Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     int              nvdwtype;
90     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
94     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
95     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     rcutoff_scalar   = fr->rvdw;
118     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
119     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
120
121     rswitch_scalar   = fr->rvdw_switch;
122     rswitch          = _mm256_set1_pd(rswitch_scalar);
123     /* Setup switch parameters */
124     d_scalar         = rcutoff_scalar-rswitch_scalar;
125     d                = _mm256_set1_pd(d_scalar);
126     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
127     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
130     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm256_setzero_pd();
166         fiy0             = _mm256_setzero_pd();
167         fiz0             = _mm256_setzero_pd();
168
169         /* Load parameters for i particles */
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         vvdwsum          = _mm256_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_pd(ix0,jx0);
196             dy00             = _mm256_sub_pd(iy0,jy0);
197             dz00             = _mm256_sub_pd(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
203
204             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm256_any_lt(rsq00,rcutoff2))
217             {
218
219             r00              = _mm256_mul_pd(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
223                                             vdwioffsetptr0+vdwjidx0B,
224                                             vdwioffsetptr0+vdwjidx0C,
225                                             vdwioffsetptr0+vdwjidx0D,
226                                             &c6_00,&c12_00);
227
228             /* LENNARD-JONES DISPERSION/REPULSION */
229
230             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
231             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
232             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
233             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
234             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
235
236             d                = _mm256_sub_pd(r00,rswitch);
237             d                = _mm256_max_pd(d,_mm256_setzero_pd());
238             d2               = _mm256_mul_pd(d,d);
239             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
240
241             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
242
243             /* Evaluate switch function */
244             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
245             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
246             vvdw             = _mm256_mul_pd(vvdw,sw);
247             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
251             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             fscal            = _mm256_and_pd(fscal,cutoff_mask);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm256_mul_pd(fscal,dx00);
259             ty               = _mm256_mul_pd(fscal,dy00);
260             tz               = _mm256_mul_pd(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm256_add_pd(fix0,tx);
264             fiy0             = _mm256_add_pd(fiy0,ty);
265             fiz0             = _mm256_add_pd(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
272
273             }
274
275             /* Inner loop uses 59 flops */
276         }
277
278         if(jidx<j_index_end)
279         {
280
281             /* Get j neighbor index, and coordinate index */
282             jnrlistA         = jjnr[jidx];
283             jnrlistB         = jjnr[jidx+1];
284             jnrlistC         = jjnr[jidx+2];
285             jnrlistD         = jjnr[jidx+3];
286             /* Sign of each element will be negative for non-real atoms.
287              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
288              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
289              */
290             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
291
292             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
293             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
294             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
295
296             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
297             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
298             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
299             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
300             j_coord_offsetA  = DIM*jnrA;
301             j_coord_offsetB  = DIM*jnrB;
302             j_coord_offsetC  = DIM*jnrC;
303             j_coord_offsetD  = DIM*jnrD;
304
305             /* load j atom coordinates */
306             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
307                                                  x+j_coord_offsetC,x+j_coord_offsetD,
308                                                  &jx0,&jy0,&jz0);
309
310             /* Calculate displacement vector */
311             dx00             = _mm256_sub_pd(ix0,jx0);
312             dy00             = _mm256_sub_pd(iy0,jy0);
313             dz00             = _mm256_sub_pd(iz0,jz0);
314
315             /* Calculate squared distance and things based on it */
316             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
317
318             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
319
320             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
321
322             /* Load parameters for j particles */
323             vdwjidx0A        = 2*vdwtype[jnrA+0];
324             vdwjidx0B        = 2*vdwtype[jnrB+0];
325             vdwjidx0C        = 2*vdwtype[jnrC+0];
326             vdwjidx0D        = 2*vdwtype[jnrD+0];
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm256_any_lt(rsq00,rcutoff2))
333             {
334
335             r00              = _mm256_mul_pd(rsq00,rinv00);
