Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     int              nvdwtype;
93     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
97     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
98     __m256d           c6grid_00;
99     real             *vdwgridparam;
100     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
101     __m256d           one_half  = _mm256_set1_pd(0.5);
102     __m256d           minus_one = _mm256_set1_pd(-1.0);
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122     vdwgridparam     = fr->ljpme_c6grid;
123     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
124     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
125     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm256_setzero_pd();
160         fiy0             = _mm256_setzero_pd();
161         fiz0             = _mm256_setzero_pd();
162
163         /* Load parameters for i particles */
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         vvdwsum          = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm256_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
215                                             vdwioffsetptr0+vdwjidx0B,
216                                             vdwioffsetptr0+vdwjidx0C,
217                                             vdwioffsetptr0+vdwjidx0D,
218                                             &c6_00,&c12_00);
219
220             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
221                                                                   vdwgridioffsetptr0+vdwjidx0B,
222                                                                   vdwgridioffsetptr0+vdwjidx0C,
223                                                                   vdwgridioffsetptr0+vdwjidx0D);
224
225             /* Analytical LJ-PME */
226             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
227             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
228             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
229             exponent         = gmx_simd_exp_d(ewcljrsq);
230             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
231             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
232             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
233             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
234             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
235             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
236             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
237             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
238
239             /* Update potential sum for this i atom from the interaction with this j atom. */
240             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
241
242             fscal            = fvdw;
243
244             /* Calculate temporary vectorial force */
245             tx               = _mm256_mul_pd(fscal,dx00);
246             ty               = _mm256_mul_pd(fscal,dy00);
247             tz               = _mm256_mul_pd(fscal,dz00);
248
249             /* Update vectorial force */
250             fix0             = _mm256_add_pd(fix0,tx);
251             fiy0             = _mm256_add_pd(fiy0,ty);
252             fiz0             = _mm256_add_pd(fiz0,tz);
253
254             fjptrA             = f+j_coord_offsetA;
255             fjptrB             = f+j_coord_offsetB;
256             fjptrC             = f+j_coord_offsetC;
257             fjptrD             = f+j_coord_offsetD;
258             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
259
260             /* Inner loop uses 54 flops */
261         }
262
263         if(jidx<j_index_end)
264         {
265
266             /* Get j neighbor index, and coordinate index */
267             jnrlistA         = jjnr[jidx];
268             jnrlistB         = jjnr[jidx+1];
269             jnrlistC         = jjnr[jidx+2];
270             jnrlistD         = jjnr[jidx+3];
271             /* Sign of each element will be negative for non-real atoms.
272              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
273              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
274              */
275             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
276
277             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
278             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
279             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
280
281             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
282             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
283             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
284             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
285             j_coord_offsetA  = DIM*jnrA;
286             j_coord_offsetB  = DIM*jnrB;
287             j_coord_offsetC  = DIM*jnrC;
288             j_coord_offsetD  = DIM*jnrD;
289
290             /* load j atom coordinates */
291             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
292                                                  x+j_coord_offsetC,x+j_coord_offsetD,
293                                                  &jx0,&jy0,&jz0);
294
295             /* Calculate displacement vector */
296             dx00             = _mm256_sub_pd(ix0,jx0);
297             dy00             = _mm256_sub_pd(iy0,jy0);
298             dz00             = _mm256_sub_pd(iz0,jz0);
299
300             /* Calculate squared distance and things based on it */
301             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
302
303             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
304
305             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
306
307             /* Load parameters for j particles */
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309             vdwjidx0B        = 2*vdwtype[jnrB+0];
310             vdwjidx0C        = 2*vdwtype[jnrC+0];
311             vdwjidx0D        = 2*vdwtype[jnrD+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r00              = _mm256_mul_pd(rsq00,rinv00);
318             r00              = _mm256_andnot_pd(dummy_mask,r00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
322                                             vdwioffsetptr0+vdwjidx0B,
