Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     rcutoff_scalar   = fr->rvdw;
118     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
119     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
120
121     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
122     rvdw             = _mm256_set1_pd(fr->rvdw);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_pd();
157         fiy0             = _mm256_setzero_pd();
158         fiz0             = _mm256_setzero_pd();
159
160         /* Load parameters for i particles */
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         vvdwsum          = _mm256_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                                  x+j_coord_offsetC,x+j_coord_offsetD,
183                                                  &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm256_sub_pd(ix0,jx0);
187             dy00             = _mm256_sub_pd(iy0,jy0);
188             dz00             = _mm256_sub_pd(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
192
193             rinvsq00         = gmx_mm256_inv_pd(rsq00);
194
195             /* Load parameters for j particles */
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             if (gmx_mm256_any_lt(rsq00,rcutoff2))
206             {
207
208             /* Compute parameters for interactions between i and j atoms */
209             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
210                                             vdwioffsetptr0+vdwjidx0B,
211                                             vdwioffsetptr0+vdwjidx0C,
212                                             vdwioffsetptr0+vdwjidx0D,
213                                             &c6_00,&c12_00);
214
215             /* LENNARD-JONES DISPERSION/REPULSION */
216
217             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
218             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
219             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
220             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
221                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
222             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
223
224             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
228             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
229
230             fscal            = fvdw;
231
232             fscal            = _mm256_and_pd(fscal,cutoff_mask);
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm256_mul_pd(fscal,dx00);
236             ty               = _mm256_mul_pd(fscal,dy00);
237             tz               = _mm256_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm256_add_pd(fix0,tx);
241             fiy0             = _mm256_add_pd(fiy0,ty);
242             fiz0             = _mm256_add_pd(fiz0,tz);
243
244             fjptrA             = f+j_coord_offsetA;
245             fjptrB             = f+j_coord_offsetB;
246             fjptrC             = f+j_coord_offsetC;
247             fjptrD             = f+j_coord_offsetD;
248             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
249
250             }
251
252             /* Inner loop uses 41 flops */
253         }
254
255         if(jidx<j_index_end)
256         {
257
258             /* Get j neighbor index, and coordinate index */
259             jnrlistA         = jjnr[jidx];
260             jnrlistB         = jjnr[jidx+1];
261             jnrlistC         = jjnr[jidx+2];
262             jnrlistD         = jjnr[jidx+3];
263             /* Sign of each element will be negative for non-real atoms.
264              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
265              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
266              */
267             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
268
269             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
270             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
271             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
272
273             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
274             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
275             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
276             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
277             j_coord_offsetA  = DIM*jnrA;
278             j_coord_offsetB  = DIM*jnrB;
279             j_coord_offsetC  = DIM*jnrC;
280             j_coord_offsetD  = DIM*jnrD;
281
282             /* load j atom coordinates */
283             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
284                                                  x+j_coord_offsetC,x+j_coord_offsetD,
285                                                  &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm256_sub_pd(ix0,jx0);
289             dy00             = _mm256_sub_pd(iy0,jy0);
290             dz00             = _mm256_sub_pd(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
294
295             rinvsq00         = gmx_mm256_inv_pd(rsq00);
296
297             /* Load parameters for j particles */
298             vdwjidx0A        = 2*vdwtype[jnrA+0];
299             vdwjidx0B        = 2*vdwtype[jnrB+0];
300             vdwjidx0C        = 2*vdwtype[jnrC+0];
301             vdwjidx0D        = 2*vdwtype[jnrD+0];
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm256_any_lt(rsq00,rcutoff2))
308             {
309
310             /* Compute parameters for interactions between i and j atoms */
311             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
312                                             vdwioffsetptr0+vdwjidx0B,
313                                             vdwioffsetptr0+vdwjidx0C,
314                                             vdwioffsetptr0+vdwjidx0D,
315                                             &c6_00,&c12_00);
316
317             /* LENNARD-JONES DISPERSION/REPULSION */
318
319             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
320             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
321             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
322             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
323                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
324             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
325
326             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
330             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
331             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
332
333             fscal            = fvdw;
334
335             fscal            = _mm256_and_pd(fscal,cutoff_mask);
336
337             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_pd(fscal,dx00);
341             ty               = _mm256_mul_pd(fscal,dy00);
342             tz               = _mm256_mul_pd(fscal,dz00);
343
344             /* Update vectorial force */
345             fix0             = _mm256_add_pd(fix0,tx);
346             fiy0             = _mm256_add_pd(fiy0,ty);
347             fiz0             = _mm256_add_pd(fiz0,tz);
348
349             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
350             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
351             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
352             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
353             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
354
355             }
356
357             /* Inner loop uses 41 flops */
358         }
359
360         /* End of innermost loop */
361
362         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
363                                                  f+i_coord_offset,fshift+i_shift_offset);
364
365         ggid                        = gid[iidx];
366         /* Update potential energies */
367         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
368
369         /* Increment number of inner iterations */
370         inneriter                  += j_index_end - j_index_start;
371
372         /* Outer loop uses 7 flops */
373     }
374
375     /* Increment number of outer iterations */
376     outeriter        += nri;
377
378     /* Update outer/inner flops */
379
380     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
381 }
382 /*
383  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_double
384  * Electrostatics interaction: None
385  * VdW interaction:            LennardJones
386  * Geometry:                   Particle-Particle
387  * Calculate force/pot:        Force
388  */
389 void
390 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_256_double
391                     (t_nblist                    * gmx_restrict       nlist,
392                      rvec                        * gmx_restrict          xx,
393                      rvec                        * gmx_restrict          ff,
394                      t_forcerec                  * gmx_restrict          fr,
395                      t_mdatoms                   * gmx_restrict     mdatoms,
396                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
397                      t_nrnb                      * gmx_restrict        nrnb)
398 {
399     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
400      * just 0 for non-waters.