336             r00              = _mm256_andnot_pd(dummy_mask,r00);
337
338             /* Compute parameters for interactions between i and j atoms */
339             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
340                                             vdwioffsetptr0+vdwjidx0B,
341                                             vdwioffsetptr0+vdwjidx0C,
342                                             vdwioffsetptr0+vdwjidx0D,
343                                             &c6_00,&c12_00);
344
345             /* LENNARD-JONES DISPERSION/REPULSION */
346
347             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
348             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
349             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
350             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
351             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
352
353             d                = _mm256_sub_pd(r00,rswitch);
354             d                = _mm256_max_pd(d,_mm256_setzero_pd());
355             d2               = _mm256_mul_pd(d,d);
356             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
357
358             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
359
360             /* Evaluate switch function */
361             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
362             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
363             vvdw             = _mm256_mul_pd(vvdw,sw);
364             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
368             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
369             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
370
371             fscal            = fvdw;
372
373             fscal            = _mm256_and_pd(fscal,cutoff_mask);
374
375             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_pd(fscal,dx00);
379             ty               = _mm256_mul_pd(fscal,dy00);
380             tz               = _mm256_mul_pd(fscal,dz00);
381
382             /* Update vectorial force */
383             fix0             = _mm256_add_pd(fix0,tx);
384             fiy0             = _mm256_add_pd(fiy0,ty);
385             fiz0             = _mm256_add_pd(fiz0,tz);
386
387             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
388             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
389             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
390             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
391             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
392
393             }
394
395             /* Inner loop uses 60 flops */
396         }
397
398         /* End of innermost loop */
399
400         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
401                                                  f+i_coord_offset,fshift+i_shift_offset);
402
403         ggid                        = gid[iidx];
404         /* Update potential energies */
405         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 7 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
422  * Electrostatics interaction: None
423  * VdW interaction:            LennardJones
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
429                     (t_nblist                    * gmx_restrict       nlist,
430                      rvec                        * gmx_restrict          xx,
431                      rvec                        * gmx_restrict          ff,
432                      t_forcerec                  * gmx_restrict          fr,
433                      t_mdatoms                   * gmx_restrict     mdatoms,
434                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
435                      t_nrnb                      * gmx_restrict        nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
438      * just 0 for non-waters.
439      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB,jnrC,jnrD;
445     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
446     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
447     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
448     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
449     real             rcutoff_scalar;
450     real             *shiftvec,*fshift,*x,*f;
451     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
452     real             scratch[4*DIM];
453     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
454     real *           vdwioffsetptr0;
455     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
456     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
457     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
458     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
459     int              nvdwtype;
460     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
461     int              *vdwtype;
462     real             *vdwparam;
463     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
464     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
465     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
466     real             rswitch_scalar,d_scalar;
467     __m256d          dummy_mask,cutoff_mask;
468     __m128           tmpmask0,tmpmask1;
469     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
470     __m256d          one     = _mm256_set1_pd(1.0);
471     __m256d          two     = _mm256_set1_pd(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     nvdwtype         = fr->ntype;
484     vdwparam         = fr->nbfp;
485     vdwtype          = mdatoms->typeA;
486
487     rcutoff_scalar   = fr->rvdw;
488     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
489     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
490
491     rswitch_scalar   = fr->rvdw_switch;
492     rswitch          = _mm256_set1_pd(rswitch_scalar);
493     /* Setup switch parameters */
494     d_scalar         = rcutoff_scalar-rswitch_scalar;
495     d                = _mm256_set1_pd(d_scalar);
496     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