323                                             vdwioffsetptr0+vdwjidx0C,
324                                             vdwioffsetptr0+vdwjidx0D,
325                                             &c6_00,&c12_00);
326
327             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
328                                                                   vdwgridioffsetptr0+vdwjidx0B,
329                                                                   vdwgridioffsetptr0+vdwjidx0C,
330                                                                   vdwgridioffsetptr0+vdwjidx0D);
331
332             /* Analytical LJ-PME */
333             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
334             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
335             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
336             exponent         = gmx_simd_exp_d(ewcljrsq);
337             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
338             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
339             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
340             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
341             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
342             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
343             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
344             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
348             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
349
350             fscal            = fvdw;
351
352             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_pd(fscal,dx00);
356             ty               = _mm256_mul_pd(fscal,dy00);
357             tz               = _mm256_mul_pd(fscal,dz00);
358
359             /* Update vectorial force */
360             fix0             = _mm256_add_pd(fix0,tx);
361             fiy0             = _mm256_add_pd(fiy0,ty);
362             fiz0             = _mm256_add_pd(fiz0,tz);
363
364             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
365             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
366             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
367             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
368             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
369
370             /* Inner loop uses 55 flops */
371         }
372
373         /* End of innermost loop */
374
375         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
376                                                  f+i_coord_offset,fshift+i_shift_offset);
377
378         ggid                        = gid[iidx];
379         /* Update potential energies */
380         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
381
382         /* Increment number of inner iterations */
383         inneriter                  += j_index_end - j_index_start;
384
385         /* Outer loop uses 7 flops */
386     }
387
388     /* Increment number of outer iterations */
389     outeriter        += nri;
390
391     /* Update outer/inner flops */
392
393     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*55);
394 }
395 /*
396  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
397  * Electrostatics interaction: None
398  * VdW interaction:            LJEwald
399  * Geometry:                   Particle-Particle
400  * Calculate force/pot:        Force
401  */
402 void
403 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
404                     (t_nblist                    * gmx_restrict       nlist,
405                      rvec                        * gmx_restrict          xx,
406                      rvec                        * gmx_restrict          ff,
407                      t_forcerec                  * gmx_restrict          fr,
408                      t_mdatoms                   * gmx_restrict     mdatoms,
409                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
410                      t_nrnb                      * gmx_restrict        nrnb)
411 {
412     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
413      * just 0 for non-waters.
414      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
415      * jnr indices corresponding to data put in the four positions in the SIMD register.
416      */
417     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
418     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
419     int              jnrA,jnrB,jnrC,jnrD;
420     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
421     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
422     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
423     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
424     real             rcutoff_scalar;
425     real             *shiftvec,*fshift,*x,*f;
426     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
427     real             scratch[4*DIM];
428     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
429     real *           vdwioffsetptr0;
430     real *           vdwgridioffsetptr0;
431     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
432     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
433     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
434     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
435     int              nvdwtype;
436     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
437     int              *vdwtype;
438     real             *vdwparam;
439     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
440     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
441     __m256d           c6grid_00;
442     real             *vdwgridparam;
443     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
444     __m256d           one_half  = _mm256_set1_pd(0.5);
445     __m256d           minus_one = _mm256_set1_pd(-1.0);
446     __m256d          dummy_mask,cutoff_mask;
447     __m128           tmpmask0,tmpmask1;
448     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
449     __m256d          one     = _mm256_set1_pd(1.0);
450     __m256d          two     = _mm256_set1_pd(2.0);
451     x                = xx[0];
452     f                = ff[0];
453
454     nri              = nlist->nri;
455     iinr             = nlist->iinr;
456     jindex           = nlist->jindex;
457     jjnr             = nlist->jjnr;
458     shiftidx         = nlist->shift;