401      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
402      * jnr indices corresponding to data put in the four positions in the SIMD register.
403      */
404     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
405     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
406     int              jnrA,jnrB,jnrC,jnrD;
407     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
408     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
409     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
410     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
411     real             rcutoff_scalar;
412     real             *shiftvec,*fshift,*x,*f;
413     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
414     real             scratch[4*DIM];
415     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
416     real *           vdwioffsetptr0;
417     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
418     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
419     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
420     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
421     int              nvdwtype;
422     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
423     int              *vdwtype;
424     real             *vdwparam;
425     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
426     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
427     __m256d          dummy_mask,cutoff_mask;
428     __m128           tmpmask0,tmpmask1;
429     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
430     __m256d          one     = _mm256_set1_pd(1.0);
431     __m256d          two     = _mm256_set1_pd(2.0);
432     x                = xx[0];
433     f                = ff[0];
434
435     nri              = nlist->nri;
436     iinr             = nlist->iinr;
437     jindex           = nlist->jindex;
438     jjnr             = nlist->jjnr;
439     shiftidx         = nlist->shift;
440     gid              = nlist->gid;
441     shiftvec         = fr->shift_vec[0];
442     fshift           = fr->fshift[0];
443     nvdwtype         = fr->ntype;
444     vdwparam         = fr->nbfp;
445     vdwtype          = mdatoms->typeA;
446
447     rcutoff_scalar   = fr->rvdw;
448     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
449     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
450
451     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
452     rvdw             = _mm256_set1_pd(fr->rvdw);
453
454     /* Avoid stupid compiler warnings */
455     jnrA = jnrB = jnrC = jnrD = 0;
456     j_coord_offsetA = 0;
457     j_coord_offsetB = 0;
458     j_coord_offsetC = 0;
459     j_coord_offsetD = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     for(iidx=0;iidx<4*DIM;iidx++)
465     {
466         scratch[iidx] = 0.0;
467     }
468
469     /* Start outer loop over neighborlists */
470     for(iidx=0; iidx<nri; iidx++)
471     {
472         /* Load shift vector for this list */
473         i_shift_offset   = DIM*shiftidx[iidx];
474
475         /* Load limits for loop over neighbors */
476         j_index_start    = jindex[iidx];
477         j_index_end      = jindex[iidx+1];
478
479         /* Get outer coordinate index */
480         inr              = iinr[iidx];
481         i_coord_offset   = DIM*inr;
482
483         /* Load i particle coords and add shift vector */
484         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
485
486         fix0             = _mm256_setzero_pd();
487         fiy0             = _mm256_setzero_pd();
488         fiz0             = _mm256_setzero_pd();
489
490         /* Load parameters for i particles */
491         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             jnrC             = jjnr[jidx+2];
501             jnrD             = jjnr[jidx+3];
502             j_coord_offsetA  = DIM*jnrA;
503             j_coord_offsetB  = DIM*jnrB;
504             j_coord_offsetC  = DIM*jnrC;
505             j_coord_offsetD  = DIM*jnrD;
506
507             /* load j atom coordinates */
508             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
509                                                  x+j_coord_offsetC,x+j_coord_offsetD,
510                                                  &jx0,&jy0,&jz0);
511
512             /* Calculate displacement vector */
513             dx00             = _mm256_sub_pd(ix0,jx0);
514             dy00             = _mm256_sub_pd(iy0,jy0);
515             dz00             = _mm256_sub_pd(iz0,jz0);
516
517             /* Calculate squared distance and things based on it */
518             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
519
520             rinvsq00         = gmx_mm256_inv_pd(rsq00);
521
522             /* Load parameters for j particles */
523             vdwjidx0A        = 2*vdwtype[jnrA+0];
524             vdwjidx0B        = 2*vdwtype[jnrB+0];
525             vdwjidx0C        = 2*vdwtype[jnrC+0];
526             vdwjidx0D        = 2*vdwtype[jnrD+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (gmx_mm256_any_lt(rsq00,rcutoff2))
533             {
534
535             /* Compute parameters for interactions between i and j atoms */
536             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
537                                             vdwioffsetptr0+vdwjidx0B,
538                                             vdwioffsetptr0+vdwjidx0C,
539                                             vdwioffsetptr0+vdwjidx0D,
540                                             &c6_00,&c12_00);
541
542             /* LENNARD-JONES DISPERSION/REPULSION */
543