497     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
498     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
499     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
500     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
501     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
502
503     /* Avoid stupid compiler warnings */
504     jnrA = jnrB = jnrC = jnrD = 0;
505     j_coord_offsetA = 0;
506     j_coord_offsetB = 0;
507     j_coord_offsetC = 0;
508     j_coord_offsetD = 0;
509
510     outeriter        = 0;
511     inneriter        = 0;
512
513     for(iidx=0;iidx<4*DIM;iidx++)
514     {
515         scratch[iidx] = 0.0;
516     }
517
518     /* Start outer loop over neighborlists */
519     for(iidx=0; iidx<nri; iidx++)
520     {
521         /* Load shift vector for this list */
522         i_shift_offset   = DIM*shiftidx[iidx];
523
524         /* Load limits for loop over neighbors */
525         j_index_start    = jindex[iidx];
526         j_index_end      = jindex[iidx+1];
527
528         /* Get outer coordinate index */
529         inr              = iinr[iidx];
530         i_coord_offset   = DIM*inr;
531
532         /* Load i particle coords and add shift vector */
533         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
534
535         fix0             = _mm256_setzero_pd();
536         fiy0             = _mm256_setzero_pd();
537         fiz0             = _mm256_setzero_pd();
538
539         /* Load parameters for i particles */
540         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
541
542         /* Start inner kernel loop */
543         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
544         {
545
546             /* Get j neighbor index, and coordinate index */
547             jnrA             = jjnr[jidx];
548             jnrB             = jjnr[jidx+1];
549             jnrC             = jjnr[jidx+2];
550             jnrD             = jjnr[jidx+3];
551             j_coord_offsetA  = DIM*jnrA;
552             j_coord_offsetB  = DIM*jnrB;
553             j_coord_offsetC  = DIM*jnrC;
554             j_coord_offsetD  = DIM*jnrD;
555
556             /* load j atom coordinates */
557             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
558                                                  x+j_coord_offsetC,x+j_coord_offsetD,
559                                                  &jx0,&jy0,&jz0);
560
561             /* Calculate displacement vector */
562             dx00             = _mm256_sub_pd(ix0,jx0);
563             dy00             = _mm256_sub_pd(iy0,jy0);
564             dz00             = _mm256_sub_pd(iz0,jz0);
565
566             /* Calculate squared distance and things based on it */
567             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
568
569             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
570
571             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
572
573             /* Load parameters for j particles */
574             vdwjidx0A        = 2*vdwtype[jnrA+0];
575             vdwjidx0B        = 2*vdwtype[jnrB+0];
576             vdwjidx0C        = 2*vdwtype[jnrC+0];
577             vdwjidx0D        = 2*vdwtype[jnrD+0];
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm256_any_lt(rsq00,rcutoff2))
584             {
585
586             r00              = _mm256_mul_pd(rsq00,rinv00);
587
588             /* Compute parameters for interactions between i and j atoms */
589             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
590                                             vdwioffsetptr0+vdwjidx0B,
591                                             vdwioffsetptr0+vdwjidx0C,
592                                             vdwioffsetptr0+vdwjidx0D,
593                                             &c6_00,&c12_00);
594
595             /* LENNARD-JONES DISPERSION/REPULSION */
596
597             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
598             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
599             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
600             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
601             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
602
603             d                = _mm256_sub_pd(r00,rswitch);
604             d                = _mm256_max_pd(d,_mm256_setzero_pd());
605             d2               = _mm256_mul_pd(d,d);
606             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
607
608             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
609
610             /* Evaluate switch function */
611             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
612             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
613             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
614
615             fscal            = fvdw;
616
617             fscal            = _mm256_and_pd(fscal,cutoff_mask);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm256_mul_pd(fscal,dx00);
621             ty               = _mm256_mul_pd(fscal,dy00);
622             tz               = _mm256_mul_pd(fscal,dz00);
623
624             /* Update vectorial force */
625             fix0             = _mm256_add_pd(fix0,tx);
626             fiy0             = _mm256_add_pd(fiy0,ty);
627             fiz0             = _mm256_add_pd(fiz0,tz);
628
629             fjptrA             = f+j_coord_offsetA;
630             fjptrB             = f+j_coord_offsetB;
631             fjptrC             = f+j_coord_offsetC;
632             fjptrD             = f+j_coord_offsetD;
633             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
634
635             }
636
637             /* Inner loop uses 56 flops */
638         }
639
640         if(jidx<j_index_end)
641         {
642
643             /* Get j neighbor index, and coordinate index */
644             jnrlistA         = jjnr[jidx];
645             jnrlistB         = jjnr[jidx+1];
646             jnrlistC         = jjnr[jidx+2];
647             jnrlistD         = jjnr[jidx+3];
648             /* Sign of each element will be negative for non-real atoms.