459     gid              = nlist->gid;
460     shiftvec         = fr->shift_vec[0];
461     fshift           = fr->fshift[0];
462     nvdwtype         = fr->ntype;
463     vdwparam         = fr->nbfp;
464     vdwtype          = mdatoms->typeA;
465     vdwgridparam     = fr->ljpme_c6grid;
466     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
467     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
468     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
469
470     /* Avoid stupid compiler warnings */
471     jnrA = jnrB = jnrC = jnrD = 0;
472     j_coord_offsetA = 0;
473     j_coord_offsetB = 0;
474     j_coord_offsetC = 0;
475     j_coord_offsetD = 0;
476
477     outeriter        = 0;
478     inneriter        = 0;
479
480     for(iidx=0;iidx<4*DIM;iidx++)
481     {
482         scratch[iidx] = 0.0;
483     }
484
485     /* Start outer loop over neighborlists */
486     for(iidx=0; iidx<nri; iidx++)
487     {
488         /* Load shift vector for this list */
489         i_shift_offset   = DIM*shiftidx[iidx];
490
491         /* Load limits for loop over neighbors */
492         j_index_start    = jindex[iidx];
493         j_index_end      = jindex[iidx+1];
494
495         /* Get outer coordinate index */
496         inr              = iinr[iidx];
497         i_coord_offset   = DIM*inr;
498
499         /* Load i particle coords and add shift vector */
500         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
501
502         fix0             = _mm256_setzero_pd();
503         fiy0             = _mm256_setzero_pd();
504         fiz0             = _mm256_setzero_pd();
505
506         /* Load parameters for i particles */
507         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
508         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
509
510         /* Start inner kernel loop */
511         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
512         {
513
514             /* Get j neighbor index, and coordinate index */
515             jnrA             = jjnr[jidx];
516             jnrB             = jjnr[jidx+1];
517             jnrC             = jjnr[jidx+2];
518             jnrD             = jjnr[jidx+3];
519             j_coord_offsetA  = DIM*jnrA;
520             j_coord_offsetB  = DIM*jnrB;
521             j_coord_offsetC  = DIM*jnrC;
522             j_coord_offsetD  = DIM*jnrD;
523
524             /* load j atom coordinates */
525             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
526                                                  x+j_coord_offsetC,x+j_coord_offsetD,
527                                                  &jx0,&jy0,&jz0);
528
529             /* Calculate displacement vector */
530             dx00             = _mm256_sub_pd(ix0,jx0);
531             dy00             = _mm256_sub_pd(iy0,jy0);
532             dz00             = _mm256_sub_pd(iz0,jz0);
533
534             /* Calculate squared distance and things based on it */
535             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
536
537             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
538
539             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
540
541             /* Load parameters for j particles */
542             vdwjidx0A        = 2*vdwtype[jnrA+0];
543             vdwjidx0B        = 2*vdwtype[jnrB+0];
544             vdwjidx0C        = 2*vdwtype[jnrC+0];
545             vdwjidx0D        = 2*vdwtype[jnrD+0];
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r00              = _mm256_mul_pd(rsq00,rinv00);
552
553             /* Compute parameters for interactions between i and j atoms */
554             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
555                                             vdwioffsetptr0+vdwjidx0B,
556                                             vdwioffsetptr0+vdwjidx0C,
557                                             vdwioffsetptr0+vdwjidx0D,
558                                             &c6_00,&c12_00);
559
560             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
561                                                                   vdwgridioffsetptr0+vdwjidx0B,
562                                                                   vdwgridioffsetptr0+vdwjidx0C,
563                                                                   vdwgridioffsetptr0+vdwjidx0D);
564
565             /* Analytical LJ-PME */
566             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
567             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
568             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
569             exponent         = gmx_simd_exp_d(ewcljrsq);
570             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
571             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
572             /* f6A = 6 * C6grid * (1 - poly) */
573             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
574             /* f6B = C6grid * exponent * beta^6 */
575             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
576             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
577             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
578
579             fscal            = fvdw;
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm256_mul_pd(fscal,dx00);
583             ty               = _mm256_mul_pd(fscal,dy00);
584             tz               = _mm256_mul_pd(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm256_add_pd(fix0,tx);
588             fiy0             = _mm256_add_pd(fiy0,ty);
589             fiz0             = _mm256_add_pd(fiz0,tz);
590
591             fjptrA             = f+j_coord_offsetA;
592             fjptrB             = f+j_coord_offsetB;
593             fjptrC             = f+j_coord_offsetC;
594             fjptrD             = f+j_coord_offsetD;
595             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
596
597             /* Inner loop uses 46 flops */
598         }
599
600         if(jidx<j_index_end)
601         {
602
603             /* Get j neighbor index, and coordinate index */
604             jnrlistA         = jjnr[jidx];
605             jnrlistB         = jjnr[jidx+1];
606             jnrlistC         = jjnr[jidx+2];
607             jnrlistD         = jjnr[jidx+3];
608             /* Sign of each element will be negative for non-real atoms.
