Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     real *           vdwgridioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     int              nvdwtype;
90     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
94     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
95     __m256d           c6grid_00;
96     real             *vdwgridparam;
97     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     __m256d           one_half  = _mm256_set1_pd(0.5);
99     __m256d           minus_one = _mm256_set1_pd(-1.0);
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119     vdwgridparam     = fr->ljpme_c6grid;
120     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
121     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
122     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_pd();
157         fiy0             = _mm256_setzero_pd();
158         fiz0             = _mm256_setzero_pd();
159
160         /* Load parameters for i particles */
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         vvdwsum          = _mm256_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
183                                                  x+j_coord_offsetC,x+j_coord_offsetD,
184                                                  &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm256_sub_pd(ix0,jx0);
188             dy00             = _mm256_sub_pd(iy0,jy0);
189             dz00             = _mm256_sub_pd(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
193
194             rinv00           = avx256_invsqrt_d(rsq00);
195
196             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201             vdwjidx0C        = 2*vdwtype[jnrC+0];
202             vdwjidx0D        = 2*vdwtype[jnrD+0];
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r00              = _mm256_mul_pd(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
212                                             vdwioffsetptr0+vdwjidx0B,
213                                             vdwioffsetptr0+vdwjidx0C,
214                                             vdwioffsetptr0+vdwjidx0D,
215                                             &c6_00,&c12_00);
216
217             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
218                                                                   vdwgridioffsetptr0+vdwjidx0B,
219                                                                   vdwgridioffsetptr0+vdwjidx0C,
220                                                                   vdwgridioffsetptr0+vdwjidx0D);
221
222             /* Analytical LJ-PME */
223             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
224             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
225             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
226             exponent         = avx256_exp_d(ewcljrsq);
227             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
228             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
229             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
230             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
231             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
233             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
234             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
238
239             fscal            = fvdw;
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm256_mul_pd(fscal,dx00);
243             ty               = _mm256_mul_pd(fscal,dy00);
244             tz               = _mm256_mul_pd(fscal,dz00);
245
246             /* Update vectorial force */
247             fix0             = _mm256_add_pd(fix0,tx);
248             fiy0             = _mm256_add_pd(fiy0,ty);
249             fiz0             = _mm256_add_pd(fiz0,tz);
250
251             fjptrA             = f+j_coord_offsetA;
252             fjptrB             = f+j_coord_offsetB;
253             fjptrC             = f+j_coord_offsetC;
254             fjptrD             = f+j_coord_offsetD;
255             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
256
257             /* Inner loop uses 54 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             /* Get j neighbor index, and coordinate index */
264             jnrlistA         = jjnr[jidx];
265             jnrlistB         = jjnr[jidx+1];
266             jnrlistC         = jjnr[jidx+2];
267             jnrlistD         = jjnr[jidx+3];
268             /* Sign of each element will be negative for non-real atoms.
