a5e603680804822cbc7ff07eb73759fcb8fa9323
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     int              nvdwtype;
90     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
94     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
95     __m256d          dummy_mask,cutoff_mask;
96     __m128           tmpmask0,tmpmask1;
97     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
98     __m256d          one     = _mm256_set1_pd(1.0);
99     __m256d          two     = _mm256_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     rcutoff_scalar   = fr->rvdw;
116     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
117     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
118
119     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
120     rvdw             = _mm256_set1_pd(fr->rvdw);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm256_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                                  x+j_coord_offsetC,x+j_coord_offsetD,
181                                                  &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm256_sub_pd(ix0,jx0);
185             dy00             = _mm256_sub_pd(iy0,jy0);
186             dz00             = _mm256_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinvsq00         = gmx_mm256_inv_pd(rsq00);
192
193             /* Load parameters for j particles */
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm256_any_lt(rsq00,rcutoff2))
204             {
205
206             /* Compute parameters for interactions between i and j atoms */
207             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
208                                             vdwioffsetptr0+vdwjidx0B,
209                                             vdwioffsetptr0+vdwjidx0C,
210                                             vdwioffsetptr0+vdwjidx0D,
211                                             &c6_00,&c12_00);
212
213             /* LENNARD-JONES DISPERSION/REPULSION */
214
215             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
216             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
217             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
218             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
219                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
220             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
221
222             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
223
224             /* Update potential sum for this i atom from the interaction with this j atom. */
225             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
226             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
227
228             fscal            = fvdw;
229
230             fscal            = _mm256_and_pd(fscal,cutoff_mask);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm256_mul_pd(fscal,dx00);
234             ty               = _mm256_mul_pd(fscal,dy00);
235             tz               = _mm256_mul_pd(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm256_add_pd(fix0,tx);
239             fiy0             = _mm256_add_pd(fiy0,ty);
240             fiz0             = _mm256_add_pd(fiz0,tz);
241
242             fjptrA             = f+j_coord_offsetA;
243             fjptrB             = f+j_coord_offsetB;
244             fjptrC             = f+j_coord_offsetC;
245             fjptrD             = f+j_coord_offsetD;
246             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
247
248             }
249
250             /* Inner loop uses 41 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             /* Get j neighbor index, and coordinate index */
257             jnrlistA         = jjnr[jidx];
258             jnrlistB         = jjnr[jidx+1];
259             jnrlistC         = jjnr[jidx+2];
260             jnrlistD         = jjnr[jidx+3];
261             /* Sign of each element will be negative for non-real atoms.
262              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
263              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
264              */
265             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
266
267             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
268             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
269             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
270
271             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
272             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
273             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
274             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
275             j_coord_offsetA  = DIM*jnrA;
276             j_coord_offsetB  = DIM*jnrB;
277             j_coord_offsetC  = DIM*jnrC;
278             j_coord_offsetD  = DIM*jnrD;
279
280             /* load j atom coordinates */
281             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
282                                                  x+j_coord_offsetC,x+j_coord_offsetD,
283                                                  &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm256_sub_pd(ix0,jx0);
287             dy00             = _mm256_sub_pd(iy0,jy0);
288             dz00             = _mm256_sub_pd(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
292
293             rinvsq00         = gmx_mm256_inv_pd(rsq00);
294
295             /* Load parameters for j particles */
296             vdwjidx0A        = 2*vdwtype[jnrA+0];
297             vdwjidx0B        = 2*vdwtype[jnrB+0];
298             vdwjidx0C        = 2*vdwtype[jnrC+0];
299             vdwjidx0D        = 2*vdwtype[jnrD+0];
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm256_any_lt(rsq00,rcutoff2))
306             {
307
308             /* Compute parameters for interactions between i and j atoms */
309             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
310                                             vdwioffsetptr0+vdwjidx0B,
311                                             vdwioffsetptr0+vdwjidx0C,
312                                             vdwioffsetptr0+vdwjidx0D,
313                                             &c6_00,&c12_00);
314
315             /* LENNARD-JONES DISPERSION/REPULSION */
316
317             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
318             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
319             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
320             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
321                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
322             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
323
324             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
328             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
329             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
330
331             fscal            = fvdw;
332
333             fscal            = _mm256_and_pd(fscal,cutoff_mask);
334
335             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm256_mul_pd(fscal,dx00);
339             ty               = _mm256_mul_pd(fscal,dy00);
340             tz               = _mm256_mul_pd(fscal,dz00);
341
342             /* Update vectorial force */
343             fix0             = _mm256_add_pd(fix0,tx);
344             fiy0             = _mm256_add_pd(fiy0,ty);
345             fiz0             = _mm256_add_pd(fiz0,tz);
346
347             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
348             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
349             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
350             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
351             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
352
353             }
354
355             /* Inner loop uses 41 flops */
356         }
357
358         /* End of innermost loop */
359
360         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
361                                                  f+i_coord_offset,fshift+i_shift_offset);
362
363         ggid                        = gid[iidx];
364         /* Update potential energies */
365         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
366
367         /* Increment number of inner iterations */
368         inneriter                  += j_index_end - j_index_start;
369
370         /* Outer loop uses 7 flops */
371     }
372
373     /* Increment number of outer iterations */
374     outeriter        += nri;
375
376     /* Update outer/inner flops */
377
378     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
379 }
380 /*
381  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_double
382  * Electrostatics interaction: None
383  * VdW interaction:            LennardJones
384  * Geometry:                   Particle-Particle
385  * Calculate force/pot:        Force
386  */
387 void
388 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_double
389                     (t_nblist                    * gmx_restrict       nlist,
390                      rvec                        * gmx_restrict          xx,
391                      rvec                        * gmx_restrict          ff,
392                      t_forcerec                  * gmx_restrict          fr,
393                      t_mdatoms                   * gmx_restrict     mdatoms,
394                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
395                      t_nrnb                      * gmx_restrict        nrnb)
396 {
397     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
398      * just 0 for non-waters.