649              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
650              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
651              */
652             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
653
654             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
655             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
656             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
657
658             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
659             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
660             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
661             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
662             j_coord_offsetA  = DIM*jnrA;
663             j_coord_offsetB  = DIM*jnrB;
664             j_coord_offsetC  = DIM*jnrC;
665             j_coord_offsetD  = DIM*jnrD;
666
667             /* load j atom coordinates */
668             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
669                                                  x+j_coord_offsetC,x+j_coord_offsetD,
670                                                  &jx0,&jy0,&jz0);
671
672             /* Calculate displacement vector */
673             dx00             = _mm256_sub_pd(ix0,jx0);
674             dy00             = _mm256_sub_pd(iy0,jy0);
675             dz00             = _mm256_sub_pd(iz0,jz0);
676
677             /* Calculate squared distance and things based on it */
678             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
679
680             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
681
682             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
683
684             /* Load parameters for j particles */
685             vdwjidx0A        = 2*vdwtype[jnrA+0];
686             vdwjidx0B        = 2*vdwtype[jnrB+0];
687             vdwjidx0C        = 2*vdwtype[jnrC+0];
688             vdwjidx0D        = 2*vdwtype[jnrD+0];
689
690             /**************************
691              * CALCULATE INTERACTIONS *
692              **************************/
693
694             if (gmx_mm256_any_lt(rsq00,rcutoff2))
695             {
696
697             r00              = _mm256_mul_pd(rsq00,rinv00);
698             r00              = _mm256_andnot_pd(dummy_mask,r00);
699
700             /* Compute parameters for interactions between i and j atoms */
701             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
702                                             vdwioffsetptr0+vdwjidx0B,
703                                             vdwioffsetptr0+vdwjidx0C,
704                                             vdwioffsetptr0+vdwjidx0D,
705                                             &c6_00,&c12_00);
706
707             /* LENNARD-JONES DISPERSION/REPULSION */
708
709             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
710             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
711             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
712             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
713             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
714
715             d                = _mm256_sub_pd(r00,rswitch);
716             d                = _mm256_max_pd(d,_mm256_setzero_pd());
717             d2               = _mm256_mul_pd(d,d);
718             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
719
720             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
721
722             /* Evaluate switch function */
723             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
724             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
725             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
726
727             fscal            = fvdw;
728
729             fscal            = _mm256_and_pd(fscal,cutoff_mask);
730
731             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
732
733             /* Calculate temporary vectorial force */
734             tx               = _mm256_mul_pd(fscal,dx00);
735             ty               = _mm256_mul_pd(fscal,dy00);
736             tz               = _mm256_mul_pd(fscal,dz00);
737
738             /* Update vectorial force */
739             fix0             = _mm256_add_pd(fix0,tx);
740             fiy0             = _mm256_add_pd(fiy0,ty);
741             fiz0             = _mm256_add_pd(fiz0,tz);
742
743             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
744             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
745             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
746             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
747             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
748
749             }
750
751             /* Inner loop uses 57 flops */
752         }
753
754         /* End of innermost loop */
755
756         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
757                                                  f+i_coord_offset,fshift+i_shift_offset);
758
759         /* Increment number of inner iterations */
760         inneriter                  += j_index_end - j_index_start;
761
762         /* Outer loop uses 6 flops */
763     }
764
765     /* Increment number of outer iterations */
766     outeriter        += nri;
767
768     /* Update outer/inner flops */
769
770     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
771 }