544             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
545             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
546
547             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
548
549             fscal            = fvdw;
550
551             fscal            = _mm256_and_pd(fscal,cutoff_mask);
552
553             /* Calculate temporary vectorial force */
554             tx               = _mm256_mul_pd(fscal,dx00);
555             ty               = _mm256_mul_pd(fscal,dy00);
556             tz               = _mm256_mul_pd(fscal,dz00);
557
558             /* Update vectorial force */
559             fix0             = _mm256_add_pd(fix0,tx);
560             fiy0             = _mm256_add_pd(fiy0,ty);
561             fiz0             = _mm256_add_pd(fiz0,tz);
562
563             fjptrA             = f+j_coord_offsetA;
564             fjptrB             = f+j_coord_offsetB;
565             fjptrC             = f+j_coord_offsetC;
566             fjptrD             = f+j_coord_offsetD;
567             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
568
569             }
570
571             /* Inner loop uses 30 flops */
572         }
573
574         if(jidx<j_index_end)
575         {
576
577             /* Get j neighbor index, and coordinate index */
578             jnrlistA         = jjnr[jidx];
579             jnrlistB         = jjnr[jidx+1];
580             jnrlistC         = jjnr[jidx+2];
581             jnrlistD         = jjnr[jidx+3];
582             /* Sign of each element will be negative for non-real atoms.
583              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
584              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
585              */
586             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
587
588             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
589             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
590             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
591
592             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
593             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
594             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
595             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598             j_coord_offsetC  = DIM*jnrC;
599             j_coord_offsetD  = DIM*jnrD;
600
601             /* load j atom coordinates */
602             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
603                                                  x+j_coord_offsetC,x+j_coord_offsetD,
604                                                  &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm256_sub_pd(ix0,jx0);
608             dy00             = _mm256_sub_pd(iy0,jy0);
609             dz00             = _mm256_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinvsq00         = gmx_mm256_inv_pd(rsq00);
615
616             /* Load parameters for j particles */
617             vdwjidx0A        = 2*vdwtype[jnrA+0];
618             vdwjidx0B        = 2*vdwtype[jnrB+0];
619             vdwjidx0C        = 2*vdwtype[jnrC+0];
620             vdwjidx0D        = 2*vdwtype[jnrD+0];
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm256_any_lt(rsq00,rcutoff2))
627             {
628
629             /* Compute parameters for interactions between i and j atoms */
630             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
631                                             vdwioffsetptr0+vdwjidx0B,
632                                             vdwioffsetptr0+vdwjidx0C,
633                                             vdwioffsetptr0+vdwjidx0D,
634                                             &c6_00,&c12_00);
635
636             /* LENNARD-JONES DISPERSION/REPULSION */
637
638             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
639             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
640
641             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
642
643             fscal            = fvdw;
644
645             fscal            = _mm256_and_pd(fscal,cutoff_mask);
646
647             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm256_mul_pd(fscal,dx00);
651             ty               = _mm256_mul_pd(fscal,dy00);
652             tz               = _mm256_mul_pd(fscal,dz00);
653
654             /* Update vectorial force */
655             fix0             = _mm256_add_pd(fix0,tx);
656             fiy0             = _mm256_add_pd(fiy0,ty);
657             fiz0             = _mm256_add_pd(fiz0,tz);
658
659             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
660             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
661             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
662             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
663             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
664
665             }
666
667             /* Inner loop uses 30 flops */
668         }
669
670         /* End of innermost loop */
671
672         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
673                                                  f+i_coord_offset,fshift+i_shift_offset);
674
675         /* Increment number of inner iterations */
676         inneriter                  += j_index_end - j_index_start;
677
678         /* Outer loop uses 6 flops */
679     }
680
681     /* Increment number of outer iterations */
682     outeriter        += nri;
683
684     /* Update outer/inner flops */
685
686     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
687 }