399      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
400      * jnr indices corresponding to data put in the four positions in the SIMD register.
401      */
402     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
403     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
404     int              jnrA,jnrB,jnrC,jnrD;
405     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
406     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
407     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
408     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
409     real             rcutoff_scalar;
410     real             *shiftvec,*fshift,*x,*f;
411     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
412     real             scratch[4*DIM];
413     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
414     real *           vdwioffsetptr0;
415     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
416     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
417     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
418     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
419     int              nvdwtype;
420     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
421     int              *vdwtype;
422     real             *vdwparam;
423     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
424     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
425     __m256d          dummy_mask,cutoff_mask;
426     __m128           tmpmask0,tmpmask1;
427     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
428     __m256d          one     = _mm256_set1_pd(1.0);
429     __m256d          two     = _mm256_set1_pd(2.0);
430     x                = xx[0];
431     f                = ff[0];
432
433     nri              = nlist->nri;
434     iinr             = nlist->iinr;
435     jindex           = nlist->jindex;
436     jjnr             = nlist->jjnr;
437     shiftidx         = nlist->shift;
438     gid              = nlist->gid;
439     shiftvec         = fr->shift_vec[0];
440     fshift           = fr->fshift[0];
441     nvdwtype         = fr->ntype;
442     vdwparam         = fr->nbfp;
443     vdwtype          = mdatoms->typeA;
444
445     rcutoff_scalar   = fr->rvdw;
446     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
447     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
448
449     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
450     rvdw             = _mm256_set1_pd(fr->rvdw);
451
452     /* Avoid stupid compiler warnings */
453     jnrA = jnrB = jnrC = jnrD = 0;
454     j_coord_offsetA = 0;
455     j_coord_offsetB = 0;
456     j_coord_offsetC = 0;
457     j_coord_offsetD = 0;
458
459     outeriter        = 0;
460     inneriter        = 0;
461
462     for(iidx=0;iidx<4*DIM;iidx++)
463     {
464         scratch[iidx] = 0.0;
465     }
466
467     /* Start outer loop over neighborlists */
468     for(iidx=0; iidx<nri; iidx++)
469     {
470         /* Load shift vector for this list */
471         i_shift_offset   = DIM*shiftidx[iidx];
472
473         /* Load limits for loop over neighbors */
474         j_index_start    = jindex[iidx];
475         j_index_end      = jindex[iidx+1];
476
477         /* Get outer coordinate index */
478         inr              = iinr[iidx];
479         i_coord_offset   = DIM*inr;
480
481         /* Load i particle coords and add shift vector */
482         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
483
484         fix0             = _mm256_setzero_pd();
485         fiy0             = _mm256_setzero_pd();
486         fiz0             = _mm256_setzero_pd();
487
488         /* Load parameters for i particles */
489         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
490
491         /* Start inner kernel loop */
492         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrA             = jjnr[jidx];
497             jnrB             = jjnr[jidx+1];
498             jnrC             = jjnr[jidx+2];
499             jnrD             = jjnr[jidx+3];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502             j_coord_offsetC  = DIM*jnrC;
503             j_coord_offsetD  = DIM*jnrD;
504
505             /* load j atom coordinates */
506             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
507                                                  x+j_coord_offsetC,x+j_coord_offsetD,
508                                                  &jx0,&jy0,&jz0);
509
510             /* Calculate displacement vector */
511             dx00             = _mm256_sub_pd(ix0,jx0);
512             dy00             = _mm256_sub_pd(iy0,jy0);
513             dz00             = _mm256_sub_pd(iz0,jz0);
514
515             /* Calculate squared distance and things based on it */
516             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
517
518             rinvsq00         = gmx_mm256_inv_pd(rsq00);
519
520             /* Load parameters for j particles */
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523             vdwjidx0C        = 2*vdwtype[jnrC+0];
524             vdwjidx0D        = 2*vdwtype[jnrD+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             if (gmx_mm256_any_lt(rsq00,rcutoff2))
531             {
532
533             /* Compute parameters for interactions between i and j atoms */
534             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
535                                             vdwioffsetptr0+vdwjidx0B,
536                                             vdwioffsetptr0+vdwjidx0C,