269              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
270              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
271              */
272             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
273
274             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
275             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
276             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
277
278             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
279             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
280             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
281             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
282             j_coord_offsetA  = DIM*jnrA;
283             j_coord_offsetB  = DIM*jnrB;
284             j_coord_offsetC  = DIM*jnrC;
285             j_coord_offsetD  = DIM*jnrD;
286
287             /* load j atom coordinates */
288             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
289                                                  x+j_coord_offsetC,x+j_coord_offsetD,
290                                                  &jx0,&jy0,&jz0);
291
292             /* Calculate displacement vector */
293             dx00             = _mm256_sub_pd(ix0,jx0);
294             dy00             = _mm256_sub_pd(iy0,jy0);
295             dz00             = _mm256_sub_pd(iz0,jz0);
296
297             /* Calculate squared distance and things based on it */
298             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
299
300             rinv00           = avx256_invsqrt_d(rsq00);
301
302             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
303
304             /* Load parameters for j particles */
305             vdwjidx0A        = 2*vdwtype[jnrA+0];
306             vdwjidx0B        = 2*vdwtype[jnrB+0];
307             vdwjidx0C        = 2*vdwtype[jnrC+0];
308             vdwjidx0D        = 2*vdwtype[jnrD+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             r00              = _mm256_mul_pd(rsq00,rinv00);
315             r00              = _mm256_andnot_pd(dummy_mask,r00);
316
317             /* Compute parameters for interactions between i and j atoms */
318             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
319                                             vdwioffsetptr0+vdwjidx0B,
320                                             vdwioffsetptr0+vdwjidx0C,
321                                             vdwioffsetptr0+vdwjidx0D,
322                                             &c6_00,&c12_00);
323
324             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
325                                                                   vdwgridioffsetptr0+vdwjidx0B,
326                                                                   vdwgridioffsetptr0+vdwjidx0C,
327                                                                   vdwgridioffsetptr0+vdwjidx0D);
328
329             /* Analytical LJ-PME */
330             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
331             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
332             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
333             exponent         = avx256_exp_d(ewcljrsq);
334             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
335             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
336             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
337             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
338             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
339             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
340             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
341             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
345             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx00);
353             ty               = _mm256_mul_pd(fscal,dy00);
354             tz               = _mm256_mul_pd(fscal,dz00);
355
356             /* Update vectorial force */
357             fix0             = _mm256_add_pd(fix0,tx);
358             fiy0             = _mm256_add_pd(fiy0,ty);
359             fiz0             = _mm256_add_pd(fiz0,tz);
360
361             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
362             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
363             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
364             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
365             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
366
367             /* Inner loop uses 55 flops */
368         }
369
370         /* End of innermost loop */
371
372         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
373                                                  f+i_coord_offset,fshift+i_shift_offset);
374
375         ggid                        = gid[iidx];
376         /* Update potential energies */
377         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
378
379         /* Increment number of inner iterations */
380         inneriter                  += j_index_end - j_index_start;
381
382         /* Outer loop uses 7 flops */
383     }
384
385     /* Increment number of outer iterations */
386     outeriter        += nri;
387
388     /* Update outer/inner flops */
389
390     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*55);
391 }
392 /*
393  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
394  * Electrostatics interaction: None
395  * VdW interaction:            LJEwald
396  * Geometry:                   Particle-Particle
397  * Calculate force/pot:        Force
398  */
399 void
400 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
401                     (t_nblist                    * gmx_restrict       nlist,
402                      rvec                        * gmx_restrict          xx,
403                      rvec                        * gmx_restrict          ff,
404                      struct t_forcerec           * gmx_restrict          fr,
405                      t_mdatoms                   * gmx_restrict     mdatoms,
406                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
407                      t_nrnb                      * gmx_restrict        nrnb)
408 {
409     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
410      * just 0 for non-waters.
411      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
412      * jnr indices corresponding to data put in the four positions in the SIMD register.