609              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
610              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
611              */
612             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
613
614             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
615             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
616             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
617
618             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
619             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
620             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
621             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
622             j_coord_offsetA  = DIM*jnrA;
623             j_coord_offsetB  = DIM*jnrB;
624             j_coord_offsetC  = DIM*jnrC;
625             j_coord_offsetD  = DIM*jnrD;
626
627             /* load j atom coordinates */
628             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
629                                                  x+j_coord_offsetC,x+j_coord_offsetD,
630                                                  &jx0,&jy0,&jz0);
631
632             /* Calculate displacement vector */
633             dx00             = _mm256_sub_pd(ix0,jx0);
634             dy00             = _mm256_sub_pd(iy0,jy0);
635             dz00             = _mm256_sub_pd(iz0,jz0);
636
637             /* Calculate squared distance and things based on it */
638             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
639
640             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
641
642             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
643
644             /* Load parameters for j particles */
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646             vdwjidx0B        = 2*vdwtype[jnrB+0];
647             vdwjidx0C        = 2*vdwtype[jnrC+0];
648             vdwjidx0D        = 2*vdwtype[jnrD+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r00              = _mm256_mul_pd(rsq00,rinv00);
655             r00              = _mm256_andnot_pd(dummy_mask,r00);
656
657             /* Compute parameters for interactions between i and j atoms */
658             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
659                                             vdwioffsetptr0+vdwjidx0B,
660                                             vdwioffsetptr0+vdwjidx0C,
661                                             vdwioffsetptr0+vdwjidx0D,
662                                             &c6_00,&c12_00);
663
664             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
665                                                                   vdwgridioffsetptr0+vdwjidx0B,
666                                                                   vdwgridioffsetptr0+vdwjidx0C,
667                                                                   vdwgridioffsetptr0+vdwjidx0D);
668
669             /* Analytical LJ-PME */
670             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
671             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
672             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
673             exponent         = gmx_simd_exp_d(ewcljrsq);
674             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
675             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
676             /* f6A = 6 * C6grid * (1 - poly) */
677             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
678             /* f6B = C6grid * exponent * beta^6 */
679             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
680             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
681             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
682
683             fscal            = fvdw;
684
685             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm256_mul_pd(fscal,dx00);
689             ty               = _mm256_mul_pd(fscal,dy00);
690             tz               = _mm256_mul_pd(fscal,dz00);
691
692             /* Update vectorial force */
693             fix0             = _mm256_add_pd(fix0,tx);
694             fiy0             = _mm256_add_pd(fiy0,ty);
695             fiz0             = _mm256_add_pd(fiz0,tz);
696
697             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
698             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
699             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
700             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
701             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
702
703             /* Inner loop uses 47 flops */
704         }
705
706         /* End of innermost loop */
707
708         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
709                                                  f+i_coord_offset,fshift+i_shift_offset);
710
711         /* Increment number of inner iterations */
712         inneriter                  += j_index_end - j_index_start;
713
714         /* Outer loop uses 6 flops */
715     }
716
717     /* Increment number of outer iterations */
718     outeriter        += nri;
719
720     /* Update outer/inner flops */
721
722     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
723 }