537                                             vdwioffsetptr0+vdwjidx0D,
538                                             &c6_00,&c12_00);
539
540             /* LENNARD-JONES DISPERSION/REPULSION */
541
542             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
543             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
544
545             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
546
547             fscal            = fvdw;
548
549             fscal            = _mm256_and_pd(fscal,cutoff_mask);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm256_mul_pd(fscal,dx00);
553             ty               = _mm256_mul_pd(fscal,dy00);
554             tz               = _mm256_mul_pd(fscal,dz00);
555
556             /* Update vectorial force */
557             fix0             = _mm256_add_pd(fix0,tx);
558             fiy0             = _mm256_add_pd(fiy0,ty);
559             fiz0             = _mm256_add_pd(fiz0,tz);
560
561             fjptrA             = f+j_coord_offsetA;
562             fjptrB             = f+j_coord_offsetB;
563             fjptrC             = f+j_coord_offsetC;
564             fjptrD             = f+j_coord_offsetD;
565             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
566
567             }
568
569             /* Inner loop uses 30 flops */
570         }
571
572         if(jidx<j_index_end)
573         {
574
575             /* Get j neighbor index, and coordinate index */
576             jnrlistA         = jjnr[jidx];
577             jnrlistB         = jjnr[jidx+1];
578             jnrlistC         = jjnr[jidx+2];
579             jnrlistD         = jjnr[jidx+3];
580             /* Sign of each element will be negative for non-real atoms.
581              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
582              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
583              */
584             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
585
586             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
587             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
588             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
589
590             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
591             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
592             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
593             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
594             j_coord_offsetA  = DIM*jnrA;
595             j_coord_offsetB  = DIM*jnrB;
596             j_coord_offsetC  = DIM*jnrC;
597             j_coord_offsetD  = DIM*jnrD;
598
599             /* load j atom coordinates */
600             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
601                                                  x+j_coord_offsetC,x+j_coord_offsetD,
602                                                  &jx0,&jy0,&jz0);
603
604             /* Calculate displacement vector */
605             dx00             = _mm256_sub_pd(ix0,jx0);
606             dy00             = _mm256_sub_pd(iy0,jy0);
607             dz00             = _mm256_sub_pd(iz0,jz0);
608
609             /* Calculate squared distance and things based on it */
610             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
611
612             rinvsq00         = gmx_mm256_inv_pd(rsq00);
613
614             /* Load parameters for j particles */
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616             vdwjidx0B        = 2*vdwtype[jnrB+0];
617             vdwjidx0C        = 2*vdwtype[jnrC+0];
618             vdwjidx0D        = 2*vdwtype[jnrD+0];
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             if (gmx_mm256_any_lt(rsq00,rcutoff2))
625             {
626
627             /* Compute parameters for interactions between i and j atoms */
628             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
629                                             vdwioffsetptr0+vdwjidx0B,
630                                             vdwioffsetptr0+vdwjidx0C,
631                                             vdwioffsetptr0+vdwjidx0D,
632                                             &c6_00,&c12_00);
633
634             /* LENNARD-JONES DISPERSION/REPULSION */
635
636             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
637             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
638
639             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
640
641             fscal            = fvdw;
642
643             fscal            = _mm256_and_pd(fscal,cutoff_mask);
644
645             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm256_mul_pd(fscal,dx00);
649             ty               = _mm256_mul_pd(fscal,dy00);
650             tz               = _mm256_mul_pd(fscal,dz00);
651
652             /* Update vectorial force */
653             fix0             = _mm256_add_pd(fix0,tx);
654             fiy0             = _mm256_add_pd(fiy0,ty);
655             fiz0             = _mm256_add_pd(fiz0,tz);
656
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
662
663             }
664
665             /* Inner loop uses 30 flops */
666         }
667
668         /* End of innermost loop */
669
670         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
671                                                  f+i_coord_offset,fshift+i_shift_offset);
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 6 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
685 }