mm256_setzero_pd());
607             d2               = _mm256_mul_pd(d,d);
608             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
609
610             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
611
612             /* Evaluate switch function */
613             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
614             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
615             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
616
617             fscal            = fvdw;
618
619             fscal            = _mm256_and_pd(fscal,cutoff_mask);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm256_mul_pd(fscal,dx00);
623             ty               = _mm256_mul_pd(fscal,dy00);
624             tz               = _mm256_mul_pd(fscal,dz00);
625
626             /* Update vectorial force */
627             fix0             = _mm256_add_pd(fix0,tx);
628             fiy0             = _mm256_add_pd(fiy0,ty);
629             fiz0             = _mm256_add_pd(fiz0,tz);
630
631             fjptrA             = f+j_coord_offsetA;
632             fjptrB             = f+j_coord_offsetB;
633             fjptrC             = f+j_coord_offsetC;
634             fjptrD             = f+j_coord_offsetD;
635             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
636
637             }
638
639             /* Inner loop uses 56 flops */
640         }
641
642         if(jidx<j_index_end)
643         {
644
645             /* Get j neighbor index, and coordinate index */
646             jnrlistA         = jjnr[jidx];
647             jnrlistB         = jjnr[jidx+1];
648             jnrlistC         = jjnr[jidx+2];
649             jnrlistD         = jjnr[jidx+3];
650             /* Sign of each element will be negative for non-real atoms.
651              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
652              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
653              */
654             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
655
656             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
657             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
658             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
659
660             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
661             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
662             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
663             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
664             j_coord_offsetA  = DIM*jnrA;
665             j_coord_offsetB  = DIM*jnrB;
666             j_coord_offsetC  = DIM*jnrC;
667             j_coord_offsetD  = DIM*jnrD;
668
669             /* load j atom coordinates */
670             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
671                                                  x+j_coord_offsetC,x+j_coord_offsetD,
672                                                  &jx0,&jy0,&jz0);
673
674             /* Calculate displacement vector */
675             dx00             = _mm256_sub_pd(ix0,jx0);
676             dy00             = _mm256_sub_pd(iy0,jy0);
677             dz00             = _mm256_sub_pd(iz0,jz0);
678
679             /* Calculate squared distance and things based on it */
680             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
681
682             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
683
684             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
685
686             /* Load parameters for j particles */
687             vdwjidx0A        = 2*vdwtype[jnrA+0];
688             vdwjidx0B        = 2*vdwtype[jnrB+0];
689             vdwjidx0C        = 2*vdwtype[jnrC+0];
690             vdwjidx0D        = 2*vdwtype[jnrD+0];
691
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             if (gmx_mm256_any_lt(rsq00,rcutoff2))
697             {
698
699             r00              = _mm256_mul_pd(rsq00,rinv00);
700             r00              = _mm256_andnot_pd(dummy_mask,r00);
701
702             /* Compute parameters for interactions between i and j atoms */
703             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
704                                             vdwioffsetptr0+vdwjidx0B,
705                                             vdwioffsetptr0+vdwjidx0C,
706                                             vdwioffsetptr0+vdwjidx0D,
707                                             &c6_00,&c12_00);
708
709             /* LENNARD-JONES DISPERSION/REPULSION */
710
711             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
712             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
713             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
714             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
715             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
716
717             d                = _mm256_sub_pd(r00,rswitch);
718             d                = _mm256_max_pd(d,_mm256_setzero_pd());
719             d2               = _mm256_mul_pd(d,d);
720             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
721
722             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
723
724             /* Evaluate switch function */
725             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
726             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
727             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
728
729             fscal            = fvdw;
730
731             fscal            = _mm256_and_pd(fscal,cutoff_mask);
732
733             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
734
735             /* Calculate temporary vectorial force */
736             tx               = _mm256_mul_pd(fscal,dx00);
737             ty               = _mm256_mul_pd(fscal,dy00);
738             tz               = _mm256_mul_pd(fscal,dz00);
739
740             /* Update vectorial force */
741             fix0             = _mm256_add_pd(fix0,tx);
742             fiy0             = _mm256_add_pd(fiy0,ty);
743             fiz0             = _mm256_add_pd(fiz0,tz);
744
745             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
746             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
747             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
748             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
749             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
750
751             }
752
753             /* Inner loop uses 57 flops */
754         }
755
756         /* End of innermost loop */
757
758         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
759                                                  f+i_coord_offset,fshift+i_shift_offset);
760
761         /* Increment number of inner iterations */
762         inneriter                  += j_index_end - j_index_start;
763
764         /* Outer loop uses 6 flops */
765     }
766
767     /* Increment number of outer iterations */
768     outeriter        += nri;
769
770     /* Update outer/inner flops */
771
772     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
773 }