413      */
414     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
415     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
416     int              jnrA,jnrB,jnrC,jnrD;
417     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
418     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
419     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
420     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
421     real             rcutoff_scalar;
422     real             *shiftvec,*fshift,*x,*f;
423     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
424     real             scratch[4*DIM];
425     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
426     real *           vdwioffsetptr0;
427     real *           vdwgridioffsetptr0;
428     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
429     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
430     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
431     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
432     int              nvdwtype;
433     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
434     int              *vdwtype;
435     real             *vdwparam;
436     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
437     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
438     __m256d           c6grid_00;
439     real             *vdwgridparam;
440     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
441     __m256d           one_half  = _mm256_set1_pd(0.5);
442     __m256d           minus_one = _mm256_set1_pd(-1.0);
443     __m256d          dummy_mask,cutoff_mask;
444     __m128           tmpmask0,tmpmask1;
445     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
446     __m256d          one     = _mm256_set1_pd(1.0);
447     __m256d          two     = _mm256_set1_pd(2.0);
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     nvdwtype         = fr->ntype;
460     vdwparam         = fr->nbfp;
461     vdwtype          = mdatoms->typeA;
462     vdwgridparam     = fr->ljpme_c6grid;
463     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
464     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
465     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
466
467     /* Avoid stupid compiler warnings */
468     jnrA = jnrB = jnrC = jnrD = 0;
469     j_coord_offsetA = 0;
470     j_coord_offsetB = 0;
471     j_coord_offsetC = 0;
472     j_coord_offsetD = 0;
473
474     outeriter        = 0;
475     inneriter        = 0;
476
477     for(iidx=0;iidx<4*DIM;iidx++)
478     {
479         scratch[iidx] = 0.0;
480     }
481
482     /* Start outer loop over neighborlists */
483     for(iidx=0; iidx<nri; iidx++)
484     {
485         /* Load shift vector for this list */
486         i_shift_offset   = DIM*shiftidx[iidx];
487
488         /* Load limits for loop over neighbors */
489         j_index_start    = jindex[iidx];
490         j_index_end      = jindex[iidx+1];
491
492         /* Get outer coordinate index */
493         inr              = iinr[iidx];
494         i_coord_offset   = DIM*inr;
495
496         /* Load i particle coords and add shift vector */
497         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
498
499         fix0             = _mm256_setzero_pd();
500         fiy0             = _mm256_setzero_pd();
501         fiz0             = _mm256_setzero_pd();
502
503         /* Load parameters for i particles */
504         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
505         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             jnrC             = jjnr[jidx+2];
515             jnrD             = jjnr[jidx+3];
516             j_coord_offsetA  = DIM*jnrA;
517             j_coord_offsetB  = DIM*jnrB;
518             j_coord_offsetC  = DIM*jnrC;
519             j_coord_offsetD  = DIM*jnrD;
520
521             /* load j atom coordinates */
522             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
523                                                  x+j_coord_offsetC,x+j_coord_offsetD,
524                                                  &jx0,&jy0,&jz0);
525
526             /* Calculate displacement vector */
527             dx00             = _mm256_sub_pd(ix0,jx0);
528             dy00             = _mm256_sub_pd(iy0,jy0);
529             dz00             = _mm256_sub_pd(iz0,jz0);
530
531             /* Calculate squared distance and things based on it */
532             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
533
534             rinv00           = avx256_invsqrt_d(rsq00);
535
536             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
537
538             /* Load parameters for j particles */
539             vdwjidx0A        = 2*vdwtype[jnrA+0];
540             vdwjidx0B        = 2*vdwtype[jnrB+0];
541             vdwjidx0C        = 2*vdwtype[jnrC+0];
542             vdwjidx0D        = 2*vdwtype[jnrD+0];
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r00              = _mm256_mul_pd(rsq00,rinv00);
549
550             /* Compute parameters for interactions between i and j atoms */
551             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
552                                             vdwioffsetptr0+vdwjidx0B,
553                                             vdwioffsetptr0+vdwjidx0C,
554                                             vdwioffsetptr0+vdwjidx0D,
555                                             &c6_00,&c12_00);
556
557             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
558                                                                   vdwgridioffsetptr0+vdwjidx0B,
559                                                                   vdwgridioffsetptr0+vdwjidx0C,
560                                                                   vdwgridioffsetptr0+vdwjidx0D);
561
562             /* Analytical LJ-PME */
563             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
564             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
565             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
566             exponent         = avx256_exp_d(ewcljrsq);
567             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
568             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
569             /* f6A = 6 * C6grid * (1 - poly) */
570             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
571             /* f6B = C6grid * exponent * beta^6 */
572             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
573             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
574             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
575
576             fscal            = fvdw;
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm256_mul_pd(fscal,dx00);
580             ty               = _mm256_mul_pd(fscal,dy00);
581             tz               = _mm256_mul_pd(fscal,dz00);
582
583             /* Update vectorial force */
584             fix0             = _mm256_add_pd(fix0,tx);
585             fiy0             = _mm256_add_pd(fiy0,ty);
586             fiz0             = _mm256_add_pd(fiz0,tz);
587
588             fjptrA             = f+j_coord_offsetA;
589             fjptrB             = f+j_coord_offsetB;
590             fjptrC             = f+j_coord_offsetC;
591             fjptrD             = f+j_coord_offsetD;
592             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
593
594             /* Inner loop uses 46 flops */
595         }
596
597         if(jidx<j_index_end)
598         {
599
600             /* Get j neighbor index, and coordinate index */
601             jnrlistA         = jjnr[jidx];
602             jnrlistB         = jjnr[jidx+1];
603             jnrlistC         = jjnr[jidx+2];
604             jnrlistD         = jjnr[jidx+3];
605             /* Sign of each element will be negative for non-real atoms.
606              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
607              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
608              */
609             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
610
611             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
612             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
613             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
614
615             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
616             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
617             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
618             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
619             j_coord_offsetA  = DIM*jnrA;
620             j_coord_offsetB  = DIM*jnrB;
621             j_coord_offsetC  = DIM*jnrC;
622             j_coord_offsetD  = DIM*jnrD;
623
624             /* load j atom coordinates */
625             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
626                                                  x+j_coord_offsetC,x+j_coord_offsetD,
627                                                  &jx0,&jy0,&jz0);
628
629             /* Calculate displacement vector */
630             dx00             = _mm256_sub_pd(ix0,jx0);
631             dy00             = _mm256_sub_pd(iy0,jy0);
632             dz00             = _mm256_sub_pd(iz0,jz0);
633
634             /* Calculate squared distance and things based on it */
635             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
636
637             rinv00           = avx256_invsqrt_d(rsq00);
638
639             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
640
641             /* Load parameters for j particles */
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643             vdwjidx0B        = 2*vdwtype[jnrB+0];
644             vdwjidx0C        = 2*vdwtype[jnrC+0];
645             vdwjidx0D        = 2*vdwtype[jnrD+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             r00              = _mm256_mul_pd(rsq00,rinv00);
652             r00              = _mm256_andnot_pd(dummy_mask,r00);
653
654             /* Compute parameters for interactions between i and j atoms */
655             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
656                                             vdwioffsetptr0+vdwjidx0B,
657                                             vdwioffsetptr0+vdwjidx0C,
658                                             vdwioffsetptr0+vdwjidx0D,
659                                             &c6_00,&c12_00);
660
661             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
662                                                                   vdwgridioffsetptr0+vdwjidx0B,
663                                                                   vdwgridioffsetptr0+vdwjidx0C,
664                                                                   vdwgridioffsetptr0+vdwjidx0D);
665
666             /* Analytical LJ-PME */
667             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
668             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
669             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
670             exponent         = avx256_exp_d(ewcljrsq);
671             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
672             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
673             /* f6A = 6 * C6grid * (1 - poly) */
674             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
675             /* f6B = C6grid * exponent * beta^6 */
676             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
677             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
678             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
679
680             fscal            = fvdw;
681
682             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm256_mul_pd(fscal,dx00);
686             ty               = _mm256_mul_pd(fscal,dy00);
687             tz               = _mm256_mul_pd(fscal,dz00);
688
689             /* Update vectorial force */
690             fix0             = _mm256_add_pd(fix0,tx);
691             fiy0             = _mm256_add_pd(fiy0,ty);
692             fiz0             = _mm256_add_pd(fiz0,tz);
693
694             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
695             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
696             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
697             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
698             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
699
700             /* Inner loop uses 47 flops */
701         }
702
703         /* End of innermost loop */
704
705         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
706                                                  f+i_coord_offset,fshift+i_shift_offset);
707
708         /* Increment number of inner iterations */
709         inneriter                  += j_index_end - j_index_start;
710
711         /* Outer loop uses 6 flops */
712     }
713
714     /* Increment number of outer iterations */
715     outeriter        += nri;
716
717     /* Update outer/inner flops */
718
719     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
720 }